Universität Stuttgart

Fachbereich Mathematik

Nonparametric recursive quantile estimation

Michael Kohler, Adam Krzyżak, Harro Walk

Preprint 2014/014

Fachbereich Mathematik Fakultät Mathematik und Physik Universität Stuttgart Pfaffenwaldring 57 D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

C Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors. LaTEX-Style: Winfried Geis, Thomas Merkle

Nonparametric recursive quantile estimation

Michael Kohler¹, Adam Krzyżak^{2,*}, and Harro Walk³

¹ Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstr. 7, 64289 Darmstadt, Germany, email: kohler@mathematik.tu-darmstadt.de

² Department of Computer Science and Software Engineering, Concordia University, 1455 De

Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8, email: krzyzak@cs.concordia.ca

³ Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany, email: walk@mathematik.uni-stuttgart.de.

May 31, 2014

Abstract

A simulation model with outcome Y = m(X) is considered, where X is an \mathbb{R}^d -valued random variable and $m : \mathbb{R}^d \to \mathbb{R}$ is *p*-times continuously differentiable. It is shown that an importance sampling Robbins-Monro type quantile estimate achieves for 0 the rate of convergence $<math>\log^{3+p/2}(n) \cdot n^{-1/2-p/(2d)}$.

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: Nonparametric quantile estimation, importance sampling, rate of convergence, Robbins-Monro procedure.

1 Introduction

Let Y be a real-valued random variable with cumulative distribution function (cdf) $G(y) = \mathbf{P}\{Y \le y\}$. In this article we are interested in estimating quantiles of Y of level $\alpha \in (0, 1)$, which can be defined as any value between

$$q_{\alpha}^{lower} = \inf\{y \in \mathbb{R} : G(y) \ge \alpha\} \quad \text{and} \quad q_{\alpha}^{upper} = \sup\{y \in \mathbb{R} : G(y) \le \alpha\}.$$

Throughout this paper we assume that Y has a bounded density g with respect to the Lebesgue-Borel-measure which is positive in a neighborhood of q_{α}^{upper} , which implies that there exists a uniquely determined quantile $q_{\alpha} = q_{\alpha}^{upper} = q_{\alpha}^{lower}$. Let Y, Y₁, Y₂, ... be independent and identically distributed. Given Y₁, ..., Y_n, we are interested in estimates $\hat{q}_{n,\alpha} = \hat{q}_{n,\alpha}(Y_1, \ldots, Y_n)$ of q_{α} with the property that the error $\hat{q}_{n,\alpha} - q_{\alpha}$ converges quickly towards zero in probability as $n \to \infty$.

^{*}Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax: +1-514-848-2830

Running title: Recursive quantile estimation

One of the simplest estimates of q_{α} is given by order statistics. Let $Y_{1:n}, \ldots, Y_{n:n}$ be the order statistics of Y_1, \ldots, Y_n , i.e., $Y_{1:n}, \ldots, Y_{n:n}$ is a permutation of Y_1, \ldots, Y_n such that $Y_{1:n} \leq \ldots \leq Y_{n:n}$. Then we can estimate q_{α} by

$$\overline{q}_{\alpha,n} = Y_{\lceil n\alpha \rceil:n}.$$

The properties of this estimate can be studied using the results from order statistics. In particular Theorem 8.5.1 in Arnold, Balakrishnan and Nagaraja (1992) implies that in case that Y has a density g which is continuous and positive at q_{α} we have

$$\sqrt{n} \cdot g(q_{\alpha}) \cdot \frac{Y_{\lceil n\alpha \rceil:n} - q_{\alpha}}{\sqrt{\alpha \cdot (1 - \alpha)}} \to N(0, 1) \quad \text{in distribution.}$$
(1)

Consequently we have

$$\left|\bar{q}_{\alpha,n} - q_{\alpha}\right| = O_{\mathbf{P}}\left(\frac{1}{\sqrt{n}}\right) \tag{2}$$

where $X_n = O_{\mathbf{P}}(Y_n)$ is defined as follows. For nonnegative random variables X_n and Y_n we say that $X_n = O_{\mathbf{P}}(Y_n)$ if

$$\lim_{c \to \infty} \limsup_{n \to \infty} \mathbf{P}(X_n > c \cdot Y_n) = 0.$$

In order to compute the above estimate one needs to sort the given data Y_1, \ldots, Y_n in increasing order, which requires an amount of time of order $n \cdot \log(n)$ and an amount of space of order n (the latter one in order to save all values of the data points simultaneously). In case that one wants to compute a quantile estimate for a very large sample size, a recursive estimate might be more appropriate. Such a recursive estimate can be computed by applying the Robbins-Monro procedure to estimate the root of $G(z) - \alpha$. In its most simple form one starts here with an arbitrary random variable Z_1 , e.g., $Z_1 = 0$, and defines the quantile estimate Z_n recursively via

$$Z_{n+1} = Z_n - \frac{D_n}{n} \cdot \left(I_{\{Y_n \le Z_n\}} - \alpha \right) \tag{3}$$

for some suitable sequence $D_n \ge 0$. Refined versions of the above simple Robbins-Monro estimate achieve the same rate of convergence as in (1) and (2), explicitly in Tierney (1983) and Holst (1987) by additional use of a recursive estimate of $g(q_\alpha)$ or, for g Hölder continuous at q_α , as a consequence of general results on averaged Robbins-Monro estimates due to Ruppert (1991) and Polyak and Juditsky (1992).

In this paper we consider a simulation model, e.g., of a technical system, where the random variable Y is given by Y = m(X) for some known measurable function $m : \mathbb{R}^d \to \mathbb{R}$ and some \mathbb{R}^d -valued random variable X. In this framework we construct an importance sampling variant of the above recursive estimate, which is based on a suitably defined approximation m_n of m. In case that the function m is p-times continuously differentiable and that X satisfies a proper exponential moment condition we show that this importance sampling variant of the recursive estimate achieves up to some logarithmic factor a rate of convergence of order $n^{-1/2-p/(2d)}$ for 0 . The Robbins-Monro procedure was originally proposed by Robbins and Monro (1951) and further developed and investigated as well as applied in many different situations, cf., e.g., the monographs Benveniste, Métivier and Priouret (1990), Ljung, Pflug and Walk (1992), Chen (2002) and Kushner and Yin (2003), and the literature cited therein. Importance sampling is a technique to improve estimation of the expectation of a function by sample averages. Quantile estimation using importance sampling has been considered by Cannamela, Garnier and Iooss (2008), Egloff and Leippold (2010) and Morio (2012). In this paper we use ideas from Kohler et al. (2014) and use importance sampling combined with an approximation of the underlying function m in order to improve the rate of convergence of our recursive estimate of the quantile. Until step n of our recursive procedure we use evaluations of m at most n nonrandom points in order to construct an approximation of m, and one evaluation of m at each of the n sequential estimates of q_{α} produced by importance sampling and the sequential algorithm.

Throughout this paper we use the following notations: \mathbb{N} , \mathbb{N}_0 and \mathbb{R} are the sets of positive integers, nonnegative integers and real numbers, respectively. For a real number z we denote by $\lceil z \rceil$ the smallest integer larger than or equal to z. $\|x\|$ is the Euclidean norm of $x \in \mathbb{R}^d$. For $f : \mathbb{R}^d \to \mathbb{R}$ and $A \subseteq \mathbb{R}^d$ we set

$$||f||_{\infty,A} = \sup_{x \in A} |f(x)|.$$

Let p = k + s for some $k \in \mathbb{N}_0$ and $0 < s \leq 1$, and let C > 0. A function $m : \mathbb{R}^d \to \mathbb{R}$ is called (p, C)-smooth, if for every $\alpha = (\alpha_1, \ldots, \alpha_d) \in \mathbb{N}_0^d$ with $\sum_{j=1}^d \alpha_j = k$ the partial derivative $\frac{\partial^k m}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}$ exists and satisfies

$$\left|\frac{\partial^k m}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}(x) - \frac{\partial^k m}{\partial x_1^{\alpha_1} \dots \partial x_d^{\alpha_d}}(z)\right| \le C \cdot \|x - z\|^s$$

for all $x, z \in \mathbb{R}^d$.

The main result is formulated in Section 2 and its proof is provided in Section 3.

2 Main result

We combine a Robbins-Monro estimate with importance sampling in order to improve the rate of convergence. Here we assume that our data is given by Y = m(X) for some known measurable function $m : \mathbb{R}^d \to \mathbb{R}$ and some \mathbb{R}^d -valued random variable X with known distribution μ . We assume that we have available a deterministic approximation \tilde{m}_n of m which satisfies

$$\|\tilde{m}_n - m\|_{\infty, [-l_n, l_n]^d} \le \log^{p+1}(n) \cdot n^{-p/d} \tag{4}$$

for sufficiently large n for some $0 , where <math>l_n = \log(n)$. Set

$$m_n = \tilde{m}_n - \log^{p+1}(n) \cdot n^{-p/d}$$

Then we have

$$||m_n - m||_{\infty, [-l_n, l_n]^d} \le 2 \cdot \log^{p+1}(n) \cdot n^{-p/d}$$
(5)

and

$$m_n(x) \le m(x)$$
 for all $x \in [-l_n, l_n]^d$ (6)

for sufficiently large n (more precisely, for $n \ge n_0$, where $n_0 \in \mathbb{N}$ is some unknown positive deterministic integer).

We recursively define a sequence of estimates Z_n of q_α . We start by choosing an arbitrary (w.l.o.g. deterministic) Z_1 , e.g., $Z_1 = 0$. After having constructed already Z_1, \ldots, Z_n , we choose a random variable $X_n^{(IS)}$ such that $X_n^{(IS)}$ has the distribution

$$H_n(B) = \frac{\mu\left(\left(\{x \in [-l_n, l_n]^d : m_n(x) \le Z_n\} \cup ([-l_n, l_n]^d)^c\right) \cap B\right)}{\bar{G}_n(Z_n)} \quad (B \in \mathcal{B}^d)$$

where \mathcal{B}^d is the set of all Borel sets in \mathbb{R}^d and where

$$\bar{G}_n(z) = \mu \left(\{ x \in [-l_n, l_n]^d : m_n(x) \le z \} \cup ([-l_n, l_n]^d)^c \right).$$
(7)

By construction, the distribution H_n has the Radon-Nikodym derivative (conditional on Z_n)

$$\frac{dH_n}{d\mu}(x) = \frac{I_{\{m_n(x) \le Z_n\}} \cdot I_{\{x \in [-l_n, l_n]^d\}} + I_{\{x \notin [-l_n, l_n]^d\}}}{\bar{G}_n(Z_n)}.$$

A realization of such a random variable can be constructed using a rejection method: We generate independent realizations of X until we observe a realization x which satisfies either $x \in [-l_n, l_n]^d$ and $m_n(x) \leq Z_n$ or $x \notin [-l_n, l_n]^d$, which we then use as the realization of our $X_n^{(IS)}$.

Furthermore we choose independent and identically distributed random variables $X_{n,1}$, $X_{n,2}$, ..., $X_{n,n}$ distributed as X, which are independent of all other random variables constructed or used until this point. Then we set

$$Z_{n+1} = Z_n - \frac{D_n}{n} \cdot \left(I_{\{m(X_n^{(IS)}) \le Z_n\}} \cdot \tilde{G}_n(Z_n) - \alpha \right),$$
(8)

where $D_n = \log^2(n)$ and

$$\tilde{G}_n(z) = \frac{1}{n} \sum_{i=1}^n \left(I_{\{m_n(X_{n,i}) \le z, X_{n,i} \in [-l_n, l_n]^d\}} + I_{\{X_{n,i} \notin [-l_n, l_n]^d\}} \right) \quad (z \in \mathbb{R}).$$

Our main result gives an upper bound on the error of this quantile estimate.

Theorem 1 Let X, $X_{1,1}$, $X_{2,1}$, $X_{2,2}$, $X_{3,1}$, $X_{3,2}$, $X_{3,3}$, ... be independent and identically distributed \mathbb{R}^d -valued random variables and let $m : \mathbb{R}^d \to \mathbb{R}$ be a measurable function. Let $\alpha \in (0,1)$ and let q_α be the α -quantile of Y = m(X). Assume that Y = m(X) has a bounded density g with respect to the Lebesgue-Borel measure which is bounded away from zero in a neighborhood of q_α . Define $X_n^{(IS)}$ as above, where m_n satisfies (5) and (6) for some $0 , and let <math>\hat{q}_{\alpha,n}^{(IS)} = Z_n$ be the Robbins-Monro importance sampling quantile estimate defined above with $D_n = \log^2(n)$. Then

$$\mathbf{P}\left\{X \notin \left[-\log(n), \log(n)\right]^d\right\} > 0 \quad (n \in \mathbb{N}) \quad and \quad \mathbf{E}\left\{e^{\|X\|}\right\} < \infty \tag{9}$$

imply

$$\hat{q}_{\alpha,n}^{(IS)} \to q_{\alpha} \quad a.s. \quad and \quad \left| \hat{q}_{\alpha,n}^{(IS)} - q_{\alpha} \right| = O_{\mathbf{P}} \left(\log^{3+p/2}(n) \cdot n^{-1/2 - p/(2d)} \right).$$

Remark 1. The construction of an approximation m_n which satisfies (4) in case of a (p, C)smooth function m can be obtained, e.g., by spline approximation of the function m using npoints in $[-\log(n), \log(n)]^d$ (cf., e.g., Kohler (2013) or Kohler et al. (2014)), which can be either equidistantly chosen in $[-\log(n), \log(n)]^d$ or can be recursively defined such that for computation of m_{n+1} evaluations of m used for computation of m_n are used again. However, if we compute such a spline approximation we end up with an algorithm which needs for this again linear space in n, so the above advantage of the recursive algorithm disappears. But we can also use less data points for this spline approximator and require instead a higher degree of smoothness for m in order to achieve the same rate of convergence as above but with less requirement for space. E.g., if the spline approximator is based only on \sqrt{n} evaluations of m on equidistant points but m is $(2 \cdot p, C)$ -smooth, then (4) still holds, so our algorithm, which requires now only space of order \sqrt{n} , still achieves the rate of convergence in Theorem 1. Hence as the importance sampling algorithm in Kohler et al. (2014), our newly proposed algorithm achieves in this case a faster rate of convergence than the estimate based on order statistics, but it requires less space to be computed than the order statistics or the estimate in Kohler et al. (2014). It should also be noted that compared to Kohler et al. (2014) the newly proposed estimate needs a stronger smoothness assumption on m to achieve the better rate of convergence mentioned above.

Remark 2. If μ is known and has a known density f, then we can avoid the observation of $X_{i,j}$ by replacing $\tilde{G}_n(z)$ by its expectation

$$\bar{G}_n(z) = \int_{\mathbb{R}^d} f(t) \cdot \left(I_{\{t \in [-l_n, l_n]^d : m_n(t) \le z\}} + I_{\{t \notin [-l_n, l_n]^d\}} \right) dt$$

which can be computed, e.g., by numerical integration. The proof of Theorem 1 implies that the corresponding estimate achieves the same rate of convergence as the estimate in Theorem 1. However, in this case the numerical computation of the above integral risks to lose the advantage of the recursive algorithm in terms of computational time.

Remark 3. In the context of Theorem 1 one can modify the rejection method which yields $X_n^{(IS)}$, $n \in \mathbb{N}$, by generating at most n independent realizations of X, i.e., by stopping latest at the n-th trial. This leads to a modification of $X_n^{(IS)}$ replacing it by ∞ if none of the n trials yields the

desired realization (and then setting $m(\infty) = \infty$). It is possible to show that in this case the assertion of Theorem 1 remains valid.

3 Proof of Theorem 1

Without loss of generality we assume that (5) and (6) hold for all $n \in \mathbb{N}$ (otherwise we start our Robbins-Monro procedure at step n_0 instead of at step 1). We have

$$Z_{n+1} = Z_n - \frac{D_n}{n} \cdot (G(Z_n) - G(q_\alpha)) + \frac{D_n}{n} \cdot V_n,$$
(10)

where

$$V_n = G(Z_n) - I_{\{m(X_n^{(IS)}) \le Z_n\}} \cdot \tilde{G}_n(Z_n)$$

= $G(Z_n) - I_{\{m(X_n^{(IS)}) \le Z_n\}} \cdot \bar{G}_n(Z_n) - I_{\{m(X_n^{(IS)}) \le Z_n\}} \cdot \left(\tilde{G}_n(Z_n) - \bar{G}_n(Z_n)\right)$

and

$$\bar{G}_n(z) = \mathbf{P}\left\{m_n(X) \le z, X \in [-l_n, l_n]^d\right\} + \mathbf{P}\left\{X \notin [-l_n, l_n]^d\right\}$$

(cf., (7)). Let \mathcal{F}_n be the σ -field generated by $X_1^{(IS)}, \ldots, X_n^{(IS)}, X_{1,1}, X_{2,1}, X_{2,2}, \ldots, X_{n,1}, \ldots, X_{n,n}$. Then Z_n is measurable with respect to \mathcal{F}_{n-1} .

In the first step of the proof we show

$$\left| \mathbf{E} \left\{ I_{\{m(X_n^{(IS)}) \le Z_n\}} \cdot \bar{G}_n(Z_n) \middle| Z_n = z \right\} - G(z) \right| \le \frac{c_1}{n}$$
(11)

for all $z \in \mathbb{R}$. By definition of $X_n^{(IS)}$ and (6) we have for $z \in \mathbb{R}$

$$\mathbf{E} \left\{ I_{\{m(X_n^{(IS)}) \le Z_n\}} \middle| Z_n = z \right\}
= \int I_{\{m(t) \le z\}} dH_n(t)
= \frac{1}{\bar{G}_n(z)} \int I_{\{m(t) \le z\}} \cdot \left(I_{\{t \in [-l_n, l_n]^d : m_n(t) \le z\}} + I_{\{t \notin [-l_n, l_n]^d\}} \right) d\mu(t)
= \frac{\mathbf{P} \left\{ m(X) \le z, X \in [-l_n, l_n]^d \right\} + \mathbf{P} \left\{ X \notin [-l_n, l_n]^d \right\} }{\bar{G}_n(z)},$$
(12)

hence the left-hand side of (11) is equal to

$$\left| \mathbf{P} \left\{ m(X) \le z, X \in [-l_n, l_n]^d \right\} + \mathbf{P} \left\{ X \notin [-l_n, l_n]^d \right\} - \mathbf{P} \{ m(X) \le z \} \right| \le \mathbf{P} \{ X \notin [-l_n, l_n]^d \}.$$

By the Markov inequality and assumption (9) we get

$$\mathbf{P}\{X \notin [-l_n, l_n]^d\} \le \mathbf{P}\{\|X\| \ge \log(n)\} \le \frac{\mathbf{E}\{\exp(\|X\|)}{\exp(\log(n))} \le \frac{c_1}{n},$$

which implies (11).

In the second step of the proof we show

$$\operatorname{Var}\left\{I_{\{m(X_n^{(IS)})\leq Z_n\}}\cdot \bar{G}_n(Z_n)\big|Z_n=z\right\}\leq c_2\cdot \log^{p+1}(n)\cdot n^{-p/d}$$
(13)

for all $z \in \mathbb{R}$. By (12), (5) and (6), which implies

$$\mathbf{P}\{m_n(X) \le z, X \in [-l_n, l_n]^d\} \ge \mathbf{P}\{m(X) \le z, X \in [-l_n, l_n]^d\},\$$

we get

$$\begin{aligned} &\operatorname{Var}\left\{I_{\{m(X_n^{(IS)}) \leq Z_n\}} \cdot \bar{G}_n(Z_n) | Z_n = z\right\} \\ &= \bar{G}_n(z)^2 \cdot \left(\mathbf{E}\{I_{\{m(X_n^{(IS)}) \leq z\}} | Z_n = z\} - \left(\mathbf{E}\{I_{\{m(X_n^{(IS)}) \leq z\}} | Z_n = z\}\right)^2\right) \\ &= \bar{G}_n(z) \cdot \left(\mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\} + \mathbf{P}\left\{X \notin [-l_n, l_n]^d\right\}\right) \\ &\quad - \left(\mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\} + \mathbf{P}\left\{X \notin [-l_n, l_n]^d\right\}\right)^2 \\ &= \left(\mathbf{P}\{m_n(X) \leq z, X \in [-l_n, l_n]^d\} - \mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\}\right) \\ &\quad \cdot \left(\mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\} + \mathbf{P}\left\{X \notin [-l_n, l_n]^d\right\}\right) \\ &\leq \mathbf{P}\{m_n(X) \leq z, X \in [-l_n, l_n]^d\} - \mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\} \\ &\leq \mathbf{P}\{m(X) \leq z + 2 \cdot \log^{p+1}(n) \cdot n^{-p/d}, X \in [-l_n, l_n]^d\} - \mathbf{P}\{m(X) \leq z, X \in [-l_n, l_n]^d\} \\ &= \int_{[-l_n, l_n]^d} \left(I_{\{m(x) \leq z + 2 \cdot \log^{p+1}(n) \cdot n^{-p/d}\} - I_{\{m(x) \leq z\}}\right) \mathbf{P}_X(dx) \\ &\leq G(z + 2 \cdot \log^{p+1}(n) \cdot n^{-p/d}) - G(z) \\ &\leq c_2 \cdot \log^{p+1}(n) \cdot n^{-p/d}, \end{aligned}$$

where we have used in the last inequality that G has a bounded density. This implies (13).

In the third step of the proof we show

$$Z_n \to q_\alpha \quad a.s.$$
 (14)

By construction $X_{n,1}, \ldots, X_{n,n}$ are independent of $X_n^{(IS)}$ and Z_n which implies

$$\mathbf{E}\left\{I_{\{m(X_n^{(IS)})\leq Z_n\}}\cdot \left(\tilde{G}_n(Z_n)-\bar{G}_n(Z_n)\right)\bigg|\mathcal{F}_{n-1}\right\}=0$$

and

$$\operatorname{Var}\left\{I_{\left\{m(X_{n}^{(IS)})\leq Z_{n}\right\}}\cdot\left(\tilde{G}_{n}(Z_{n})-\bar{G}_{n}(Z_{n})\right)\left|\mathcal{F}_{n-1}\right\}\leq \operatorname{\mathbf{E}}\left\{\left(\tilde{G}_{n}(Z_{n})-\bar{G}_{n}(Z_{n})\right)^{2}\left|\mathcal{F}_{n-1}\right\}\leq \frac{1}{n}.$$
(15)

According to this and (11) and (13), the random variable V_n in (10) satisfies

$$|\mathbf{E}\{V_n|\mathcal{F}_{n-1}\}| \le \frac{c_3}{n} \tag{16}$$

and

$$\mathbf{E}\left\{V_{n}^{2}|\mathcal{F}_{n-1}\right\} \leq (\mathbf{E}\{V_{n}|\mathcal{F}_{n-1}\})^{2} + \mathbf{Var}\{V_{n}|\mathcal{F}_{n-1}\} \\
\leq \frac{c_{3}^{2}}{n^{2}} + 2 \cdot \mathbf{Var}\left\{I_{\{m(X_{n}^{(IS)}) \leq Z_{n}\}} \cdot \bar{G}_{n}(Z_{n}) \middle| \mathcal{F}_{n-1}\right\} \\
+ 2 \cdot \mathbf{Var}\left\{I_{\{m(X_{n}^{(IS)}) \leq Z_{n}\}} \cdot \left(\tilde{G}_{n}(Z_{n}) - \bar{G}_{n}(Z_{n})\right) \middle| \mathcal{F}_{n-1}\right\} \\
\leq \frac{c_{3}^{2}}{n^{2}} + 2 \cdot c_{2} \cdot \log^{p+1}(n) \cdot n^{-p/d} + \frac{2}{n} \\
\leq c_{4} \cdot \log^{p+1}(n) \cdot n^{-p/d}, \qquad (17)$$

since $p \leq d$. By a theorem of Gladyshev (1965) on the Robbins-Monro algorithm (see, e.g., Ljung, Pflug and Walk (1982), p. 8, Theorem 1.9, applied with some random H_n satisfying $|H_n| \leq c/n$) one immediately obtains (14).

Choose $\epsilon > 0$ such that

$$\frac{G(z) - G(q_{\alpha})}{z - q_{\alpha}} > g(q_{\alpha})/2 > 0 \quad \text{whenever } |z - q_{\alpha}| < \epsilon$$

and let B_N be the event that $|Z_n - q_\alpha| < \epsilon$ for all $n \ge N$. In the fourth step of the proof we show that the assertion of Theorem 1 follows from step 3 and

$$\log^{-6-p}(n) \cdot n^{1+p/d} \cdot \mathbf{E}\left\{ |Z_n - q_\alpha|^2 \cdot I_{B_N} \right\} \to 0 \quad (n \to \infty)$$
(18)

for all sufficiently large $N \in \mathbb{N}$. Because of (14) we have $\mathbf{P}(B_N) \to 1 \ (N \to \infty)$, consequently the assertion of Theorem 1 is implied by

$$\mathbf{P}\left\{|Z_n - q_\alpha| > c_5 \cdot \log^{3+p/2}(n) \cdot n^{-1/2 - p/(2d)} \text{ and } B_N \text{ holds}\right\} \to 0 \quad (n \to \infty)$$

for all $N \in \mathbb{N}$. By the Markov inequality this in turn follows from (18).

In the fifth step of the proof we show that $|Z_n - q_\alpha| < \epsilon$ implies

$$\mathbf{E}\left\{\left|Z_{n+1} - q_{\alpha}\right|^{2} \left|\mathcal{F}_{n-1}\right\} \le \left(1 - c_{6} \cdot \frac{D_{n}}{n}\right) \left|Z_{n} - q_{\alpha}\right|^{2} + c_{7} \cdot \frac{D_{n}^{2}}{n^{2}} \cdot \log^{p+1}(n) \cdot n^{-p/d}$$
(19)

for some constants $c_6, c_7 > 0$ and n sufficiently large. From (10) we get

$$Z_{n+1} - q_{\alpha} = \left(1 - \frac{D_n}{n} \cdot A_n\right) \cdot \left(Z_n - q_{\alpha}\right) + \frac{D_n}{n} \cdot V_n$$

where

$$A_n = \frac{G(Z_n) - G(q_\alpha)}{Z_n - q_\alpha}$$

and $V_n = G(Z_n) - I_{\{m(X_n^{(IS)}) \leq Z_n\}} \cdot \tilde{G}_n(Z_n)$. Here Z_n and A_n are \mathcal{F}_{n-1} measurable. Using $2 \cdot a \cdot b \leq C_n$

 $a^2/\delta+b^2\cdot\delta$ for $a,b\in\mathbb{R}$ and $\delta>0$ this implies in case $|Z_n-q_\alpha|<\epsilon$

$$\begin{split} \mathbf{E}\left\{\left|Z_{n+1}-q_{\alpha}\right|^{2}\left|\mathcal{F}_{n-1}\right\}\right\} \\ &= \left(1-\frac{D_{n}}{n}\cdot A_{n}\right)^{2}\left|Z_{n}-q_{\alpha}\right|^{2}+\frac{D_{n}^{2}}{n^{2}}\cdot\mathbf{E}\left\{V_{n}^{2}\right|\mathcal{F}_{n-1}\right\} \\ &\quad +2\cdot\left(1-\frac{D_{n}}{n}\cdot A_{n}\right)\cdot\left(Z_{n}-q_{\alpha}\right)\cdot\frac{D_{n}}{n}\cdot\mathbf{E}\{V_{n}|\mathcal{F}_{n-1}\} \\ &\leq \left(1-\frac{D_{n}}{n}\cdot A_{n}\right)^{2}\left(1+\frac{D_{n}\cdot A_{n}}{n}\right)\left|Z_{n}-q_{\alpha}\right|^{2}+\frac{D_{n}^{2}}{n^{2}}\cdot\mathbf{E}\left\{V_{n}^{2}\right|\mathcal{F}_{n-1}\} \\ &\quad +\frac{n}{D_{n}\cdot A_{n}}\cdot\frac{D_{n}^{2}}{n^{2}}\cdot\left(\mathbf{E}\left\{V_{n}\middle|\mathcal{F}_{n-1}\right\}\right)^{2}. \end{split}$$

If $|Z_n - q_\alpha| < \epsilon$ then we have $A_n > g(q_\alpha)/2 = c_6 > 0$. This together with (16) and (17) and the uniform boundedness of A_n (which is a consequence of the boundedness of the density g of G) imply (19).

In the sixth (and final) step of the proof we finish the proof by showing (18). Let $B_{N,n}$ be the event that $|Z_k - q_\alpha| < \epsilon$ for all $N \le k \le n$. Because of $I_{B_N} \le I_{B_{N,n-1}} \le I_{B_{N,n-2}}$ and the \mathcal{F}_{n-2} -measurability of $I_{B_{N,n-1}}$ we can conclude from step 5 for sufficiently large n

$$\begin{split} & \mathbf{E} \left\{ |Z_n - q_{\alpha}|^2 \cdot I_{B_N} \right\} \\ & \leq \mathbf{E} \left\{ |Z_n - q_{\alpha}|^2 \cdot I_{B_{N,n-1}} \right\} \\ & \leq \mathbf{E} \left\{ \mathbf{E} \left\{ |Z_n - q_{\alpha}|^2 |\mathcal{F}_{n-2} \right\} \cdot I_{B_{N,n-1}} \right\} \\ & \leq \left(1 - c_6 \cdot \frac{\log^2(n-1)}{n-1} \right) \mathbf{E} \left\{ |Z_{n-1} - q_{\alpha}|^2 \cdot I_{B_{N,n-2}} \right\} + c_7 \cdot \log^{p+5}(n-1) \cdot (n-1)^{-2-p/d}. \end{split}$$

An iterative application of this argument yields for any sufficiently large $N \in \mathbb{N}$ and $\lfloor n/2 \rfloor > N$

$$\mathbf{E} \left\{ |Z_n - q_{\alpha}|^2 \cdot I_{B_N} \right\}$$

$$\leq \sum_{k = \lceil n/2 \rceil + 1}^{n-1} c_7 \cdot \log^{p+5}(k) \cdot k^{-2-p/d} \prod_{l=k+1}^{n-1} \left(1 - c_6 \cdot \frac{\log^2(l)}{l} \right) + \epsilon^2 \cdot \prod_{l=\lceil n/2 \rceil + 1}^{n-1} \left(1 - c_6 \cdot \frac{\log^2(l)}{l} \right)$$

$$\leq c_8 \cdot \log^{p+5}(n) \cdot n^{-1-p/d} + \epsilon^2 \cdot \exp\left(-c_9 \cdot \log^2(\lceil n/2 \rceil) \right).$$

The proof is complete.

4 Acknowledgment

The first author would like to thank the German Research Foundation (DFG) for funding this project within the Collaborative Research Centre 805. The second author would like to acknowledge the support of Natural Sciences and Engineering Research Council of Canada.

References

- Arnold, B. C., Balakrishnan, N., and Nagaraja, H. N. (1992). A First Course in Order Statistics. John Wiley & Sons.
- [2] Benveniste, A., Métivier, M., and Priouret, P. (1990). Adaptive Algorithms and Stochastic Approximation. Springer-Verlag, New York.
- [3] Cannamela, C, Garnier, J., and Iooss, B. (2008). Controlled stratification for quantile estimation. The Annals of Applied Statistics, vol. 2, no. 4, pp. 1554-1580.
- [4] Chen, H.-F. (2002). Stochastic Approximation and Its Applications. Kluwer Academic Publishers, Boston.
- [5] Egloff, D., and Leippold, M. (2010). Quantile estimation with adaptive importance sampling. *The Annals of Statistics*, vol. 38, no. 2, pp. 1244-1278.
- [6] Gladyshev, E. G. (1965). On stochastic approximation. Theory of Probability and Applications, vol. 10, no. 2, pp. 275-278.
- [7] Holst, U. (1987). Recursive estimation of quantiles using recursive kernel density estimators. Sequential Analysis: Design Methods and Applications, vol. 6, no. 3, pp. 219-237.
- [8] Kohler, M. (2013). Optimal global rates of convergence for noiseless regression estimation problems with adaptively chosen design. Submitted for publication.
- [9] Kohler, M., Krzyżak, A., Tent, R., and Walk, H. (2014). Nonparametric quantile estimation using importance sampling. Submitted for publication.
- [10] Kushner, H. J., and Yin, G. (2003). Stochastic Approximation and Recursive Algorithms and Applications, 2nd edition, Springer-Verlag, New York.
- [11] Ljung, L., Pflug, G., and Walk, H. (1992). Stochastic Approximation and Optimization of Random Systems. Birkhäuser Verlag, Basel.
- [12] Morio, J. (2012). Extreme quantile estimation with nonparametric adaptive importance sampling Simulation Modelling Practice and Theory, vol. 27, pp. 76-89.
- [13] Polyak, B. T., and Juditsky, A. B. (2002). Acceleration of stochastic approximation by averaging. SIAM Journal on Control and Optimization, vol. 30, no. 4, pp. 838-855.
- [14] Robbins, H., and Monro, S. (1951). A stochastic apprximation method. The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 400-407.

- [15] Ruppert, D. (1991). Stochastic approximation. In. Handbook of Sequential Analysis (eds. B. K. Gosh and P. K. Sen), Ch. 22, pp. 503-529. Marcel Dekker, New York.
- [16] Tierney, L. (1983). A space-efficient recursive procedure for estimating a quantile of an unknown distribution. SIAM Journal on Scientific and Statistical Computation, vol. 4, no. 4, pp. 706-711.

Michael Kohler Fachbereich Mathematik Technische Universität Darmstadt Schlossgartenstr. 7 64289 Darmstadt Germany **E-Mail:** kohler@mathematik.tu-darmstadt.de

Adam Krzyżak Department of Computer Science and Software Engineering Concordia University 1455 De Maisonneuve Blvd. West Montreal Quebec Canada H3G 1M8 **E-Mail:** krzyzak@cs.concordia.ca

Harro Walk Universität Stuttgart Fachbereich Mathematik Pfaffenwaldring 57 70569 Stuttgart Germany **E-Mail:** walk@mathematik.uni-stuttgart.de

Erschienene Preprints ab Nummer 2007/2007-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

- 2014-014 Kohler, M.; Krzyżak, A.; Walk, H.: Nonparametric recursive quantile estimation
- 2014-013 Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation using importance sampling
- 2014-012 *Györfi, L.; Ottucsák, G.; Walk, H.:* The growth optimal investment strategy is secure, too.
- 2014-011 Györfi, L.; Walk, H.: Strongly consistent detection for nonparametric hypotheses
- 2014-010 *Köster, I.:* Finite Groups with Sylow numbers $\{q^x, a, b\}$
- 2014-009 Kahnert, D.: Hausdorff Dimension of Rings
- 2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM
- 2014-007 *Steinwart, I.:* Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties
- 2014-006 Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of Properties
- 2014-005 *Schmid, J.; Griesemer, M.:* Integration of Non-Autonomous Linear Evolution Equations
- 2014-004 *Markhasin, L.:* L_2 and $S_{p,q}^r B$ -discrepancy of (order 2) digital nets
- 2014-003 *Markhasin, L.:* Discrepancy and integration in function spaces with dominating mixed smoothness
- 2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs
- 2014-001 *Giesselmann, J.:* A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
- 2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
- 2013-015 *Steinwart, I.:* Some Remarks on the Statistical Analysis of SVMs and Related Methods
- 2013-014 *Rohde, C.; Zeiler, C.:* A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension
- 2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killing spinors on Einstein manifolds
- 2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
- 2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems
- 2013-010 *Corli, A.; Rohde, C.; Schleper, V.:* Parabolic Approximations of Diffusive-Dispersive Equations
- 2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
- 2013-008 *Bächle, A.; Margolis, L.:* Rational conjugacy of torsion units in integral group rings of non-solvable groups
- 2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
- 2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
- 2013-005 *Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.:* A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure
- 2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
- 2013-003 *Kabil, B.; Rohde, C.:* The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces

- 2013-002 *Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.:* Strong universal consistent estimate of the minimum mean squared error
- 2013-001 *Kohls, K.; Rösch, A.; Siebert, K.G.:* A Posteriori Error Analysis of Optimal Control Problems with Control Constraints
- 2012-018 *Kimmerle, W.; Konovalov, A.:* On the Prime Graph of the Unit Group of Integral Group Rings of Finite Groups II
- 2012-017 *Stroppel, B.; Stroppel, M.:* Desargues, Doily, Dualities, and Exceptional Isomorphisms
- 2012-016 *Moroianu, A.; Pilca, M.; Semmelmann, U.:* Homogeneous almost quaternion-Hermitian manifolds
- 2012-015 *Steinke, G.F.; Stroppel, M.J.:* Simple groups acting two-transitively on the set of generators of a finite elation Laguerre plane
- 2012-014 *Steinke, G.F.; Stroppel, M.J.:* Finite elation Laguerre planes admitting a two-transitive group on their set of generators
- 2012-013 *Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.:* Polar actions on complex hyperbolic spaces
- 2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
- 2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
- 2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
- 2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
- 2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
- 2012-007 *Ferrario, P.:* Partitioning estimation of local variance based on nearest neighbors under censoring
- 2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
- 2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
- 2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
- 2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
- 2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
- 2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian
- 2011-028 Spreer, J.: Combinatorial 3-manifolds with cyclic automorphism group
- 2011-027 *Griesemer, M.; Hantsch, F.; Wellig, D.:* On the Magnetic Pekar Functional and the Existence of Bipolarons
- 2011-026 Müller, S.: Bootstrapping for Bandwidth Selection in Functional Data Regression
- 2011-025 *Felber, T.; Jones, D.; Kohler, M.; Walk, H.:* Weakly universally consistent static forecasting of stationary and ergodic time series via local averaging and least squares estimates
- 2011-024 Jones, D.; Kohler, M.; Walk, H.: Weakly universally consistent forecasting of stationary and ergodic time series
- 2011-023 *Györfi, L.; Walk, H.:* Strongly consistent nonparametric tests of conditional independence
- 2011-022 *Ferrario, P.G.; Walk, H.:* Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbors
- 2011-021 Eberts, M.; Steinwart, I.: Optimal regression rates for SVMs using Gaussian kernels
- 2011-020 Frank, R.L.; Geisinger, L.: Refined Semiclassical Asymptotics for Fractional Powers of the Laplace Operator

- 2011-019 *Frank, R.L.; Geisinger, L.:* Two-term spectral asymptotics for the Dirichlet Laplacian on a bounded domain
- 2011-018 Hänel, A.; Schulz, C.; Wirth, J.: Embedded eigenvalues for the elastic strip with cracks
- 2011-017 Wirth, J.: Thermo-elasticity for anisotropic media in higher dimensions
- 2011-016 Höllig, K.; Hörner, J.: Programming Multigrid Methods with B-Splines
- 2011-015 *Ferrario, P.:* Nonparametric Local Averaging Estimation of the Local Variance Function
- 2011-014 *Müller, S.; Dippon, J.:* k-NN Kernel Estimate for Nonparametric Functional Regression in Time Series Analysis
- 2011-013 Knarr, N.; Stroppel, M.: Unitals over composition algebras
- 2011-012 *Knarr, N.; Stroppel, M.:* Baer involutions and polarities in Moufang planes of characteristic two
- 2011-011 Knarr, N.; Stroppel, M.: Polarities and planar collineations of Moufang planes
- 2011-010 Jentsch, T.; Moroianu, A.; Semmelmann, U.: Extrinsic hyperspheres in manifolds with special holonomy
- 2011-009 *Wirth, J.:* Asymptotic Behaviour of Solutions to Hyperbolic Partial Differential Equations
- 2011-008 Stroppel, M.: Orthogonal polar spaces and unitals
- 2011-007 *Nagl, M.:* Charakterisierung der Symmetrischen Gruppen durch ihre komplexe Gruppenalgebra
- 2011-006 *Solanes, G.; Teufel, E.:* Horo-tightness and total (absolute) curvatures in hyperbolic spaces
- 2011-005 Ginoux, N.; Semmelmann, U.: Imaginary Kählerian Killing spinors I
- 2011-004 *Scherer, C.W.; Köse, I.E.:* Control Synthesis using Dynamic *D*-Scales: Part II Gain-Scheduled Control
- 2011-003 *Scherer, C.W.; Köse, I.E.:* Control Synthesis using Dynamic *D*-Scales: Part I Robust Control
- 2011-002 Alexandrov, B.; Semmelmann, U.: Deformations of nearly parallel G2-structures
- 2011-001 Geisinger, L.; Weidl, T.: Sharp spectral estimates in domains of infinite volume
- 2010-018 Kimmerle, W.; Konovalov, A.: On integral-like units of modular group rings
- 2010-017 Gauduchon, P.; Moroianu, A.; Semmelmann, U.: Almost complex structures on quaternion-Kähler manifolds and inner symmetric spaces
- 2010-016 Moroianu, A.; Semmelmann, U.: Clifford structures on Riemannian manifolds
- 2010-015 Grafarend, E.W.; Kühnel, W.: A minimal atlas for the rotation group SO(3)
- 2010-014 Weidl, T.: Semiclassical Spectral Bounds and Beyond
- 2010-013 Stroppel, M.: Early explicit examples of non-desarguesian plane geometries
- 2010-012 Effenberger, F.: Stacked polytopes and tight triangulations of manifolds
- 2010-011 *Györfi, L.; Walk, H.:* Empirical portfolio selection strategies with proportional transaction costs
- 2010-010 Kohler, M.; Krzyżak, A.; Walk, H.: Estimation of the essential supremum of a regression function
- 2010-009 *Geisinger, L.; Laptev, A.; Weidl, T.:* Geometrical Versions of improved Berezin-Li-Yau Inequalities

- 2010-008 Poppitz, S.; Stroppel, M.: Polarities of Schellhammer Planes
- 2010-007 *Grundhöfer, T.; Krinn, B.; Stroppel, M.:* Non-existence of isomorphisms between certain unitals
- 2010-006 *Höllig, K.; Hörner, J.; Hoffacker, A.:* Finite Element Analysis with B-Splines: Weighted and Isogeometric Methods
- 2010-005 *Kaltenbacher, B.; Walk, H.:* On convergence of local averaging regression function estimates for the regularization of inverse problems
- 2010-004 Kühnel, W.; Solanes, G.: Tight surfaces with boundary
- 2010-003 *Kohler, M; Walk, H.:* On optimal exercising of American options in discrete time for stationary and ergodic data
- 2010-002 *Gulde, M.; Stroppel, M.:* Stabilizers of Subspaces under Similitudes of the Klein Quadric, and Automorphisms of Heisenberg Algebras
- 2010-001 *Leitner, F.:* Examples of almost Einstein structures on products and in cohomogeneity one
- 2009-008 Griesemer, M.; Zenk, H.: On the atomic photoeffect in non-relativistic QED
- 2009-007 *Griesemer, M.; Moeller, J.S.:* Bounds on the minimal energy of translation invariant n-polaron systems
- 2009-006 *Demirel, S.; Harrell II, E.M.:* On semiclassical and universal inequalities for eigenvalues of quantum graphs
- 2009-005 Bächle, A, Kimmerle, W.: Torsion subgroups in integral group rings of finite groups
- 2009-004 Geisinger, L.; Weidl, T.: Universal bounds for traces of the Dirichlet Laplace operator
- 2009-003 Walk, H.: Strong laws of large numbers and nonparametric estimation
- 2009-002 Leitner, F.: The collapsing sphere product of Poincaré-Einstein spaces
- 2009-001 *Brehm, U.; Kühnel, W.:* Lattice triangulations of E^3 and of the 3-torus
- 2008-006 *Kohler, M.; Krzyżak, A.; Walk, H.:* Upper bounds for Bermudan options on Markovian data using nonparametric regression and a reduced number of nested Monte Carlo steps
- 2008-005 *Kaltenbacher, B.; Schöpfer, F.; Schuster, T.:* Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems
- 2008-004 *Leitner, F.:* Conformally closed Poincaré-Einstein metrics with intersecting scale singularities
- 2008-003 Effenberger, F.; Kühnel, W.: Hamiltonian submanifolds of regular polytope
- 2008-002 *Hertweck, M.; Höfert, C.R.; Kimmerle, W.:* Finite groups of units and their composition factors in the integral group rings of the groups PSL(2, q)
- 2008-001 *Kovarik, H.; Vugalter, S.; Weidl, T.:* Two dimensional Berezin-Li-Yau inequalities with a correction term
- 2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term
- 2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya's conjecture in the presence of a constant magnetic field
- 2007-004 *Ekholm, T.; Frank, R.L.; Kovarik, H.:* Eigenvalue estimates for Schrödinger operators on metric trees
- 2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides
- 2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry
- 2007-001 *Meister, A.:* Deconvolution from Fourier-oscillating error densities under decay and smoothness restrictions