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Abstract

Nonparametric estimation of a quantile of a random variable m(X) is considered, where m : R —
R is a function which is costly to compute and X is a R%valued random variable with given density.
An importance sampling quantile estimate of m(X), which is based on a suitable estimate m,, of
m, is defined, and it is shown that this estimate achieves a rate of convergence of order log'-®(n)/n.

The finite sample size behavior of the estimate is illustrated by simulated data.

AMS classification: Primary 62G05; secondary 62G30.
Key words and phrases: Nonparametric quantile estimation, importance sampling, rate of conver-

gence.

1 Introduction
In this paper we consider a simulation model of a complex technical system described by
Y =m(X),

where X is a R%valued random variable with density f : R — R and m : R — R is a known

function which is expensive to evaluate. Let

*Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax: +1-514-848-2830

Running title: Nonparametric extreme quantile estimation



G(y) =P{Y <y} =P{m(X) <y}

be the cumulative distribution function (cdf) of Y. For a € (0,1) we are interested in estimating
quantiles of the form

gdo = inf{y €R : G(y) > a}

using at most n evaluations of the function m. Here we assume that the density f of X is known.
A simple idea is to estimate ¢, using an i.i.d. sample Xi,..., X, of X and to compute the

empirical cdf
1 n
i=1

and to use the corresponding plug-in estimate

Qo = inf{y € R: Gpy(x)n(y) > a}. (2)

Set V; = m(X;) (i = 1,...,n) and let Yi.,,..., Y., be the order statistics of Yi,...,Y,, ie.,
Yin, ..., Y.y is a permutation of Y7, ...,Y,, such that

Since

Qon = Y[naln
is in fact an order statistic, the properties of this estimate can be studied using the results from
order statistics. In particular Theorem 8.5.1 in Arnold, Balakrishnan and Nagaraja (1992) implies
that in case that m(X) has a density g which is continuous and positive at ¢, we have

Y]’noﬂ n o

\/ﬁ'g(qa)' o (-0

— N(0,1) in distribution.

This implies
Cn

P _ozn*oz>
{18an = aul > 5

}*)0 (n — o) (3)

whenever ¢, — 0o (n — 00).

In this paper we apply importance sampling (IS) to obtain a better estimate of g,. Importance
sampling is a technique to improve estimation of the expectation of a function ¢ : R¢ — R by sample
averages. Instead of using an independent and identically distributed sequence X, X7, X5, ... and
estimating E¢(X) by

1
- ; 6(Xi),
one can use importance sampling, where a new random variable Z with a density h satisfying for
all z € R4
p(x)- fx) #0 = h(x)#0



is chosen and for Z, Zy, Zs, . .. independent and identically distributed

E{6(X)} = B {¢<Z> : ;}g}

is estimated by

n

Yoz 173 (@)
i=1

whereas we assume that % = 0. Here the aim is to choose h such that the variance of (4) is small

(see for instance Chapter 4.6 in Glasserman (2004), Nedermayer (2009) and the literature cited

therein).

Quantile estimation using importance sampling has been considered by Cannamela, Garnier
and ITooss (2008), Egloff and Leippold (2010) and Morio (2012). All three papers proposed new
estimates in various models, however only Egloff and Leippold (2010) investigated theoretical
properties (consistency) of their method. None of the papers contain any results on the rates of
convergence.

In this paper we propose a new importance sampling quantile estimate and analyze its rates
of convergence. The basic idea is to use an initial estimate of the quantile based on the order
statistics of samples of m(X) in order to determine an interval [a,,b,] containing the quantile.
Then we construct an estimate m,, of m and restrict f to the inverse image m,, ([an, bn]) of [an, by]
to construct a new random variable Z. Our final estimate of the quantile is then defined as an

order statistic of m(Z). Under suitable assumptions on the smoothness of m and on the tails of f

log!® n

we are able to show that this estimate achieves the rate of convergence of order ==~

Throughout this paper we use the following notations: N, Ny, Z and R are the sets of positive
integers, nonnegative integers, integers and real numbers, respectively. For a real number z we
denote by |z] and [z] the largest integer less than or equal to z and the smallest integer larger
than or equal to z, respectively. ||z| is the Euclidean norm of z € R%. For f : R? — R and A C R?

we set
[flloc,a = sup | f(z)].
€A

Let p = k+ s for some k € Ngand 0 < s < 1, and let C > 0. A function m : R — R is
called (p,C)-smooth, if for every a = (a1, ...,a4) € N& with Z?Zl o = k the partial derivative

k . .
7(%&‘? "51% exists and satisfies
o1 ox,

o m o m

_ < . _ s
8x‘f1...3x3‘d(x) 3x’f1...3x3d(z) <O o=z

for all z,z € RY.

For nonnegative random variables X,, and Y,, we say that X,, = Op(Y,,) if

limsupP(X,, > ¢1-Y,) =0

n—oo



for some finite constant ¢; > 0.
The estimate of the quantile is defined in Section 2. The main result is formulated in Section 3
and proofs are provided in Section 5. In Section 4 we illustrate the finite sample size performance

of the estimate using simulated data.

2 Definition of the estimate

Let n = ny + ny + ng where ny = ny1(n) = [n/3] = na = na(n) and nzg = n3z(n) = n —ny — no.
We will use ny evaluations of m in order to generate an initial estimate of q,, no evaluations of m
to construct an approximation of m, and we will use n3 further evaluations of m to improve our
initial estimate of q,.

Let g, ,, be the quantile estimate based on order statistics introduced in Section 1. In or-

der to improve it by importance sampling, we will use additional observations (x1,m(x1)), ...,

(Tn,, m(zyn,)) of m at points z1,...,7,, € R? and use an estimate
Mmp () = mn (s, (1, m(x1))y ..o, (Tny, m(Tny,))) - R? 5 R
of m : R? — R. Both will be specified later. Let K,, = [~l,,,]¢ for some [,, > 0 such that I,, — oo

as n — oo and assume that the supremum norm error of m,, on K, is bounded by 8, > 0, i.e.,

[mn —mllo x, = Sup [mn(z) —m(z)| < By (5)
rzeK,

Set

_ logn
—2-8, and bn:qa7n1—|—2-%+5nv

_ logn
=Yqan, — 2. \/ﬁ

where both quantities depend (via g, ,,) on the data

an

Dy, = {(lem(Xl))’ R (vam(an)} :
We then replace X by a random variable Z which has the density

W) = c2 - (Iwek, :an<mn(@)<bn} + lagi,y) - f(2)

where
= I T tan<mp (x I T d =T -
C2 (/Rd( (2€Kn 1 an<mn(2)<bn} + Lok, }) f(2) x) Jp—
Here
1 =P{X € Kp,mn(X) < an|Dp, } = /d 1k, (#) 1z m, () <an} - f@)dw
R
and

Yo =P{X € K,,,mp(X) > b,|Dp, } = /d L, () - Liz:m, (2)>b,) - f(2)dT
R



can be computed exactly for given f and m,. In our application below we approximate them by
the suitable Riemann sums. Observe that a,, and b, depend on D,,, and therefore the density i

and the distribution of Z are random quantities. Furthermore on the event

7 < logn
qa,n1 qo| > \/ﬁ

we have that

logn logn
I . I dr > P q, — <m(X) < gy +—= >0, (6
/Rd( (reky an<ma(@)<,) + Hagic,y) f@)dr > {q NG < m(X) < da+ NG } >0, (6)

provided, e.g., the density of m(X) is positive and continuous at ¢,. Hence outside of an event
whose probability tends to zero for n — oo the constant ¢, and the density h are in this case well
defined. The main trick in the sequel is that we can relate the quantile g, to a quantile of m(Z2)

as shown in Lemma 1 below.
Lemma 1 Assume that (5) holds, m(X) has a density which is continuous and positive at g, and

let Z be a random variable defined as above. Furthermore set

Oé*’)/l

o= —
L—m =

and
Im(z),0 = nf{y € R : P{m(Z) <y|Dy,} > a}

where Dy, = {(X1,m(X1)), ..., (Xn,, m(Xn,)}. Then we have with probability tending to one for
n — oo that

do = Gm(2)a-

Let Z, Z1, Z5, ...be independent and identically distributed and set

1 &
Gn(Z),ns (y) = 773 Zl{m(zi)gy}-
=1

We estimate g = ¢y (z),a (Which is outside of an event whose probability tends to zero for n — oo

according to Lemma 1 equal to ¢,,(z),a) by

Qm(Z),d,ng = inf {y ER : C‘rv17l(z)7n3 (y) > d}

. a_’y
= inf {y cR : Gm(Z)Jlg (y) 1_,71_1,\/2} :

Y

As before we have that G, (z),a,n, is an order statistic of m(Z1), ..., m(Zy,):

q_m(Z),&7n3 = m(Z) [anz]nsz-

One possible choice for an estimate m,, of m is a spline approximation of m, which we introduce

next. We will use well-known results from spline theory to show that if we choose the design points



21, ..., zn equidistantly in K,, = [~l,,[,]¢, then a properly defined spline approximation of a
(p, C)-smooth function achieves the rate of convergence I2 /n?/?.

In order to define the spline approximation, we introduce polynomial splines, i.e., sets of piece-
wise polynomials satisfying a global smoothness condition, and a corresponding B-spline basis
consisting of basis functions with compact support as follows:

Choose K € N and M € Ny, and set up, = k-1,/K (k € Z). For k € Zlet By : R - R
be the univariate B-spline of degree M with knot sequence (uy)xez and support supp(By ) =
[k, Uk+rr+1]. In case M = 0 B-spline By, ¢ is the indicator function of the interval [ug, ug4+1), and

for M =1 we have

T—Uk
Ukp1—Uk , Uk S x S Uk+1,
Bra(v) = q =222 Ly <o < upyo,

Uk42—Uk41

0 ,elsewhere,
(so-called hat-function). The general recursive definition of By as can be found, e.g., in de Boor
(1978), or in Section 14.1 of Gyorfi et al. (2002). These B-splines are basis functions of sets
of univariate piecewise polynomials of degree M, where the piecewise polynomials are globally
(M — 1)—times continuously differentiable and where the M-th derivatives of the functions have
jump points only at the knots u; (I € Z).
For k = (ky,...,kq) € Z¢ we define the tensor product B-spline By - R? — R by

Bk,M(fU(l), e ,x(d)) = Bkl,M(x(l)) el Bkd»l\/f(x(d)) (x(l)v e R).

With these functions we define Sk ar as the set of all linear combinations of all those tensor product

B-splines above, whose support has nonempty intersection with K, = [~I,,1,]?, i.e., we set

Sk.m = Z ax - B - ax €R
Ke{—K—M,~K—M+1,...K—1}¢

It can be shown by using standard arguments from spline theory, that the functions in Sk s
are in each component (M — 1)-times continuously differentiable and that they are equal to a

(multivariate) polynomial of degree less than or equal to M (in each component) on each rectangle

[ukuukﬁ-l) XX [ukdvukd-‘rl) (k = (klﬁ R kd) € Zd)7 (7)

and that they vanish outside the set

YRSV &
n Kyn K .

Next we define spline approximations using so-called quasi interpolants: For a continuous function

m : R — R we define an approximating spline by

(@m)(z) = > Qxm - Bk, m

ke{-K—M,—~K—M+1,... . K—1}d



where

Qm = Z g - Mty jys -5 thaga)

j€{0,1,....M}d

for some ax j € R and some suitably chosen points i ; € supp(Bg,ar) = [k-1,/ K, (k+M+1)-1,/K].

It can be shown that if we set

kg M K, -K-M+1,... K1
tka] k K+M K (jE{O, ) }7k€{ ) + ) ) })
and
By
tk,j:fzn+ﬁ-g (Gef0,.... My ke {-K —M,~K - M+1,...,—K —1}),

then there exist coefficients ax j (which can be computed by solving a linear equation system), such

that

|Quf1 < 3+ 1 f lloo,funy sty 4 argalx e [uwn g iy 4 ar11] (8)
for any k € Z?, any continuous f : R? — R and some universal constant c;, and such that Q
reproduces polynomials of degree M or less (in each component) on K,, = [~I,,1,]%, i.e., for any

multivariate polynomial p : R? — R of degree M or less in each component we have

(@Qp)(z) =p(z) (2 € Kn) 9)

(cf., e.g., Theorem 14.4 and Theorem 15.2 in Gyorfi et al. (2002)).

Next we define our estimate m,, as a quasi interpolant. We fix the degree M € N and set

|y -1
K= {QMJ ’

where we assume that ny > (2M + l)d. Furthermore we choose z1,...,x,, such that all of the

(2M - K + 1)? points of the form

J1 Jd . .
R L MK, -M-K+1,....M-K
(M~K M-K ) (s Ja € 4 * H
are contained in {z1,...,x,,}, which is possible since (2M - K + 1)¢ < ny. Then we define

mn(z) = (@m)(z),

where @Qm is the above defined quasi interpolant satisfying (8) and (9). The computation of Qm
requires only function values of m at the points z1, ..., z,, and hence m,, is well defined.
It follows from spline theory (cf., e.g., proof of Theorem 1 in Kohler (2013)) that if m is (p, C)-

smooth for some 0 < p < M + 1 then the above quasi interpolant m,, satisfies for some constant

cy >0
[
It = Mo, 1= SUD [ma(z) — m(a)] < s - b, (10)
ze K, Ny

i.e., (5) is satisfied with B, = ¢4 - lﬁ/ng/d.



3 Main results

First we show the rate of convergence result for the quantile estimate using a general estimate of

m.

Theorem 1 Assume that X is a R%-valued random variable which has o density with respect to the
Lebesgue measure. Let m : R? — R be a measurable function. Assume that m(X) has a density g
with respect to the Lebesgue measure. Let o € (0,1) and let q, be the a-quantile of m(X). Assume
that the density g of m(X) is positive at g, and continuous on R.

logn

Let the estimate Gz.an Of o be defined as in Section 2 with B, = N and assume that

regression estimate m,, satisfies (5). Furthermore assume that

P{X¢ K, =0 (i’%’”) (11)

Then
1Og1.5(n) )

|Qm(Z),&,n3 - QQ| =Op ( n

When the spline estimate from Section 2 is used to estimate m, then we get the following result.

Corollary 1 Assume that X is a R%-valued random variable which has a density with respect to
the Lebesgue measure. Let m : RY — R be a (p, C)-smooth function for some p > d/2. Assume
that m(X) has a density g with respect to the Lebesque measure. Let o € (0,1) and let g, be the
a-quantile of m(X). Assume that the density g of m(X) is positive at q, and continuous on R.
Let my, be the spline estimate from Section 2 with M > p — 1 and define the estimate §z 6, of

(o a$ in Section 2 with 3, = k\’%L and l, = logn. Furthermore assume that

P{||X]| > logn} = O (f;”) . (12)

Then

|Qm(Z),&,n3 - QOz| =Op ( n

Proof. The assertion follows directly from Theorem 1 and inequality (10) observing that p > d/2

w logn
Cq - <
</> Vi

for n sufficiently large. O

implies

Remark 1. It follows from Markov inequality that (12) is satisfied whenever

B {om (4 11)) <.



If (12) does not hold it is possible to change the definition of I,, in Corollary 1 to get an (maybe
modified) assertion under a weaker tail condition.

Remark 2. It is possible to improve the factor 10g1'5(n) in Corollary 1, provided one changes
the definition of a,, and b,. More precisely, let (v,), be a monotonically increasing sequence of

positive real values which tends to infinity and assume

P{|x| zlogn}=0(

Set

_ VY _ Tn
a”:qa,m_T: and bn:qa,n1+ \/7:

By applying (3) in the proof of Theorem 1 it is possible to show that under the assumptions of

Corollary 1 the estimate based on the above modified values of a,, and b,, satisfies

_ Tn
|Qm(Z),6z,n - QOz| =0Op (7> .
n

4 Application to simulated data

In this section we apply the method described above to simulated data and estimate the corre-
sponding 90%-quantile and 95%-quantile. For this purpose the number n of observations will be

set to 200, 500, 1000 and 2000, respectively. As suggested in Section 2 we choose nqy = ni(n) =

log(n)
Jn

our estimate of m is the quasi interpolant introduced in Section 2 with M = 3, [,, = log(n) and

[n/3] = na = n2(n) and n3 = nzg(n) = n —ny — ng. The value of 3, will be set to and
K=K(n)= {(Lné/dj —1)/2M |. We compare our estimate to the plug-in estimates corresponding
to the empirical cdf of the observed data, i.e., to §o.9., and Go.95., (cf., (1) and (2)). In practice it
might occur that the value of @&, as defined in Lemma 1, is not in (0,1). This is due to the fact
that & depends on an estimate of the quantile g,, based on the first |n/3] samples. Now if the
difference between this first estimate and the true quantile is quite large, the true quantile may
lay outside of the set the random variable Z, as defined in Section 2, is concentrated on. There
are several ways to tackle this problem. In the following we pursue two possible strategies. The
first strategy is to alter the value of a,, or b,, so that the true quantile will lay inside this modified
set. For this notice that by definition & is negative if 7; is larger than a and we have & > 1 if v,
is larger than 1 — . Now in order to decrease 7y; the value of a, has to be decreased and if we
want to decrease 2 the value of b, has to be increased. So the first strategy 1 is to decrease a,,
by log(n)/+/(n) if @ < 0 and to increase b, by log(n)/1/(n) if @ > 1. This will lead to an altered
version of our random variable Z and we will have to recompute &. We repeat this procedure until

a € (0,1).



90%-quantile 95%-quantile

qgo.9 ~ 3.6022 q0.95 = 5.1803
size of n 200 500 1000 2000 200 500 1000 2000
average value with IS startl 3.604 3.604 3.600 3.600 | 5.170 5.185 5.176  5.180
average value with IS strat 2 3.625 3.614 3.597  3.599 | 5.145 5.157 5.187  5.163

average sq. error with IS strat 1 | 0.026 0.005 0.002 0.0004 | 0.026 0.004 0.001 0.0005
average sq. error with IS strat 2 | 0.082 0.013 0.002 0.0005 | 0.221 0.062 0.024 0.014
average sq. error without IS 0.130 0.073 0.037  0.021 | 0.575 0.240 0.125  0.066

Table 1: Simulation results for m(z) = exp(x)

Since the computation of & is the most costly part of our method one might want to avoid the
recomputation of & as suggested by strategy one. So in the second approach we just generate a
new sample of random values drawn from the distribution of Z as defined originally and use a
somewhat more loose definition of the quantile. More precisely if we have & < 0 we will just take

the smallest value of our new sample and if we have @ > 1 we will take the largest one.

In our first example X is standard normally distributed and the function m : R — R is defined
by m(z) = exp(z). In this case m(X) is log-normally distributed. We generate a set of simulated
data to which we apply our estimate with a quasi interpolant of degree M = 3. In order to compute
~v1 and 2 we use the routine integrate() from the basic library of the statistics package R. This
procedure is repeated 100 times for the different values of n. The averages of our 100 estimated
values of the quantiles can be found in Table 1. In addition we compute the average squared error
of our estimated quantile values and the true quantile. Finally we use the above mentioned plug-in
estimate to compute a reference value for our average squared error.

In our second example we set X = (X7, X2), where random variables X; and X, independent
standard normally distributed and choose m(z1, z2) = 2-x1 + 2 + 2. In this case m(X) is normal
with expectation 2 and variance 22412 = 5. As before we generate a set of simulated data on which
we apply our estimate. Unlike in our first example, we now use the procedure adaptIntegrate() from
the library cubature in the statistics package R to compute ; and e, since the routine integrate()
is not applicable to multidimensional domains. As before we repeat this procedure 100 times for
the different values of n and compare the results with those of the plug-in estimate described at
the beginning of this section. The results can be found in Table 2.

In our third example we set X = (X;,X5) for independent standard normally distributed

random variables X; and X» and choose m(z1,z2) = 2% + x3. Consequently m(X) is chi-square

10



90%-quantile 95%-quantile

qgo.9 ~ 4.8656 q0.95 = 5.678
size of n 200 500 1000 2000 200 500 1000 2000
average value with IS strat 1 4.691 4.855 4.869  4.865 | 5.409 5.593 5.635  5.690
average value with IS strat 2 4.691 4.855 4.869  4.865 | 5.410 5.597 5.634  5.690

average sq. error with IS strat 1 | 0.070 0.005 0.002 0.0005 | 0.117 0.023 0.005 0.0008
average sq. error with IS strat 2 | 0.070 0.005 0.002 0.0005 | 0.115 0.024 0.006 0.0008
average sq. error without IS 0.093 0.029 0.012 0.005 | 0.124 0.038 0.021  0.008

Table 2: Simulation results for m(x,y) =2z +y + 2

90%-quantile 95%-quantile

do.9 ~ 4.6052 4o.95 ~ 5.9915
size of n 200 500 1000 2000 200 500 1000 2000
average value with IS strat 1 4.112 4207 4.601  4.604 | 5.393 5.432 5.604  5.990

average value with IS strat 2 4.115 4.208 4.600 4.604 | 5.427 5.459 5.625 5.987
average sq. error with IS strat 1 | 0.329 0.206 0.001 0.0005 | 0.549 0.408 0.213 0.0004
average sq. error with IS strat 2 | 0.329 0.206 0.002 0.0005 | 0.570 0.437 0.196  0.002
average sq. error without IS 0.195 0.083 0.036  0.017 | 0.286 0.158 0.079  0.044

Table 3: Simulation results for m(z,y) = 2% + y?

random variable with two degrees of freedom. The results of our estimate are presented in Table
3.

As one can see, with our proposed procedure all quantiles are well estimated in the average (for
n sufficiently large). In addition for large n the average squared error of our estimate is significantly
lower compared to the plug-in estimate.

In our last example the function m is motivated by experiments of the Collaborative Research
Centre 805 at the Technische Universitdt Darmstadt, which studies uncertainty in load-bearing
systems. A simple example of such load-bearing system is a tripod. Here every leg’s end is
equipped with sensors to measure the axial force. Since the manufacturing process can not be
assumed to be perfect, the holes where the legs are attached to the head in will differ in size.
Consequently, a force applied to the tripod will not be partitioned equally between the three legs.
In case that one hole is too small, the leg won’t fit in and the tripod could not be used. So we’ll

concentrate on the case of holes with too large diameters. In this case a plugged in leg will be loose

11



and so the center of the hole will differ from the leg’s center. This difference is called excentricity,
which will be measured in meters. Since the excentricity and the diameter of the hole correlate, we
will use the excentricity as indicator. Let now m : ]Ri — R be a function that returns the resulting
load in one fixed leg, depending on the values (z(1),2(?), 2(3)) of the excentricities in the three
holes. We simulate the value of z = (z(V), 2, 2®)) with independent and uniformly distributed
random variables on (0,0.1) and use our method with n = 2000, to estimate the 99%-quantile of
the share of the load in one observed leg. As result we get a share of 46.59% of the whole weight
in the observed leg, as 99%-quantile. For comparison we also estimate this quantile with order
statistics and a sample of size 2,000 and 100,0000, respectively. In the first case the computed value
is 47.06% whereas in the latter case we get a value of 46.60% in the observed leg. These results
show, that here our estimate performs better than the simple estimate based on order statistics

using the same sample size.

5 Proofs

We will use the following lemma in order to prove Lemma 1.

Lemma 2 Assume that X is a R%-valued random variable which has a density with respect to the
Lebesgue measure. Let m : RY — R be a measurable function. Assume that m(X) has a density g
with respect to the Lebesgue measure. Let oo € (0,1) and let g, be the a-quantile of m(X). Assume
that g is bounded away from zero in a neighborhood of qq .

Let A and B be subsets of R? such that for some € > 0

m(z) < qo—€forz €A and m(x) > q, forx € B

and
P{X ¢ AUB} > 0.
Set
h(z) = cs5 - Iizgaupy - f()
where
;' =P{X ¢ AUB},
and set
__a—-P{XecA}
“TPx¢AUB)

Let Z be a random variable with density h. Then

o = dm(2),a-

12



Proof. Since the assumptions of the lemma imply
P{Xec A} <P{m(X)<gs—€}<a and P{X eB}<P{mX)>¢}=1-«

we have
a—P{X € A}
1-P{X € A} —-P{X € B}

Choose € > 0 such that g is bounded away from zero on [¢, — €,¢,] and let g, — € < u < ¢o. By

a =

€ (0,1].

definition of Z we have
P{m(Z) <u} = /I{m(z)gu}Pz(dZ)
R

= /I{m(x)gu} 5 Iipgaupy - f(x) de.
R

The assumptions of the lemma imply that A and B are disjoint and furthermore, because of

Jo — € < U < gq, they imply
Iimy<u) * Tzeay = Lweay and  Ignea)<uy - I{zey = 0.

;From this we conclude

P{m(Z) <u} = /RI{mmSu}'Cs'(l—f{meA}—f{xeB})'f(x)dm

= ¢5- (/R Itm@)<uy - f(x) dx — /RI{JUEA} - f(z) dx)
cs - (P{m(X) <u} —P{X € A}).

Using P{m(X) < u} < a for u < g, P{m(X) < ¢} = a and the definition of c; we see that we
have shown

P{m(Z) <u} < afor gy — e <u< gy and P{m(Z) < ¢,} = a.
The proof is complete. O

Proof of Lemma 1. In order to apply Lemma 2, at first we define

An ::{ZGKTL : mn(x)<a”}{$€Kn : m”(x)<(ja,nl2.k\)§ﬁn2.6n}

and

1
B, ={z €K, : my(z) >b,} =<z €K, : mp(x) > dan, +2- os ™ + Byt
) \/ﬁ
Here we observe that using these sets we can characterite the factor co by

;' =P{X ¢ A, UB,|D,,},

where by (6) we have P{X ¢ A,, U B,|D,,} > 0 outside of an event whose probability tends to

zero for n — oco. In addition by rewriting h(z) as
h(z) =c2 - Iizga,uB,y - (@)

13



and & as
a—-P{X €A, D,,}
P{X ¢ A,UB,|D,,}

a =

all factors are consistent with Lemma 2. Let now C,, be the event that for all z € A,, and all
y € By

m(‘T) <qo—Bn and m(y) > qa
hold. Then by Lemma 2 we get the relation
P{C,} <P{q. = Qm(Z),a};

hence it suffices to show that P{C,} is tending to one for n — oco. Therefore we observe that

according to (5), for all € A,, and all y € B,, we have

1
m(z) < mu(@) + fu < oo — 2 jﬁ” B
and
1
m(y) = mn(y) — Bn > Gom +2- —%L.

This implies

1 1

P{Cn} > P{qa,m -2 (\)/g; _ﬁn < {qa _Bn and Qa,n+2'% >q04}
logn logn
= P{qa,"12'\/gﬁ§(Ia§_a,n+2'ﬁﬁ} 1 (n — o)

by (3), which completes the proof. a

A crucial step in the proof of Theorem 1 is to show that the inverse of the cdf of m(Z) is locally

differentiable at & and to determine its derivative. We will do this in the next three lemmas.

Lemma 3 Let g be the density of m(X) and let A be a measurable subset of R with the property

that for all x € K,, we have
m(z) e A = ap, <my(z) < by,. (13)

Then
P{m(Z) € ADy} = c3- /A 9(y) dy.

14



Proof. The definition of Z, (13) and the fact that g is the density of m(X) imply
Pn(2) € AP} = [ HnenPa(d:)
= /Rl{m(w)eA} w2 (LzeKy san<ma(@)<bn} T Lagr,y) - f(@) da
= o /Rf{m(aweA} Laer,y + agx,y) - f(@) da

= ca- /Rf{m(x)eA} - f(z) dx
= c-P{m(X) € A}

= cQ-/Ag(y)dy-

Lemma 4 Assume that a density g of m(X) exists and let Gp,(z) be the cdf of m(Z), i.e.,
Gn(z)(y) = P{m(Z) < y|Dn, }.

Then G (z) is outside of an event, whose probability tends to zero for n — oo, at Lebegue-almost

logn logn
I= (g0~ 2 go
(q VR ﬁ)

all points y of the interval

differentiable with derivative
Glm(z)(y) =co-g(y). (14)

In particular, (14) holds for all continuity points y € I of g.

Proof. Note that the distribution of Z depends on the density h, which depends (via the estimate

log
NG
Then (3) implies that P{A,} tends to one for n — co. In the following we assume that A, holds.

of the quantile) on D,,, and hence is random itself. Now let A,, be the event that |go —Ga,n, | <

The next step is to show that Lemma 3 is applicable for every subset A of I when n is large. To

this end notice that the inequality
m(z) — Bn < mp(z) < m(x) + By

holds for every x € K, due to (5). So for z € K,, with m(x) € I we have since 4,, holds

I 1
(79} = ‘joc,nl_Q' %_Q'BnSQa_ C%L_Zﬁngm(x)_zﬁngmn(x)
logn logn
S m($>+ﬁnSQa+ \fﬁ +6n§(ja,n1+2' \iﬁ +Bn:bn

This and Lemma 3 (applied with A = (min{y, y + h}, max{y,y + h}]) imply that

Grz)+h) =Gz (v)
h

= sign(h) - 1+ P{m(Z) € (min{y,y + h}, max{y, y + h}]}

1 /y+h
= —. co - g(t) dt,
h Yy

15



for every y € I and all h € R small enough to fulfill y + h € I. (Here sign(h) is the sign of h.)
Now for h tending to zero, we get by the Lebesgue density theorem

1

Gz (y) = lim - /Wz co-g(t)dt = cz-g(y)
m(Z) h=0h o J,

for Lebesgue-almost all points y of the interval I. Trivially this relation also holds for all continuity
points y € I of g. O

Observe that by definition ¢y is bounded from below by one.

Lemma 5 Assume that the density g of m(X) exists, that it is continuous on R and positive at

qo- Then
G;ll(z)(u) =inf{y €R : Gz (y) > u}

is outside of an event, whose probability tends to zero for n — oo, differentiable on the interval

(a . logn&+c logn
g 2 - o
NG

with derivative
d 1
—G! ()= ——.
du ™ (Z) o 'Q(G;L1<Z)(“))

Proof. Observe that the premise of Lemma 4 is fulfilled, so outside of an event, whose probability

tends to zero for n — oo, G;n(Z)(y) = ¢2 - ¢g(y) holds for all points y € I = (Qa — 1?5777(]04 4 log n).

n

Since we assume g to be continuous and G;n(Z)(qa) = ¢2 - g(¢a) to be positive, there exists a
neighbourhood U of ¢, such that g(u) > X holds for all © € U and some constant 0 < A < g(qq)-
By this we can apply the inverse function theorem on U N I. Now for n large enough the interval
I will surely be a subset of U which means U NI = I in fact. In this case we take a closer look at

the range G,z (I). Since G,,(z) is continuous and strictly increasing on I, we have

logn logn

Now assume ¢o = ¢ (z),a to hold. Then from

logn do _
Gm(z) (Qa - \/ﬁ) =Gm(z)(qa) —c2- / o gt)dt <@ —ca- A-

o= =/

logn

NG

and

log n

logn dat152 B logn
Gz (qa+):GmZ(qa)+CQ'/ gt)ydt > a+co- A —=
( ) \/ﬁ ( ) o \/ﬁ

we conclude that

logn

Vn

1 -
+Ag) — 1

Gm(z)(I)Q(Oé—CQ-)v NG

16



Notice that Lemma 1 implies that P{gy = ¢m(z),a} tends to one for n — oo, so we're outside of
an event, whose probability tends to zero for n — oco. Application of the inverse function theorem

implies
d 1
TGy (W) = —— .
m(Z)( u) = C2'9(Gm1(2)( u))

for all u € I. Notice that since ¢y > 1, equality (15) holds for all u € (d D PR L log”)

in particular. O
Proof of Theorem 1. At first notice that ¢,,(z) s implicitly depends on n. Denote by C,, the

event that ¢, = ¢,(2),a for n € N and notice that for every s € R we have

P {|(jm(Z),&,n3 - qa' > S} < P {|Qm(Z),&,n3 - Qm(Z),o_z| > S} + P{C;’;} .

Now Lemma 1 implies that P {C¢} is tending to zero for n — oo and so

< limsupP {|Qm(Z),a,n3 — Qm(2),al >

n—oo

limsup P {lqm(z),a,ns — 4ol >

n—oo
Let G (z) be the cdf of m(2), i.e.,

Gm(Z) (y) = P{m(Z) < y|Dn1} (y € R)v

and set
Goizm() =inf{y R : Gz (y) > u}.
Let U, Uy, U, ...be independent and uniformly on (0, 1) distributed random variables and denote
the order statistics of Uy, ..., Unys by Uring, - -+, Unging-
Since
(Gl (@), -, Grl (Un)
has the same distribution as

(m(Z1),...,m(Zy,,))

and since G;l( 7) is monotonically increasing on (0,1), due to (16) it suffices to show

_ _ N logl'5 n
‘Gml(Z)(Ur@'"s-\?ns) - Gml(Z)(a)’ =Op <n()) :

It follows from Lemma 5 and the mean value theorem that outside of an event, whose probability
tends to zero for n — oo, we have
1
¢s-9(Gpi ) (Duy))
where D,,, is some random point between Urg.y,1:n, and @, provided the distance between Urg.pn,1:n,

and @ is less than cg - log(n)/y/n.

1 1 _ _
‘Gm(z)(U(d-ng"lzn3) C;m(Z)( )‘ = |U(54n3‘\n3 - O" :

17



Let Fyy be the cdf of U and let Fy ,, be the empirical cdf corresponding to Uy, ..., U,,. Then
we have with probability one that

|U|'(1n3]n3 - d| = ‘U(a~ng-\:n3 - FU,n3(U[&~n3]:n3) + s

1
< sup [Fyn, (t) — Fu(t)| + —.
teR ns

L log(ns)
’U]'&-ng]:ng - 0&‘ - OP ( \/7773 >

(cf., e.g., Theorem 12.4 in Devroye, Gyorfi and Lugosi (1996)). Furthermore, by Lemma 1 we

can assume that G;ll( Z)(@) = ¢, holds, and we have that G;ll( 7) is continuous at & and that g is

This implies

positive and continuous at .. Hence it suffices to show

1 log(n)
— = I . I dx =0 .
o /]Rd (Lfoe ks an<mn(@)<ba} + Logi,}) f(@)dz = Op ( T )
This in turn follows from
log(n)
P{XeK, : an<mn(X)<bn\Dm}:op( o ) (17)
and
log(n)
P{X¢K,}=0p| ——]. 18
{X ¢ K} =Op ( - (15)
Note that (18) holds by assumption (11). In order to show (17) we assume that |go — Ga,n, | < l‘j%L.
Then the definitions of a,,, b, and (3, imply
P{X €K, :a, <m,(X) < bn|Dn1}
<P{X€eK,: an—Bn <m(X) < by + Ba|Dn, }
_ logn _ logn
logn logn
<Plg,—3- 3.8, <m(X) < qo+3- 2. 8,|D,
<P a3 B0 g, < m(X) S a0 4300 42 ,[D, |
log(n) log(n)
<Plgy,—6-—=<m(X)<qgy+5-
< {q Jr S m(X) < ga + NG
log(n)
< sup g(z)-11- .
TE€[ga—6, ga+5] \/ﬁ

Here we have used the fact that the continuous function ¢ is bounded on any finite interval around

Go. and that % is bounded from above by one. Finally (3) implies the assertion. |
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