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Abstract

A simulation model with outcome Y = m(X) is considered, where X is an Rd-valued random

variable and m : Rd → R is p-times continuously differentiable. It is shown that an importance

sampling Robbins-Monro type quantile estimate achieves for 0 < p ≤ d the rate of convergence

log3+p/2(n) · n−1/2−p/(2d).

AMS classification: Primary 62G05; secondary 62G20.

Key words and phrases: Nonparametric quantile estimation, importance sampling, rate of conver-

gence, Robbins-Monro procedure.

1 Introduction

Let Y be a real-valued random variable with cumulative distribution function (cdf)

G(y) = P{Y ≤ y}. In this article we are interested in estimating quantiles of Y of level α ∈ (0, 1),

which can be defined as any value between

qlowerα = inf{y ∈ R : G(y) ≥ α} and qupperα = sup{y ∈ R : G(y) ≤ α}.

Throughout this paper we assume that Y has a bounded density g with respect to the Lebesgue-

Borel-measure which is positive in a neighborhood of qupperα , which implies that there exists a

uniquely determined quantile qα = qupperα = qlowerα . Let Y , Y1, Y2, . . . be independent and identi-

cally distributed. Given Y1, . . . , Yn, we are interested in estimates q̂n,α = q̂n,α(Y1, . . . , Yn) of qα

with the property that the error q̂n,α− qα converges quickly towards zero in probability as n→∞.

∗Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax: +1-514-848-2830
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One of the simplest estimates of qα is given by order statistics. Let Y1:n, . . . , Yn:n be the order

statistics of Y1, . . . , Yn, i.e., Y1:n, . . . , Yn:n is a permutation of Y1, . . . , Yn such that Y1:n ≤ . . . ≤ Yn:n.

Then we can estimate qα by

qα,n = Ydnαe:n.

The properties of this estimate can be studied using the results from order statistics. In particular

Theorem 8.5.1 in Arnold, Balakrishnan and Nagaraja (1992) implies that in case that Y has a

density g which is continuous and positive at qα we have

√
n · g(qα) ·

Ydnαe:n − qα√
α · (1− α)

→ N(0, 1) in distribution. (1)

Consequently we have

|q̄α,n − qα| = OP

(
1√
n

)
(2)

where Xn = OP(Yn) is defined as follows. For nonnegative random variables Xn and Yn we say

that Xn = OP(Yn) if

lim
c→∞

lim sup
n→∞

P(Xn > c · Yn) = 0.

In order to compute the above estimate one needs to sort the given data Y1, . . . , Yn in increasing

order, which requires an amount of time of order n · log(n) and an amount of space of order n (the

latter one in order to save all values of the data points simultaneously). In case that one wants

to compute a quantile estimate for a very large sample size, a recursive estimate might be more

appropriate. Such a recursive estimate can be computed by applying the Robbins-Monro procedure

to estimate the root of G(z)−α. In its most simple form one starts here with an arbitrary random

variable Z1, e.g., Z1 = 0, and defines the quantile estimate Zn recursively via

Zn+1 = Zn −
Dn

n
·
(
I{Yn≤Zn} − α

)
(3)

for some suitable sequence Dn ≥ 0. Refined versions of the above simple Robbins-Monro estimate

achieve the same rate of convergence as in (1) and (2), explicitely in Tierney (1983) and Holst

(1987) by additional use of a recursive estimate of g(qα) or, for g Hölder continuous at qα, as a

consequence of general results on averaged Robbins-Monro estimates due to Ruppert (1991) and

Polyak and Juditsky (1992).

In this paper we consider a simulation model, e.g., of a technical system, where the random

variable Y is given by Y = m(X) for some known measurable function m : Rd → R and some

Rd-valued random variable X. In this framework we construct an importance sampling variant of

the above recursive estimate, which is based on a suitably defined approximation mn of m. In case

that the function m is p-times continuously differentiable and that X satisfies a proper exponential

moment condition we show that this importance sampling variant of the recursive estimate achieves

up to some logarithmic factor a rate of convergence of order n−1/2−p/(2d) for 0 < p ≤ d.
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The Robbins-Monro procedure was originally proposed by Robbins and Monro (1951) and

further developed and investigated as well as applied in many different situations, cf., e.g., the

monographs Benveniste, Métivier and Priouret (1990), Ljung, Pflug and Walk (1992), Chen (2002)

and Kushner and Yin (2003), and the literature cited therein. Importance sampling is a technique

to improve estimation of the expectation of a function by sample averages. Quantile estimation

using importance sampling has been considered by Cannamela, Garnier and Iooss (2008), Egloff

and Leippold (2010) and Morio (2012). In this paper we use ideas from Kohler et al. (2014) and

use importance sampling combined with an approximation of the underlying function m in order

to improve the rate of convergence of our recursive estimate of the quantile. Until step n of our

recursive procedure we use evaluations of m at most n nonrandom points in order to construct an

approximation of m, and one evaluation of m at each of the n sequential estimates of qα produced

by importance sampling and the sequential algorithm.

Throughout this paper we use the following notations: N, N0 and R are the sets of positive

integers, nonnegative integers and real numbers, respectively. For a real number z we denote by

dze the smallest integer larger than or equal to z. ‖x‖ is the Euclidean norm of x ∈ Rd. For

f : Rd → R and A ⊆ Rd we set

‖f‖∞,A = sup
x∈A
|f(x)|.

Let p = k + s for some k ∈ N0 and 0 < s ≤ 1, and let C > 0. A function m : Rd → R is

called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ Nd0 with
∑d
j=1 αj = k the partial derivative

∂km
∂x
α1
1 ...∂x

αd
d

exists and satisfies∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαdd

(x)− ∂km

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd.

The main result is formulated in Section 2 and its proof is provided in Section 3.

2 Main result

We combine a Robbins-Monro estimate with importance sampling in order to improve the rate of

convergence. Here we assume that our data is given by Y = m(X) for some known measurable

function m : Rd → R and some Rd-valued random variable X with known distribution µ. We

assume that we have available a deterministic approximation m̃n of m which satisfies

‖m̃n −m‖∞,[−ln,ln]d ≤ logp+1(n) · n−p/d (4)

for sufficiently large n for some 0 < p ≤ d, where ln = log(n). Set

mn = m̃n − logp+1(n) · n−p/d.
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Then we have

‖mn −m‖∞,[−ln,ln]d ≤ 2 · logp+1(n) · n−p/d (5)

and

mn(x) ≤ m(x) for all x ∈ [−ln, ln]d (6)

for sufficiently large n (more precisely, for n ≥ n0, where n0 ∈ N is some unknown positive

deterministic integer).

We recursively define a sequence of estimates Zn of qα. We start by choosing an arbitrary

(w.l.o.g. deterministic) Z1, e.g., Z1 = 0. After having constructed already Z1, . . . , Zn, we choose

a random variable X
(IS)
n such that X

(IS)
n has the distribution

Hn(B) =
µ
((
{x ∈ [−ln, ln]d : mn(x) ≤ Zn} ∪ ([−ln, ln]d)c

)
∩B

)
Ḡn(Zn)

(B ∈ Bd)

where Bd is the set of all Borel sets in Rd and where

Ḡn(z) = µ
(
{x ∈ [−ln, ln]d : mn(x) ≤ z} ∪ ([−ln, ln]d)c

)
. (7)

By construction, the distribution Hn has the Radon-Nikodym derivative (conditional on Zn)

dHn

dµ
(x) =

I{mn(x)≤Zn} · I{x∈[−ln,ln]d} + I{x/∈[−ln,ln]d}

Ḡn(Zn)
.

A realization of such a random variable can be constructed using a rejection method: We generate

independent realizations of X until we observe a realization x which satisfies either x ∈ [−ln, ln]d

and mn(x) ≤ Zn or x /∈ [−ln, ln]d , which we then use as the realization of our X
(IS)
n .

Furthermore we choose independent and identically distributed random variables Xn,1, Xn,2,

. . . , Xn,n distributed as X, which are independent of all other random variables constructed or

used until this point. Then we set

Zn+1 = Zn −
Dn

n
·
(
I{m(X

(IS)
n )≤Zn}

· G̃n(Zn)− α
)
, (8)

where Dn = log2(n) and

G̃n(z) =
1

n

n∑
i=1

(
I{mn(Xn,i)≤z,Xn,i∈[−ln,ln]d} + I{Xn,i /∈[−ln,ln]d}

)
(z ∈ R).

Our main result gives an upper bound on the error of this quantile estimate.

Theorem 1 Let X, X1,1, X2,1, X2,2, X3,1, X3,2, X3,3, . . . be independent and identically dis-

tributed Rd-valued random variables and let m : Rd → R be a measurable function. Let α ∈ (0, 1)

and let qα be the α-quantile of Y = m(X). Assume that Y = m(X) has a bounded density g with

respect to the Lebesgue-Borel measure which is bounded away from zero in a neighborhood of qα.

4



Define X
(IS)
n as above, where mn satisfies (5) and (6) for some 0 < p ≤ d, and let q̂

(IS)
α,n = Zn be

the Robbins-Monro importance sampling quantile estimate defined above with Dn = log2(n). Then

P
{
X /∈ [− log(n), log(n)]d

}
> 0 (n ∈ N) and E{e‖X‖} <∞ (9)

imply

q̂(IS)α,n → qα a.s. and
∣∣∣q̂(IS)α,n − qα

∣∣∣ = OP

(
log3+p/2(n) · n−1/2−p/(2d)

)
.

Remark 1. The construction of an approximation mn which satisfies (4) in case of a (p, C)–

smooth function m can be obtained, e.g., by spline approximation of the function m using n

points in [− log(n), log(n)]d (cf., e.g., Kohler (2013) or Kohler et al. (2014)), which can be either

equidistantly chosen in [− log(n), log(n)]d or can be recursively defined such that for computation

of mn+1 evaluations of m used for computation of mn are used again. However, if we compute

such a spline approximation we end up with an algorithm which needs for this again linear space

in n, so the above advantage of the recursive algorithm disappears. But we can also use less data

points for this spline approximator and require instead a higher degree of smoothness for m in

order to achieve the same rate of convergence as above but with less requirement for space. E.g.,

if the spline approximator is based only on
√
n evaluations of m on equidistant points but m is

(2 ·p, C)–smooth, then (4) still holds, so our algorithm, which requires now only space of order
√
n,

still achieves the rate of convergence in Theorem 1. Hence as the importance sampling algorithm in

Kohler et al. (2014), our newly proposed algorithm achieves in this case a faster rate of convergence

than the estimate based on order statistics, but it requires less space to be computed than the

order statistics or the estimate in Kohler et al. (2014). It should also be noted that compared to

Kohler et al. (2014) the newly proposed estimate needs a stronger smoothness assumption on m

to achieve the better rate of convergence mentioned above.

Remark 2. If µ is known and has a known density f , then we can avoid the observation of Xi,j

by replacing G̃n(z) by its expectation

Ḡn(z) =

∫
Rd
f(t) ·

(
I{t∈[−ln,ln]d :mn(t)≤z} + I{t/∈[−ln,ln]d}

)
dt,

which can be computed, e.g., by numerical integration. The proof of Theorem 1 implies that

the corresponding estimate achieves the same rate of convergence as the estimate in Theorem 1.

However, in this case the numerical computation of the above integral risks to lose the advantage

of the recursive algorithm in terms of computational time.

Remark 3. In the context of Theorem 1 one can modify the rejection method which yields X
(IS)
n ,

n ∈ N, by generating at most n independent realizations of X, i.e., by stopping latest at the n-th

trial. This leads to a modification of X
(IS)
n replacing it by ∞ if none of the n trials yields the
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desired realization (and then setting m(∞) = ∞). It is possible to show that in this case the

assertion of Theorem 1 remains valid.

3 Proof of Theorem 1

Without loss of generality we assume that (5) and (6) hold for all n ∈ N (otherwise we start our

Robbins-Monro procedure at step n0 instead of at step 1). We have

Zn+1 = Zn −
Dn

n
· (G(Zn)−G(qα)) +

Dn

n
· Vn, (10)

where

Vn = G(Zn)− I{m(X
(IS)
n )≤Zn}

· G̃n(Zn)

= G(Zn)− I{m(X
(IS)
n )≤Zn}

· Ḡn(Zn)− I{m(X
(IS)
n )≤Zn}

·
(
G̃n(Zn)− Ḡn(Zn)

)
and

Ḡn(z) = P
{
mn(X) ≤ z,X ∈ [−ln, ln]d

}
+ P

{
X /∈ [−ln, ln]d

}
(cf., (7)). Let Fn be the σ-field generated by X

(IS)
1 , . . . , X

(IS)
n , X1,1, X2,1, X2,2, . . . , Xn,1, . . . ,

Xn,n. Then Zn is measurable with respect to Fn−1.

In the first step of the proof we show∣∣∣E{I{m(X
(IS)
n )≤Zn}

· Ḡn(Zn)
∣∣Zn = z

}
−G(z)

∣∣∣ ≤ c1
n

(11)

for all z ∈ R. By definition of X
(IS)
n and (6) we have for z ∈ R

E

{
I{m(X

(IS)
n )≤Zn}

∣∣∣∣Zn = z

}
=

∫
I{m(t)≤z}dHn(t)

=
1

Ḡn(z)

∫
I{m(t)≤z} ·

(
I{t∈[−ln,ln]d :mn(t)≤z} + I{t/∈[−ln,ln]d}

)
dµ(t)

=
P
{
m(X) ≤ z,X ∈ [−ln, ln]d

}
+ P

{
X /∈ [−ln, ln]d

}
Ḡn(z)

, (12)

hence the left-hand side of (11) is equal to

∣∣P{m(X) ≤ z,X ∈ [−ln, ln]d
}

+ P
{
X /∈ [−ln, ln]d

}
−P{m(X) ≤ z}

∣∣ ≤ P{X /∈ [−ln, ln]d}.

By the Markov inequality and assumption (9) we get

P{X /∈ [−ln, ln]d} ≤ P{‖X‖ ≥ log(n)} ≤ E{exp(‖X‖)
exp(log(n))

≤ c1
n
,

which implies (11).
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In the second step of the proof we show

Var
{
I{m(X

(IS)
n )≤Zn}

· Ḡn(Zn)
∣∣Zn = z

}
≤ c2 · logp+1(n) · n−p/d (13)

for all z ∈ R. By (12), (5) and (6), which implies

P{mn(X) ≤ z,X ∈ [−ln, ln]d} ≥ P{m(X) ≤ z,X ∈ [−ln, ln]d},

we get

Var
{
I{m(X

(IS)
n )≤Zn}

· Ḡn(Zn)
∣∣Zn = z

}
= Ḡn(z)2 ·

(
E{I{m(X

(IS)
n )≤z}|Zn = z} −

(
E{I{m(X

(IS)
n )≤z}|Zn = z}

)2)
= Ḡn(z) ·

(
P{m(X) ≤ z,X ∈ [−ln, ln]d}+ P

{
X /∈ [−ln, ln]d

})
−
(
P{m(X) ≤ z,X ∈ [−ln, ln]d}+ P

{
X /∈ [−ln, ln]d

})2
=
(
P{mn(X) ≤ z,X ∈ [−ln, ln]d} −P{m(X) ≤ z,X ∈ [−ln, ln]d}

)
·
(
P{m(X) ≤ z,X ∈ [−ln, ln]d}+ P

{
X /∈ [−ln, ln]d

})
≤ P{mn(X) ≤ z,X ∈ [−ln, ln]d} −P{m(X) ≤ z,X ∈ [−ln, ln]d}

≤ P{m(X) ≤ z + 2 · logp+1(n) · n−p/d, X ∈ [−ln, ln]d} −P{m(X) ≤ z,X ∈ [−ln, ln]d}

=

∫
[−ln,ln]d

(
I{m(x)≤z+2·logp+1(n)·n−p/d} − I{m(x)≤z}

)
PX(dx)

≤ G(z + 2 · logp+1(n) · n−p/d)−G(z)

≤ c2 · logp+1(n) · n−p/d,

where we have used in the last inequality that G has a bounded density. This implies (13).

In the third step of the proof we show

Zn → qα a.s. (14)

By construction Xn,1, . . . , Xn,n are independent of X
(IS)
n and Zn which implies

E

{
I{m(X

(IS)
n )≤Zn}

·
(
G̃n(Zn)− Ḡn(Zn)

) ∣∣∣∣Fn−1} = 0

and

Var

{
I{m(X

(IS)
n )≤Zn}

·
(
G̃n(Zn)− Ḡn(Zn)

) ∣∣∣∣Fn−1} ≤ E

{(
G̃n(Zn)− Ḡn(Zn)

)2 ∣∣∣∣Fn−1} ≤ 1

n
.

(15)

According to this and (11) and (13), the random variable Vn in (10) satisfies

|E{Vn|Fn−1}| ≤
c3
n

(16)
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and

E
{
V 2
n |Fn−1

}
≤ (E{Vn|Fn−1})2 + Var{Vn|Fn−1}

≤ c23
n2

+ 2 ·Var

{
I{m(X

(IS)
n )≤Zn}

· Ḡn(Zn)

∣∣∣∣Fn−1}
+2 ·Var

{
I{m(X

(IS)
n )≤Zn}

·
(
G̃n(Zn)− Ḡn(Zn)

) ∣∣∣∣Fn−1}
≤ c23

n2
+ 2 · c2 · logp+1(n) · n−p/d +

2

n

≤ c4 · logp+1(n) · n−p/d, (17)

since p ≤ d. By a theorem of Gladyshev (1965) on the Robbins-Monro algorithm (see, e.g., Ljung,

Pflug and Walk (1982), p. 8, Theorem 1.9, applied with some random Hn satisfying |Hn| ≤ c/n)

one immediately obtains (14).

Choose ε > 0 such that

G(z)−G(qα)

z − qα
> g(qα)/2 > 0 whenever |z − qα| < ε

and let BN be the event that |Zn − qα| < ε for all n ≥ N . In the fourth step of the proof we show

that the assertion of Theorem 1 follows from step 3 and

log−6−p(n) · n1+p/d ·E
{
|Zn − qα|2 · IBN

}
→ 0 (n→∞) (18)

for all sufficiently large N ∈ N. Because of (14) we have P(BN )→ 1 (N →∞), consequently the

assertion of Theorem 1 is implied by

P
{
|Zn − qα| > c5 · log3+p/2(n) · n−1/2−p/(2d) and BN holds

}
→ 0 (n→∞)

for all N ∈ N. By the Markov inequality this in turn follows from (18).

In the fifth step of the proof we show that |Zn − qα| < ε implies

E
{
|Zn+1 − qα|2

∣∣Fn−1} ≤ (1− c6 ·
Dn

n

)
|Zn − qα|2 + c7 ·

D2
n

n2
· logp+1(n) · n−p/d (19)

for some constants c6, c7 > 0 and n sufficiently large. From (10) we get

Zn+1 − qα =

(
1− Dn

n
·An

)
· (Zn − qα) +

Dn

n
· Vn

where

An =
G(Zn)−G(qα)

Zn − qα
and Vn = G(Zn)− I{m(X

(IS)
n )≤Zn}

· G̃n(Zn). Here Zn and An are Fn−1 measurable. Using 2 ·a · b ≤

8



a2/δ + b2 · δ for a, b ∈ R and δ > 0 this implies in case |Zn − qα| < ε

E
{
|Zn+1 − qα|2

∣∣Fn−1}
=

(
1− Dn

n
·An

)2

|Zn − qα|2 +
D2
n

n2
·E
{
V 2
n

∣∣Fn−1}
+2 ·

(
1− Dn

n
·An

)
· (Zn − qα) · Dn

n
·E{Vn|Fn−1}

≤
(

1− Dn

n
·An

)2(
1 +

Dn ·An
n

)
|Zn − qα|2 +

D2
n

n2
·E
{
V 2
n

∣∣Fn−1}
+

n

Dn ·An
· D

2
n

n2
·
(
E
{
Vn
∣∣Fn−1})2 .

If |Zn − qα| < ε then we have An > g(qα)/2 = c6 > 0. This together with (16) and (17) and the

uniform boundedness of An (which is a consequence of the boundedness of the density g of G)

imply (19).

In the sixth (and final) step of the proof we finish the proof by showing (18). Let BN,n be

the event that |Zk − qα| < ε for all N ≤ k ≤ n. Because of IBN ≤ IBN,n−1
≤ IBN,n−2

and the

Fn−2-measurability of IBN,n−1
we can conclude from step 5 for sufficiently large n

E
{
|Zn − qα|2 · IBN

}
≤ E

{
|Zn − qα|2 · IBN,n−1

}
≤ E

{
E
{
|Zn − qα|2|Fn−2

}
· IBN,n−1

}
≤
(

1− c6 ·
log2(n− 1)

n− 1

)
E
{
|Zn−1 − qα|2 · IBN,n−2

}
+ c7 · logp+5(n− 1) · (n− 1)−2−p/d.

An iterative application of this argument yields for any sufficiently large N ∈ N and dn/2e > N

E
{
|Zn − qα|2 · IBN

}
≤

n−1∑
k=dn/2e+1

c7 · logp+5(k) · k−2−p/d
n−1∏
l=k+1

(
1− c6 ·

log2(l)

l

)
+ ε2 ·

n−1∏
l=dn/2e+1

(
1− c6 ·

log2(l)

l

)
≤ c8 · logp+5(n) · n−1−p/d + ε2 · exp

(
−c9 · log2(dn/2e)

)
.

The proof is complete. �
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2008-006 Kohler, M.; Krzyżak, A.; Walk, H.: Upper bounds for Bermudan options on

Markovian data using nonparametric regression and a reduced number of nested
Monte Carlo steps
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