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The growth optimal investment strategy
is secure, too.

László Györfi, György Ottucsák, and Harro Walk

This paper is a revisit of discrete time, multi period and sequential investment
strategies for financial markets showing that the log-optimal strategies are
secure, too. Using exponential inequality of large deviation type, the rate of
convergence of the average growth rate is bounded both for memoryless and
for Markov market processes. A kind of security indicator of an investment
strategy can be the market time achieving a target wealth. It is shown that
the log-optimal principle is optimal in this respect.

1 Introduction

This paper gives some additional features of the investment strategies in
financial stock markets inspired by the results of information theory, non-
parametric statistics and machine learning. Investment strategies are allowed
to use information collected from the past of the market and determine, at
the beginning of a trading period, a portfolio, that is, a way to distribute
their current capital among the available assets. The goal of the investor is
to maximize his wealth in the long run without knowing the underlying dis-
tribution generating the stock prices. Under this assumption the asymptotic
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rate of growth has a well-defined maximum which can be achieved in full
knowledge of the underlying distribution generated by the stock prices.

In Section 2, under memoryless assumption on the underlying process
generating the asset prices, the log-optimal portfolio achieves the maximal
asymptotic average growth rate, that is, the expected value of the logarithm
of the return for the best fix portfolio vector. Using exponential inequality
of large deviation type, the rate of convergence of the average growth rate
to the optimum growth rate is bounded. Consider a security indicator of an
investment strategy, which is the market time achieving a target wealth. The
log-optimal principle is optimal in this respect, too.

In Section 3, for generalized dynamic portfolio selection, when asset prices
are generated by a stationary and ergodic process, there are universally con-
sistent (empirical) methods that achieve the maximal possible growth rate.
If the market process is a first order Markov process, then the rate of con-
vergence of the average growth rate is obtained more generally.

Consider a market consisting of d assets. The evolution of the market in
time is represented by a sequence of price vectors S1;S2; : : : 2 Rd+, where

Sn = (S(1)
n ; : : : ;S(d)

n )

such that the j-th component S(j)
n of Sn denotes the price of the j-th asset

on the n-th trading period.
Let us transform the sequence of price vectors fSng into the sequence of

return (relative price) vectors fXng as follows:

Xn = (X(1)
n ; : : : ;X(d)

n )

such that

X(j)
n =

S
(j)
n

S
(j)
n�1

:

Thus, the j-th component X(j)
n of the return vector Xn denotes the amount

obtained after investing a unit capital in the j-th asset on the n-th trading
period.

2 Constantly rebalanced portfolio selection

The dynamic portfolio selection is a multi-period investment strategy, where
at the beginning of each trading period the investor rearranges the wealth
among the assets. A representative example of the dynamic portfolio selec-
tion is the constantly rebalanced portfolio (CRP). The investor is allowed to
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diversify his capital at the beginning of each trading period according to a
portfolio vector b= (b(1); : : : b(d)). The j-th component b(j) of b denotes the
proportion of the investor’s capital invested in asset j. Throughout the paper
it is assumed that the portfolio vector b has nonnegative components withPd

j=1 b
(j) =1. The fact that

Pd
j=1 b

(j) =1means that the investment strategy
is self financing and consumption of capital is excluded. The non-negativity
of the components of b means that short selling and buying stocks on margin
are not permitted. The simplex of possible portfolio vectors is denoted by
�d.

Let S0 denote the investor’s initial capital. Then at the beginning of the
first trading period S0b

(j) is invested into asset j, and it results in return
S0b

(j)x
(j)
1 , therefore at the end of the first trading period the investor’s wealth

becomes

S1 = S0

dX
j=1

b(j)X
(j)
1 = S0 hb ;X1i ;

where h� ; �i denotes inner product. For the second trading period, S1 is the
new initial capital

S2 = S1 � hb ;X2i= S0 � hb ;X1i � hb ;X2i :

By induction, for the trading period n the initial capital is Sn�1, therefore

Sn = Sn�1 hb ;Xni= S0

nY
i=1

hb ;Xii :

The asymptotic average growth rate of this portfolio selection is

lim
n!1

1

n
lnSn = lim

n!1

 
1

n
lnS0+

1

n

nX
i=1

lnhb ;Xii
!

= lim
n!1

1

n

nX
i=1

lnhb ;Xii ;

therefore without loss of generality one can assume in the sequel that the
initial capital S0 = 1.

If the market process fXig is memoryless, i.e., it is a sequence of indepen-
dent and identically distributed (i.i.d.) random return vectors then we show
that the best constantly rebalanced portfolio (BCRP) is the log-optimal port-
folio:

b� := argmax
b2�d

Eflnhb ;X1ig:

This optimality was formulated as follows:
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Proposition 1. (Kelly [30], Latané [32], Breiman [11], Finkelstein and
Whitley [19], Barron and Cover [8].) If S�n = Sn(b

�) denotes the capital
after day n achieved by a log-optimal portfolio strategy b�, then for any
portfolio strategy b with finite Eflnhb ;X1ig and with capital Sn = Sn(b)

and for any memoryless market process fXng1�1,

lim
n!1

1

n
lnSn � lim

n!1
1

n
lnS�n almost surely (a.s.) (1)

and maximal asymptotic average growth rate is

lim
n!1

1

n
lnS�n =W � := Eflnhb� ;X1ig a.s.

Proof. This optimality is a simple consequence of the strong law of large
numbers. Introduce the notation

W (b) = Eflnhb ;X1ig:

Then

1

n
lnSn =

1

n

nX
i=1

lnhb ;Xii

=
1

n

nX
i=1

Eflnhb ;Xiig+ 1

n

nX
i=1

(lnhb ;Xii�Eflnhb ;Xiig)

= W (b)+
1

n

nX
i=1

(lnhb ;Xii�Eflnhb ;Xiig) :

Kolmogorov’s strong law of large numbers implies that

1

n

nX
i=1

(lnhb ;Xii�Eflnhb ;Xiig)! 0 a.s.,

therefore
lim
n!1

1

n
lnSn =W (b) = Eflnhb ;X1ig a.s.

Similarly,

lim
n!1

1

n
lnS�n =W � :=W (b�) = max

b
W (b) a.s.

In Kuhn and Luenberger [31] the log-optimal portfolio selection was stud-
ied for a continuous time model, where the main question of interest is the
choice of sampling frequency such that the rebalancing is done at sampling
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time instances. They assumed that the assets’ prices are cross-correlated geo-
metric motions and therefore the return vectors of sampled price processes are
memoryless. For high sampling frequency, the log-optimal strategy is a spe-
cial case of mean-variance rule, called semi-log-optimal strategy (cf. Györfi,
Urbán, Vajda [23], Pulley [36], Roll [37]).

There is an obvious question here: how secure a growth optimal portfolio
strategy is? The strong law of large numbers has another interpretation. Put

Rn := inf
n�m

1

m
lnS�m;

then enRn is a lower exponential envelope for S�n, i.e.,

enRn � S�n:

Moreover,
Rn "W � a.s.,

which means that for an arbitrary R <W �, we have that

enR � S�n

for all n after a random time N large enough.
In the sequel we bound N , i.e., derive a rate of convergence of the strong

law of large numbers. Assume that there exist 0< a1 < 1< a2 <1 such that

a1 �X(j) � a2 (2)

for all j = 1; : : : ;d. For the New York Stock Exchange (NYSE) daily data,
this condition is satisfied with a1 = 0:7 and with a2 = 1:2. a1 = 0:7 means
that the worst that happened in a single day was 30% drop, while a2 = 1:2

corresponds to 20% increase within a day. (Cf. Fernholz [18], Horváth and
Urbán [28].) Figure 1 shows the histogram of Coca Cola’s daily logarithmic
relative prices such that most of the days the relative prices are in the interval
[0:95;1:05] from 1962 to 2006. Here are some statistical data:

minimum = �0:2836

1st qu. = �0:0074

median = 0:0000

mean = 0:00053

3rd qu. = 0:0083

maximum = 0:1796:
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Fig. 1 The histogram of log-returns for Coca Cola

Theorem 1. If the market process fXig is memoryless and the condition
(2) is satisfied, then for an arbitrary R <W �, we have that

P
�
enR > S�n

	� e
�2n

(W��R)2
(lna2�lna1)

2 :

Proof. We have that

P
�
enR > S�n

	
= P

�
R >

1

n
lnS�n

�

= P

(
R�W � >

1

n

nX
i=1

(lnhb� ;Xii�Eflnhb� ;Xiig)
)
:

Apply the Hoeffding [27] inequality: Let X1; : : : ;Xn be independent random
variables with Xi 2 [c;c+K] with probability one. Then, for all � > 0,

P

(
1

n

nX
i=1

(Xi�EfXig)<��
)
� e

�2n �2

K2 :

Because of the condition,

lna1 � lnhb� ;Xii � lna2;
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therefore the theorem follows from the Hoeffding inequality for the corre-
spondences

�=W ��R
and

Xi = lnhb� ;Xii
and

K = lna2� lna1:

Using Theorem 1, we can bound the probability that after n there is a
time instant m such that emR > S�m:

Corollary 1. If the market process fXig is memoryless and the condition
(2) is satisfied, then for an arbitrary R <W �, we have that

P
�[1m=nfemR > S�mg

	� e
�2n

(W��R)2
K2

e
2
(W��R)2

K2

e
2
(W��R)2

K2 �1

: (3)

Proof. From Theorem 1 we get that

P
�[1m=nfemR > S�mg

	� 1X
m=n

P
�
emR > S�m

	

�
1X

m=n

e
�2m

(W��R)2
(lna2�lna1)

2

= e
�2n

(W��R)2
(lna2�lna1)

2 1

1�e�2
(W��R)2

(lna2�lna1)
2

:

Theorem 1 and Corollary 1 are about the probability of underperformance
depending on a1 and a2. Using central limit theorem (CLT), one can derive
modifications of Theorem 1 and Corollary 1. The advantage of the CLT is
that the resulted formula does not depend on a1 and a2, it depends only
of the variance of the log-returns. However, in contrast to large deviation
bounds, the CLT is only an approximation.

An additional hard open problem is how to construct empirical strategies
taking into account proportional transaction cost (see, for example, Györfi
and Walk [24], [25]).
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When it comes to security, the small-sample behavior should be more
interesting. Consider the relative amount of times j between 1 and n, for
which S�j is below ejR for R<W � near to W �, say R=Rn =W �� mp

n
� for

fixed m > 0 with �2 = Var(lnhb� ;X1i) assumed to be positive and finite.
For 0� x� 1 we have

P

8<
: 1

n

nX
j=1

IfS�
j
<ejRg � x

9=
;

= P

8<
: 1

n

nX
j=1

If 1
j

Pj

i=1
(lnhb� ;Xii�Eflnhb� ;Xiig)<R�W�g � x

9=
;

= P

8<
: 1

n

nX
j=1

If 1p
n�

Pj

i=1
(lnhb� ;Xii�Eflnhb� ;Xiig)+m j

n<0g � x

9=
;

! P

�Z 1

0

IfW (u)+mu�0gdu� x

�

with standard Brownian motion W , by Donsker’s functional central limit
theorem (see Billingsley [9]) for the functional f ! R 1

0
Iff(u)+mu�0gdu.

By the generalized arc-sine law of Takács [41] the right hand side equals

Fm(x)

:= 2

Z x

0

�
'(m

p
1�u)p

1�u +m�(m
p
1�u)

�"
'
��mpu�p

u
�m�

��mpu�
#
du

for 0 � x � 1, where Fm(1) = 1, and ' and � are the standard normal
density and distribution functions, respectively. We have a non-degenerate
limit distribution. Here for m ! 1 and also for the case R = R0

n with
(W ��R)

p
n!1, especially a constant R0

n < W �, we have degeneration
to the Dirac distribution concentrated at 0. The proof of these assertions
can be as follows: For each 0 < � < 1=2, on [�;1� �] the uniformly bounded
integrand uniformly converges to 0 for m!1, thus Fm(1� �)�F (�)! 0.
Further Fm(0) = 0 and Fm(1) = 1 for each m, and Fm(x) is non-decreasing
for each 0 � x � 1. Thus, Fm(x)! 1 for each 0 < x � 1. Finally one notices
that m<

p
n(W ��R0

n)!1 (n!1) implies

liminf
n

P

8<
: 1

n

nX
j=1

If 1p
n�

Pj

i=1
(lnhb� ;Xii�Eflnhb� ;Xiig)+

p
n(W��R0n) jn<0g � x

9=
;
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� lim
n
P

8<
: 1

n

nX
j=1

If 1p
n�

Pj

i=1
(lnhb� ;Xii�Eflnhb� ;Xiig)+m j

n<0g � x

9=
; ;

for each m. It should be mentioned that under the assumption (2) the latter
of the assertions is also a consequence of Theorem 1 for R=R0

n.

In the literature there is a discussion on good and bad properties of log-
optimal investment (see MacLean, Thorp and Ziemba [34], sections 30 and
39, with references). Beside

limsup
1

n
log(Sn=S

�
n)� 0

almost surely (see (1) and (4) below, good long-run performance) one has

EfSn=S�ng � 1

for all n (good short-term performance). Both properties were established by
Algoet and Cover [3] in the much more general context of a stationary and
ergodic process of daily returns Xn and conditionally log-optimal investment
(here regarding past returns, but nothing more: myopic policy). Leaving the
concept of a logarithmic utility function induced by the multiplicative struc-
ture of investment, Samuelson [38] in his critics pointed out that maximizing
the expected return Efhb ;Xiig instead of expected logarithmic return, with
in this sense optimal portfolio choice b�� and corresponding wealth S��n , leads
to EfS��n g=EfS�ng!1, see also the comments of Markowitz [35]. But under
the risk aspect of the deviation of a random variable from its expectation, use
of logarithm is more advantageous. The log transform is a special case of the
Box-Cox [10] transforms introduced in view of stabilization and widely used
in science, e.g., in medical science. Nevertheless there is the question whether
the risk aversion of log utility is big enough to save an investor with very high
probability from large terminal losses for medium time horizon. Simulation
studies discussed by MacLean, Thorp, Zhao and Ziemba in MacLean, Thorp
and Ziemba [34], section 38, show that in a minority of scenarios such events
occur. These effects depend on time horizon and distribution of the daily
return, which allows a "proper use in the short and medium run" provided
one has a good knowledge of the distribution. Corollary 1 allows for small
� > 0 to obtain a lower bound N for the time horizon having a probability
� 1� � that after this time the investor’s wealth is for ever at least the unit
starting capital: on the right-hand side of (3) set R = 0 and then choose N
as the lowest integer n such that the right-hand side is at most �. Here as in
the following, W � > 0 is assumed.
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The good long-run and short-run performance of the various strategies
are discussed in the literature, but usually the corresponding results concern
only the expectation. Both in financial theory and practice, people care about
the distribution as well. For the log-optimal strategy, there are almost sure
statements, too (cf. Proposition 1).

Besides the growth rate of an investment strategy, one may consider the
market time achieving a target wealth. We consider only strategies b with
Eflnhb ;X1ig> 0. Again, S�n = Sn(b

�) denotes the capital after day n apply-
ing log-optimum portfolio strategy b�, and Sn = Sn(b) the capital using the
portfolio strategy b. For a target wealth �s, introduce the market times

� (�s) := minfm;Sm � �sg

and similarly
� �(�s) := minfm;S�m � �sg:

There are some studies how to minimize the expected market time Ef� (�s)g
for large �s (Aucamp [5], [6], Breiman [11], Hayes [26], Kadaras and Platen
[29]), where Ethier [16] established an asymptotic median log-optimality of
the (mean) log-optimal investment strategy. Breiman [11] conjectured that,
for large �s, the asymptotically best strategy is the growth optimal one such
that we apply the growth optimal strategy until we reach a neighborhood of
�s.

Using the representation

fSm � �sg=
(

mX
i=1

lnhb ;Xii � ln �s

)

the renewal theory for extended renewal processes, i.e., random walks with
drift (see, for instance, Breiman [12] and Feller [17]), yields

Proposition 2. (Breiman [11].) One has that

� (�s)

ln �s
! 1

Eflnhb ;X1ig
a.s.,

Ef� (�s)g
ln �s

! 1

Eflnhb ;X1ig ;

especially
� �(�s)
ln �s

! 1

W �

a.s.,
Ef� �(�s)g

ln �s
! 1

W �
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(�s!1).

In this sense the growth optimal strategy has another optimality property.
This result has been refined by Breiman [11] and can be extended to

ln �s

Eflnhb� ;X1ig �
ln �s

Eflnhb ;X1ig +
Ef((lnhb� ;X1i)+)2g
(Eflnhb� ;X1ig)2

� Ef� �(�s)g�Ef� (�s)g

� ln �s

Eflnhb� ;X1ig �
ln �s

Eflnhb ;X1ig �
Ef((lnhb ;X1i)+)2g
(Eflnhb ;X1ig)2

by Lorden’s [33] upper bound for excess result.
Next we bound the tail distribution of � �(�s) in case of large �s= enR, where

R <W �. We get that

Pf� �(enR)> ng= P
�\nm=1fS�m < enRg	� P

�
S�n < enR

	
;

therefore Theorem 1 implies that

Pf� �(enR)> ng � e
�2n

(W��R)2
(lna2�lna1)

2 :

3 Time varying portfolio selection

For a general dynamic portfolio selection, the portfolio vector may depend
on the past data. As before, Xi = (X

(1)
i ; : : :X

(d)
i ) denotes the return vector

on trading period i. Moreover, denote the segment X1; : : : ;Xi by Xi
1. Let

b= b1 be the portfolio vector for the first trading period. For initial capital
S0, we get that

S1 = S0 � hb1 ;X1i :
For the second trading period, S1 is new initial capital, the portfolio vector
is b2 = b(X1), and

S2 = S0 � hb1 ;X1i � hb(X1) ;X2i :

For the nth trading period, a portfolio vector is bn = b(X1; : : : ;Xn�1) =

b(Xn�1
1 ) and

Sn = S0

nY
i=1

D
b(Xi�1

1 ) ;Xi

E
= S0e

nWn(B)

with the average growth rate
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Wn(B) =
1

n

nX
i=1

ln
D
b(Xi�1

1 ) ;Xi

E
:

The fundamental limits, determined in Algoet and Cover [3], and in Algoet
[1, 2], reveal that the so-called log-optimum portfolio B� = fb�(�)g is the best
possible choice.

Proposition 3. (Algoet and Cover [3].) On trading period n let b�(�) be
such that

E
�
ln


b�(Xn�1

1 ) ;Xn

���Xn�1
1

	
=max

b(�)
E
�
ln


b(Xn�1

1 ) ;Xn

���Xn�1
1

	
:

If S�n = Sn(B
�) denotes the capital achieved by a log-optimum portfo-

lio strategy B�, after n trading periods, then for any other investment
strategy B with capital Sn = Sn(B) and with

sup
n
E
�
(ln


bn(X

n�1
1 ) ;Xn

�
)2
	
<1;

and for any stationary and ergodic process fXng1�1,

limsup
n!1

1

n
ln
Sn
S�n

� 0 a.s. (4)

and
lim
n!1

1

n
lnS�n =W � a.s., (5)

where

W � := E

�
max
b(�)

E
�
ln


b(X�1

�1) ;X0

���X�1
�1
	�

is the maximal possible growth rate of any investment strategy.

Note that for memoryless markets W � = maxbEflnhb ;X0ig which shows
that in this case the log-optimal portfolio is a constantly rebalanced portfolio.

Proof. For martingale difference sequences, there is a strong law of large
numbers: If fZng is a martingale difference sequence with respect to fXng
and 1X

n=1

EfZ2
ng

n2
<1

then

lim
n!1

1

n

nX
i=1

Zi = 0 a.s.
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(cf. Chow [13], see also Stout [40, Theorem 3.3.1]). Introduce the decompo-
sition

1

n
lnSn =

1

n

nX
i=1

ln
D
b(Xi�1

1 ) ;Xi

E

=
1

n

nX
i=1

Efln
D
b(Xi�1

1 ) ;Xi

E
jXi�1

1 g

+
1

n

nX
i=1

�
ln
D
b(Xi�1

1 ) ;Xi

E
�Efln

D
b(Xi�1

1 ) ;Xi

E
jXi�1

1 g
�
:

The last average is an average of martingale differences, so it tends to zero
a.s. Similarly,

1

n
lnS�n =

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g

+
1

n

nX
i=1

�
ln
D
b�(Xi�1

1 ) ;Xi

E
�Efln

D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
�
:

Because of the definition of the log-optimal portfolio we have that

Efln
D
b(Xi�1

1 ) ;Xi

E
jXi�1

1 g � Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g;

and the proof of (4) is finished. In order to prove (5) we have to show that

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g!W �

a.s. Introduce the notations

b��k(X
n�1
n�k) = argmax

b(�)
E
�
ln


b(Xn�1

n�k) ;Xn

� jXn�1
n�k

	

(1� k < n) and

b��1(Xn�1
�1 ) = argmax

b(�)
E
�
ln


b(Xn�1

�1 ) ;Xn

� jXn�1
�1
	
:

Obviously,

Efln
D
b��k(X

i�1
i�k) ;Xi

E
jXi�1

i�kg � Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g

(i > k) and



14 László Györfi, György Ottucsák, and Harro Walk

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g � Efln
D
b��1(Xi�1

�1) ;Xi

E
jXi�1

�1g:

Thus, the ergodic theorem implies that

W �
�k := E

�
max
b(�)

E
�
ln


b(X�1

�k) ;X0

���X�1
�k
	�

= lim
n

1

n

nX
i=1

Efln
D
b��k(X

i�1
i�k) ;Xi

E
jXi�1

i�kg

� liminf
n

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g

a.s. and

limsup
n

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g

� lim
n

1

n

nX
i=1

Efln
D
b��1(Xi�1

�1) ;Xi

E
jXi�1

�1g=W �:

a.s. Using martingale argument one can check that

W �
�k "W �;

and so (5) is proved.

Put
�=

W ��R
2

: (6)

Concerning the rate of convergence we have that

Theorem 2. If the market process fXig is stationary, ergodic and the
condition (2) is satisfied, then for an arbitrary R <W �, we have that

P
�
enR > S�n

	� e
�n (W��R)2

2(lna2�lna1)
2 +P

n
R+�>

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
o
:

Proof. Apply the previous decomposition:

P
�
enR > S�n

	
= P

�
R >

1

n
lnS�n

�

= P

n
R+ �� � > 1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
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+
1

n

nX
i=1

�
ln
D
b�(Xi�1

1 ) ;Xi

E
�Efln

D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
�o

� P

n
R+ � >

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
o

+P
n
� � > 1

n

nX
i=1

�
ln
D
b�(Xi�1

1 ) ;Xi

E
�Efln

D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
�o

For the second term of the right hand side, we apply the Hoeffding [27],
Azuma [7] inequality: Let X1;X2; : : : be a sequence of random variables, and
assume that V1;V2; : : : is a martingale difference sequence with respect to
X1;X2; : : :. Assume, furthermore, that there exist random variables Z1;Z2; : : :

and nonnegative constants c1; c2; : : : such that for every i > 0, Zi is a function
of X1; : : : ;Xi�1, and

Zi � Vi � Zi+ ci a.s.

Then, for any � > 0 and n,

P

(
nX
i=1

Vi � �

)
� e�2�2=

Pn

i=1
c2i

and

P

(
nX
i=1

Vi ���
)
� e�2�2=

Pn

i=1
c2i :

Thus

P

n
� � > 1

n

nX
i=1

�
ln
D
b�(Xi�1

1 ) ;Xi

E
�Efln

D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
�o

� e
�2n �2

(lna2�lna1)
2

= e
�n (W��R)2

2(lna2�lna1)
2 :

If the market process is just stationary and ergodic, then it is impossible
to get rate of convergence of the term

P

n
R+ � >

1

n

nX
i=1

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g
o
:
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In order to find conditions, for which a rate can be derived, one possibility
is that for i > k

Efln
D
b�(Xi�1

1 ) ;Xi

E
jXi�1

1 g = max
b(�)

Efln
D
b(Xi�1

1 ) ;Xi

E
jXi�1

1 g

= max
b

Eflnhb ;Xii jXi�1
1 g

� max
b

Eflnhb ;Xii jXi�1
i�kg;

and so we may increase the above probability. We expected that the density
of

max
b

Eflnhb ;Xk+1i jXk
1g

has a small support, which moves to the right, when k increases.
We made an experiment verifying this conjecture empirically. At the web

page http://www.szit.bme.hu/˜oti/portfolio there are two benchmark
data sets from NYSE:

• The first data set consists of daily data of 36 stocks with length 22 years
(5651 trading days ending in 1985). More precisely, the data set contains
the daily price relatives, that was calculated from the nominal values of
the closing prices corrected by the dividends and the splits for all trading
day. This data set has been used for testing portfolio selection in Cover
[15], Singer [39], Györfi, Lugosi, Udina [20], Györfi, Ottucsák, Urbán [21],
Györfi, Udina, Walk [22] and Györfi, Urbán, Vajda [23].

• The second data set is an extended version of the first one. It was aug-
mented by 22 years and covers 44 years period from 1962 to 2006 con-
taining 11178 trading days. As opposed to the first data set it contains
only 19 stocks out of the 36 stocks due to the fact that 4 illiquid and
13 bankrupted stocks were left out. In the analysis of financial time se-
ries there often happens a censoring, which means that the time series is
terminated (bankrupt, merging, withdraw from the stock market, etc.). If
one takes into account only the non-censored time series, then the sur-
vivals cause a bias in the statistical inference, called survival bias. Thus,
the leaving out the bankrupted stocks adds survival bias to the simu-
lation. However in case of actively managed portfolio strategies as re-
balancing or online portfolio selection the effect of the survival bias is less
important than the liquidity of the traded stocks. For example, if IROQU
and KINAR (a bankrupted and a small capitalization stock) were not
left out then the achieved wealth would be unrealistically high (cf. [20]).
Based on the above argument the following 4 illiquid stocks were excluded
from the data set: SHERW, KODAK, COMME and KINAR. Further
benchmark data sources are available at http://www.cais.ntu.edu.sg/˜
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chhoi/olps/datasets.html. Clearly, the distributions of the market pro-
cess were not the same over the past 44 years. The empirical strategies
applied are not sensitive with respect to the changes of the distributions.

As in Györfi, Ottucsák, Urbán [21], we considered the kernel based port-
folio strategies B(k) = fb(k)(�)g, where the window size k = 1; : : : ;5 and the
corresponding radius is

r2k = 0:00035 �d �k:
According to the kernel based rule, the portfolio vector for day n is selected
such that one searches for similar patterns to the near past segment Xn�1

n�k
and design a portfolio to the subsequence of return vectors followed the sim-
ilarities. For n > k+1, define the random variable Zn;k by

Zn;k =
maxb2�d

P�
k<i<n:kXi�1

i�k�Xn�1
n�kk�rk

	 lnhb ;Xii���nk < i < n : kXi�1
i�k�Xn�1

n�kk � rk

o��� ;

if the sum is non-void. Then the histogram of fZn;k;n= k+1; : : :Ng can be
an approximation of the density of maxbEflnhb ;Xk+1i jXk

1g.

Fig. 2 The histogram of the maximum of the conditional expectations for k = 1

For k= 1; : : : ;5, we generated the five histograms of the maximum of these
empirical conditional expectations. The main observation was that these his-
tograms do not depend on k, therefore one can assume that the market
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process is a first order Markov process. Figure 2 shows a histogram out of
the five, which corresponds to k= 1. Surprisingly, this histogram has a small
support. Here are some data:

minimum = �0:008

1st qu. = 0:00061

median = 0:0010

mean = 0:0019

3rd qu. = 0:0018

maximum = 0:1092:

An important feature of this histogram is that it has a positive skewness,
which means that the right hand side tail is larger than the left hand side
one. The reason of this property is that maxbEflnhb ;Xk+1i j Xk

1g is the
maximum of (dependent) random variables.

Fig. 3 The histogram of the log-returns for an empirical portfolio strategy

For the kernel based portfolio we generated the histogram of the log-return,
too. The elementary portfolio is defined by

b(k)(xn�1
1 ) = argmax

b2�d

X
�
k<i<n:kxi�1

i�k�xn�1
n�kk�rk

	 lnhb ; xii ;
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if the sum is non-void, and b0 = (1=d; : : : ;1=d) otherwise. Define the random
variable Z 0

n;k by

Z 0
n;k = ln

D
b(k)(Xn�1

1 ) ;Xn

E
;

which is the daily log-return for day n. For k=1, we generated the histogram
of fZ 0

n;k;n= k+1; : : :Ng. Figure 3 shows the histogram of the log-return for
the empirical portfolio strategy B(1). Here are the corresponding data:

minimum = �0:1535

1st qu. = �0:0077

median = 0:0003

mean = 0:00118

3rd qu. = 0:0093

maximum = 0:1522:

Comparing the Figures 1 and 3, one can observe that the shape and the
quantiles of the histograms are almost the same. The main difference is in
the mean. Since these data sets contains the relative prices for trading days
only, and one year consists of 250 trading days, therefore in terms of average
annual yields (AAY) the mean= 0:00118 in Figure 3 corresponds to AAY
34%, while the mean= 0:00118 for the Coca Cola corresponds to AAY 14%.

Based on these empirical observations, in the following we assume that
the market process fXig is a first-order stationary Markov process. In this
case the log-optimum portfolio choice has the form b�(Xn�1) (instead of
b�(Xn�1

1 )) maximizing Eflnhb ;Xni jXn�1g such that

Eflnhb�(Xn�1) ;Xnig=W �:

We assume that Xi has a denumerable state space S � [a1;a2]
d, which is

realistic because the values of the components of Xi are quotients of integer
valued prices. Further we assume that the Markov process is irreducible and
aperiodic. Finally, suppose that the Markov kernel �(H j x) defined by

�(H j x) := PfX2 2H jX1 = xg

(x 2 S, H � S) is continuous in total variation, i.e.,

V (x;x0) := sup
H�S

j�(H j x)��(H j x0)j ! 0 (7)

if x0! x. Notice that by Scheffé’s theorem
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V (x;x0) :=
1

2

X
x�2S

j�(fx�g j x)��(fx�g j x0)j:

The following theorem with R < W � gives exponential bounds for the
probability that enR >S�n and for the probability that after n there is a time
instant m such that emR > S�m.

Theorem 3. Let the market process fXig be a first-order stationary de-
numerable Markov chain, which is irreducible and aperiodic, satisfies
(2) and (7). Then for arbitrary R <W �, there exist c;C;c�;C� 2 (0;1)

depending on W ��R, lna2� lna1 and the ergodic behavior of fXig such
that for all n

P
�
enR > S�n

	� e
�n (W��R)2

2(lna2�lna1)
2 +Ce�cn; (8)

and
P
�[1m=nfemR > S�mg

	� C�e�c
�n: (9)

Proof. With the notation (6), Theorem 2 implies that

P
�
enR > S�n

	� e
�n (W��R)2

2(lna2�lna1)
2 +P

n
R+�>

1

n

nX
i=1

Eflnhb�(Xi�1) ;Xii jXi�1g
o
:

By stationarity, the distribution � of Xi does not depend on i and satisfiesZ
�(� j x)�(dx) = �;

i.e., X
x2S

�(fx�g j x)�(fxg) = �(fx�g): (10)

It is well known from the theory of denumerable Markov chains (see, e.g.,
Feller [17]), that (10) together with irreducibility and aperiodicity of fXig
implies that fXig is positive recurrent with mean recurrence time 1=�(fxg)<
1 and weak convergence of PXnjX1=x to �. Thus, by Scheffé and Riesz-Vitali
theorems, even

sup
H�S

jPfXn 2H jX1 = xg��(H)j

=
1

2

X
x�2S

jPfXn = x� jX1 = xg��(fx�g)j

! 0

(n!1) for each x 2 S. Further for each integer n
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sup
H�S

jPfXn 2H jX1 = xg�PfXn 2H jX1 = x0gj

=
1

2

X
x�2S

jPfXn = x� jX1 = xg�PfXn = x� jX1 = x0gj

=
1

2

X
x�2S

j
X
y2S

PfXn = x� jX2 = yg(PfX2 = y jX1 = xg�PfX2 = y jX1 = x0g)j

� 1

2

X
x�2S

X
y2S

PfXn = x� jX2 = ygjPfX2 = y jX1 = xg�PfX2 = y jX1 = x0gj

=
1

2

X
y2S

jPfX2 = y jX1 = xg�PfX2 = y jX1 = x0gj

= sup
H�S

jPfX2 2H jX1 = xg�PfX2 2H jX1 = x0gj

! 0

(x0! x) by (7). Therefore even

sup
H�S;x2S

jPfXn 2H jX1 = xg��(H)j ! 0:

Thus, the process fXig is '-mixing. Also the sequence

fEflnhb�(Xi�1) ;Xii jXi�1gg

is '-mixing with mixing coefficients 'm ! 0. Now we can apply Collomb’s
exponential inequality (p. 449 in [14]) with d = � =

p
D = 1

n (lna2� lna1).
For m 2 f1; : : : ;ng we obtain

P

n
R+ � >

1

n

nX
i=1

Eflnhb�(Xi�1) ;Xii jXi�1g
o

� exp

�
n

m

�
3
p
e'm+

3

8

1+4
Pm

i=1'i
m

� �

4(lna2� lna1)

��
:

Suitable choice of m=M(�) with n�N(�) leads to the second term on the
right hand side of (8) as a bound for all n. Finally, from (8) we obtain (9) as
in the proof of Corollary 1.

Remark. Theorem 3 can be extended to the case of a Harris-recurrent,
strongly aperiodic Markov chain, not necessarily being stationary or having
denumerable state space; compare in a somewhat other context Theorem 2
in Györfi and Walk [25], where Theorem 4.1 (i) of Athreya and Ney [4] and
Collomb’s inequality are used.
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László Györfi
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Stoczek u.2
1521 Budapest
Hungary
E-Mail: gyorfi@cs.bme.hu

György Ottucsák
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Stoczek u.2
1521 Budapest
Hungary
E-Mail: oti@cs.bme.hu

Harro Walk
Universität Stuttgart
Fachbereich Mathematik
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: walk@mathematik.uni-stuttgart.de

mailto:gyorfi@cs.bme.hu
mailto:oti@cs.bme.hu
mailto:walk@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2007/2007-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
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