
Universität
Stuttgart

Fachbereich
Mathematik

Multirate time integration for coupled
saturated/unsaturated porous medium

and free flow systems
Iryna Rybak, Jim Magiera, Rainer Helmig, Christian Rohde

Preprint 2014/016



Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de

WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

c© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle

mailto:preprints@mathematik.uni-stuttgart.de
http://www.mathematik.uni-stuttgart.de/preprints


Multirate time integration for coupled

saturated/unsaturated porous medium and

free flow systems

Iryna Rybak, a,∗ Jim Magiera, a Rainer Helmig, b

Christian Rohde a

aInstitute of Applied Analysis and Numerical Simulation, University of Stuttgart,
Stuttgart, Germany

bInstitute for Modelling Hydraulic and Environmental Systems, University of
Stuttgart, Stuttgart, Germany

Abstract

A multiple-time-step scheme is developed for solving coupled single-phase free
flow and two-fluid-phase porous medium problems. The Stokes equations are ap-
plied in the free flow domain, while the Richards equation is used to model satu-
rated/unsaturated porous medium systems. These two flow problems are coupled at
the fluid-porous interface via an appropriate set of interface conditions. Numerical
simulation results are presented for a model problem and a realistic setting that
demonstrate the convergence and efficiency of the proposed computational algo-
rithm. Time-splitting multistep methods can be successfully applied for modeling
other physical systems where the processes evolve on different time scales, and these
potential extensions are discussed.
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1 Introduction

Coupled unsaturated porous medium and free flow systems appear routinely
in environmental settings such as evaporation from soil influenced by wind,
overland flow interactions with groundwater aquifers, salt precipitation in dry-
ing porous media, surface water and groundwater contamination. These flow
systems contain different sets of entities (pure fluid in the free flow domain,
fluids and solid in the porous medium region) that require a separate model
for each flow system and an accurate coupling of these models at the interface
between the systems [24]. In addition, physical processes in these systems often
evolve on different scales in time (fluid velocity in the free flow region is usu-
ally much higher than the velocity of fluids through porous media). This fact
should be taken into account while developing effective numerical algorithms
for solving such coupled problems.

In the free flow domain, the (Navier–)Stokes equations are usually applied
to describe momentum conservation, while Darcy’s law is considered as an
approximation of momentum conservation in the porous medium. To couple
these flow systems, in addition to mass conservation and balance of normal
forces across the fluid-porous interface, the Beavers–Joseph velocity jump con-
dition [1] is often considered. This condition provides the connection between
the free flow velocity and the porous medium velocity tangential to the inter-
face. Other interface conditions are possible [18].

Mathematical models and numerical algorithms for solving such coupled flow
problems have been developed and analyzed during the last decade mainly
for stationary single-fluid-phase systems [8, 9, 20] that describe steady-state
interactions between the free flow and saturated porous media. The mod-
els usually contain coupled stationary Stokes/Darcy or Navier–Stokes/Darcy
equations. Recent advances in numerical methods for coupled non-stationary
single-phase Stokes/Darcy systems are presented in [4, 5, 13, 14, 17, 27], where
the same time step is applied in both flow domains. A new coupling concept
for a compositional single-phase free flow and compositional two-fluid-phase
porous medium systems is proposed in [16], where the non-stationary problem
is solved using the monolithic approach.

To solve coupled multiphysics problems effectively, partitioning schemes are
often applied. Decoupled algorithms for steady-state, single-phase free and
porous medium flow problems are based on iterative domain decomposition
methods [3,8,9], while for non-stationary flow problems non-iterative splitting
schemes are usually applied [6,13,14]. For many applications the fluid velocity
in the free flow region is much higher than that through the porous medium. In
this case, it is reasonable to apply a multiple-time-step technique: to compute
fast/slow solutions using a small/large time step.
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First results on multistep methods for single-phase Stokes/Darcy problem are
presented in [23], where a decoupled scheme is proposed and the stability of
the numerical algorithm for a finite time interval is proved. However, the con-
sidered scheme is not mass conservative across the interface. In [21], a mass
conservative multiple-time-step algorithm for the Stokes/Darcy system is de-
veloped and the long time stability of the numerical method is proved. Several
partitioning schemes for non-stationary single-fluid-phase Stokes/Darcy prob-
lems are compared in [22].

A wide range of applications, such as river or lake interactions with the vadose
zone, evaporation from soil systems influenced by wind, and precipitation of
salts in drying porous media, requires multiphase physics in the subsurface.
In this case, the porous medium model typically includes multiphase Darcy’s
law or Richards’ equation. Multiphase Darcy’s law represents flows of several
fluids while Richards’ equation [19] describes movement of only water through
saturated/unsaturated porous media. The latter case is however sufficient to
adequately describe many of the applications.

Coupling of subsurface flows described by Richards’ equation and overland
flows has been studied intensively in the last decade. There are several pos-
sible models for the surface flows, starting from the Navier–Stokes equations
and ending with considering source terms at the fluid-porous interface that
represent, e.g., the rainfall rate and play a role of boundary conditions for the
subsurface flow model. Coupling shallow water equations and Richards’ equa-
tion is considered in [7]. More simple models such as a kinematic wave equation
or a diffusion wave approximation of the Saint–Venant equation [12, 26], or
even ODE for modeling surface runoff [2] coupled with the Richards equation
are investigated.

A multiple-time-stepping scheme for coupled kinematic wave equation and
Richards’ equation is proposed in [25]. Up to our knowledge, there are no re-
sults available in the literature for coupling the Stokes and Richards equations.
Therefore, the main objective of the present work is to develop a multistep
splitting scheme for the Stokes/Richards problem to efficiently simulate over-
land flow interactions with saturated/unsaturated groundwater flows.

The paper is organized as follows. The flow system of interest, the flow mod-
els, and the corresponding interface conditions are described in section 2. The
decoupled multiple-time-step scheme is presented in section 3. The numerical
simulation results that include the convergence study of the proposed method
and demonstrate the advantage of the multirate time integration for model-
ing such multiphysical systems are presented in section 4. Finally, possible
extensions of this work are discussed.
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2 Flow system description

The system of interest contains a free flow domain Ωff filled with a single fluid
phase (water) and a porous medium Ωpm composed of two fluid phases (air,
water) and a solid phase (Fig. 1). The flow regions are separated by a sharp
interface Γ which cannot store and transfer mass, momentum, and energy [10].

porous medium

free flow

interface conditions

Ωpm

Ωff

Γ

n

−solid phase

−water phase

−gas phase

Fig. 1. Schematic representation of the coupled single-phase free flow and two-flu-
id-phase porous medium systems.

We deal with isothermal processes and assume that the fluids are incompress-
ible and the solid is rigid. The primary application of interest in this work is
infiltration of water into an unsaturated soil system.

2.1 Free flow model

The mass conservation equation for incompressible fluids reads

∇·v = 0 in Ωff × (0, T ], (1)

where v is the fluid velocity, and T > 0 is the final time.

Considering laminar flows and neglecting the inertial term, the momentum
balance reduces to the Stokes equations

ρ
∂v

∂t
−∇·T(v, p)− ρg = 0 in Ωff × (0, T ], (2)

where ρ is the fluid density, T(v, p) = 2µD (v) − pI is the stress tensor, µ

is the dynamic viscosity, p is the fluid pressure, D (v) =
1

2

(
∇v + (∇v)

T)
is

the rate of strain tensor, I is the identity tensor, and g is the gravitational
acceleration. Further, we will define fff := ρg, and move it to the right-hand
side.
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The model problem (1)–(2) is subject to the initial data

v(x, 0) = v0(x) in Ωff , (3)

the interface conditions on Γ, which will be specified later on, and the bound-
ary conditions at the external boundary ∂Ωff \ Γ of the free flow domain

v = vD on ∂Ωff,D × (0, T ],

T (v, p) ·n = vN on ∂Ωff,N × (0, T ],
(4)

where ∂Ωff,D is the part of the external boundary with Dirichlet boundary
conditions, and ∂Ωff,N is the part of the boundary with Neumann boundary
conditions such that ∂Ωff = ∂Ωff,D ∪ ∂Ωff,N ∪Γ. The primary variables for the
free flow model are v and p.

2.2 Porous medium model

Due to differences in the properties between air and water, it is possible to
simplify the general two-fluid-phase porous medium equations. Air is much
more mobile than water, and thus can move easily with a very small pressure
gradient which can be neglected. This is the basis for the Richards assumption.
Therefore, many unsaturated porous medium systems can be described by the
Richards equation, which is a combination of the mass conservation equation
for the water phase

φ
∂Sw
∂t

+∇·vw = fpm in Ωpm × (0, T ], (5)

and the generalized Darcy’s law

vw = −Kkrw
µw

(∇pw − ρwg) in Ωpm × (0, T ]. (6)

Here vw is the velocity of water through porous media, φ is the porosity,
Sw is the water-phase saturation, K is the intrinsic permeability tensor, krw =
kr(Sw) is the relative permeability which is a given function of the water-phase
saturation, pw is the pressure of the water phase, µw is the dynamic viscosity,
ρw is the density of water, and fpm is the source/sink term.

The air-phase pressure pa is assumed to be equal to the atmospheric pressure.
We will use a reference pressure equal to the atmospheric pressure such that
pa = 0. Therefore, the capillary pressure pc, which is also a known function of
the water-phase saturation, becomes equal to the opposite of the water-phase
pressure, pc(Sw) = pa−pw = −pw. The primary variable of the porous medium
model is the water-phase pressure. Since we model the properties of the water
phase only, the subscript w will be omitted for convenience.
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Substitution of Darcy’s law (6) into the mass conservation equation (5) yields
the pressure based formulation which is the Richards equation

φ
∂S

∂t
−∇·

(
Kkr
µ

(∇p− ρg)

)
= 0 in Ωpm × (0, T ]. (7)

Equation (7) is nonlinear due to the relationships between pressure and sat-
uration, p = −pc(S), and between relative permeability and saturation, kr =
kr(S). In the saturated zone, we have S = 1 and kr = 1. Therefore, in this
region, Ωpm,sat ⊂ Ωpm, equation (7) reduces to the steady-state single-phase
porous medium model

−∇·
(
K

µ
(∇p− ρg)

)
= 0 in Ωpm,sat × (0, T ]. (8)

The general porous medium model (7) has to be supplemented by the appro-
priate set of the initial conditions

p(x, 0) = p0(x) in Ωpm, (9)

the interface conditions on Γ, which will be described in the next section,
and the boundary conditions on the external boundary of the porous medium
domain

p = pD on ∂Ωpm,D × (0, T ],

v·n = pN on ∂Ωpm,N × (0, T ],
(10)

where ∂Ωpm = ∂Ωpm,D ∪ ∂Ωpm,N ∪ Γ.

2.3 Interface conditions

In addition to the boundary conditions prescribed on the external boundary
of the coupled domain, interface conditions have to be defined on the fluid-
porous interface Γ. The superscripts ff and pm determine the free flow and
the porous medium quantities, respectively.

The conservation of mass across the interface requires the mass flux leaving the
free flow domain to be equal to the mass flux entering the porous medium.
Since only the water-phase dynamics is modeled in the subsurface, we can
write

[v·n]ff = − [v·n]pm on Γ× (0, T ], (11)

where n is the unit normal vector outward from the free flow domain at the
interface (Fig. 1) such that nff = n, and npm = −n.

The normal stress for Newtonian fluids at the interface from the free flow side
is given by [n·T (v, p) ·n]ff = [n· (2µD (v)− pI) ·n]ff . In the porous medium,
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slow flow is assumed and Darcy’s law is used, thus viscous stress is not treated
explicitly, it is already accounted for in the permeability. Therefore, pressure
is the only force acting on the interface that has to be taken into account from
the porous medium domain [n·T (v, p) ·n]pm = −ppm. Under the assumption
of a rigid solid, the normal stress of the solid phase at the interface can be
considered as opposite to the water-phase pressure. We also assume that the
normal stress for the air phase at the interface is opposite to the water-phase
pressure. Therefore, the balance of normal forces across the interface can be
formulated as

[n·T (v, p) ·n]ff = −ppm on Γ× (0, T ]. (12)

The Beavers–Joseph–Saffman interface condition [1] for the tangential com-
ponents of the free flow velocity is given by

[
v·τ i +

2
√
K

αBJ

n·D (v) ·τ i
]ff

= 0, i = 1, ..., d− 1, (13)

on Γ × (0, T ], where αBJ > 0 is the Beavers–Joseph parameter, τ is the unit
vector tangential to the interface, and d is the number of space dimensions.

3 Numerical scheme

For solving multiphysics problems, where the processes evolve on different
time scales, application of decoupled schemes with different time steps in the
subdomains pays off. For the majority of applications, the free flow velocity
is much higher than the fluid velocity through a porous medium. Therefore,
it is efficient to compute the fast (free flow) solutions on a fine mesh in time
and the slow (porous medium) solutions on a coarse mesh in time.

Different decoupled algorithms can be developed: the free flow problem is
solved first at the coarse time interval and after that the porous medium
problem is computed (Fig. 2) or vice versa. Coupling mechanisms at the com-
mon time levels tmk (Fig. 2) can also be different, e.g., the last value computed
on the fine mesh is transferred to the slow process or an average of the fast
solution over the coarse time interval is considered. Different time partition-
ing schemes for the Stokes/Darcy problem are considered in [21–23]. In this
work, we study the algorithm schematically presented in Fig. 2 to solve the
Stokes/Richards problem.

7



3.1 Time splitting

We introduce two grids in time: the fine grid with a small step ∆t > 0 on
which the free flow solutions are computed {tm = m∆t, m = 0, . . . ,Mr}, and
the coarse grid {tmk = k∆T, k = 0, . . . ,M} for the porous medium solutions,
where ∆T = r∆t, and r > 0 is the ratio between the fine and coarse time
steps. The flow problems are coupled at the coarse time levels tmk (Fig. 2).

v, p
tm0 tm1

. . . tmM

1

...
∆t 5

...

p̃, S
tm0 tm1

. . . tmM

2

∆T

3

4

Fig. 2. Decoupled multiple-time-step scheme (free flow - top, porous medium - bot-
tom).

For convenience we redefine the water-phase pressure in the porous medium as
p̃ and denote discrete analogues of the primary variables in two flow domains
as vmh , pmh , and p̃mkh . We introduce the space discretization operators Dff and
Aff for the free flow equations (1) and (2), respectively, and the operator
Apm for the porous medium problem (7). The operator Affpm discretizes the
coupling conditions (12)–(13) which serve as boundary conditions for the free
flow domain, and the operator Apmff stands for the interface condition (11)
which is used as the boundary condition for the porous medium region.

Algorithm 1 (Multistep Stokes/Richards scheme)

for k = 0 to M − 1 do

for m = mk to mk+1 − 1 do

ρ
vm+1
h − vmh

∆t
+ Aff

(
vm+1
h , pm+1

h

)
+ Affpm

(
vm+1
h , pm+1

h , p̃mkh
)

= fm+1
ff

Dff

(
vm+1
h

)
= 0

end for

φ
S
(
p̃
mk+1

h

)
− S (p̃mkh )

∆T
+ Apm

(
p̃
mk+1

h

)
+ Apmff

(
v
mk+1

h , p̃
mk+1

h

)
= fmk+1

pm

end for

The definition of the space discretization operators can be found in section 3.2.
In both flow domains, the implicit Euler schemes are applied. The decoupled
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multistep Stokes/Richards algorithm schematically presented in Fig. 2 can be
formulated using the above notations as follows.

3.2 Space discretization

The finite volume method on staggered grids [28] is considered as the space
discretization in both flow domains. Such a choice allows to avoid spurious os-
cillations in the free flow domain without applying any stabilization technique.
The computational domains Ωff and Ωpm are partitioned into equal blocks of
size hx×hy (Fig. 3, dashed lines), and the grids are conforming at the interface
Γ. The fluid pressures are computed in the centers of the blocks (xi, yj), where
xi = (i + 0.5)hx, yj = (j + 0.5)hy, i = 0, . . . , Nx, j = 0, . . . , Ny. In addition,
the porous medium pressure is computed at the fluid-porous interface and at
the external boundary of the porous medium domain.

i− 1 i i+ 1

j

j − 1

boundary

boundary

b
ou

n
d
ar
y

b
ou

n
d
ar
y

b
ou

n
d
ar
y

b
ou

n
d
ar
y

interface

− pressure p

− velocity u

− velocity v

− pressure p̃

− boundary u

− boundary v

− boundary p̃

hx

hy

Fig. 3. Staggered grid in the coupled domain (free flow - top, porous medium -
bottom).

The fluid velocities v = (u, v) are computed in the centers of the block faces
and additionally at the interface and the external boundary. As a consequence,
different control volumes are considered for different variables (staggered grid,
Fig. 3). In the porous medium domain, velocities are not the primary variables,
and thus are computed at the post-processing stage.
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3.2.1 Free flow discretization

For completeness of the discrete problem formulation, we briefly describe the
discretization schemes in both flow domains and the coupling at the fluid-
porous interface. For simplicity of notation, we omit the time levels for the
space discretization operators and mark the grid nodes according to Fig. 4,
where P is the center of the corresponding control volume.

P

s

n

w e

N

S

P
W E

N

S

ew

ne

se

nw

sw

n

s

P
W E

N

S

ew

s

n ne

se

nw

sw

Fig. 4. Control volumes for the free flow primary variables: p (left), u (middle), and
v (right).

Integrating the mass balance equation (1) over the corresponding control vol-
ume (Fig. 4, left), we get

(ue − uw)hy + (vn − vs)hx = 0, (14)

and the discrete divergence operator Dff is defined as

Dff (vh) = (ue − uw) /hx + (vn − vs) /hy.

The space approximation Aff (vh, ph) of the momentum balance equation (2)
contains the horizontal component Au

ff and the vertical component Av
ff . The

horizontal component can be written for the corresponding inner control vol-
ume (Fig. 4, middle) as follows

Au
ff =

(
F u
x,e − F u

x,w

)
/hx +

(
F u
y,n − F u

y,s

)
/hy, (15)

where the momentum fluxes are defined as

F u
x,e = pe − 2µe

uE − uP
hx

, F u
x,w = pw − 2µw

uP − uW
hx

,

F u
y,n = −µn

(
uN − uP

hy
+
vne − vnw

hx

)
, F u

y,s = −µs
(
uP − uS
hy

+
vse − vsw

hx

)
.

When the control volume lies on the left or right boundary and Neumann
boundary conditions are prescribed there, the integration is performed over
the half volume and the given flux enters the right-hand side of the resulting
system of linear equations. In case of Dirichlet boundary conditions on the
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left/right boundary, the corresponding velocity values are incorporated into
the right-hand side of the resulting system of linear equations. For control
volumes lying on the top boundary or at the interface, one-sided differences
with half-step size are applied to approximate the corresponding fluxes, e.g.,

F u
y,n = −µn

(
un − uP

0.5hy
+
vne − vnw

hx

)
.

In the same way we obtain the space approximation for the vertical component
of the momentum conservation in the corresponding control volume (Fig. 4,
right):

Av
ff =

(
F v
x,e − F v

x,w

)
/hx +

(
F v
y,n − F v

y,s

)
/hy, (16)

where the fluxes across the finite volume edges are defined for the inner control
volumes as

F v
x,e = −µe

(
une − use

hy
+
vE − vP
hx

)
, F v

x,w = −µw
(
unw − usw

hy
+
vP − vW

hx

)
,

F v
y,n = pn − 2µn

vN − vP
hy

, F v
y,s = ps − 2µs

vP − vS
hy

.

Control volumes on the top boundary and interface are half smaller than the
inner control volumes and are treated accordingly.

The finite volume scheme based on discretizations (14)–(16) is locally mass
conservative and does not require any stabilization for the pressure. The ap-
proximation is of second order in space for inner control volumes, and second
or first order near the boundary depending on the boundary conditions. How-
ever, due to smaller space steps for the boundary control volumes the error in
the latter case is reduced. More details on space discretizations can be found
in [28, chap. 6.2–6.3].

3.2.2 Porous medium discretization

In the porous medium domain, the pressure is the primary variable. The space
discretization operator Apm for inner control volumes is defined as

Apm (p̃h) = (ũe − ũw) /hx + (ṽn − ṽs) /hy, (17)

where the velocities are approximated at the cell boundaries by the central
differences, and the upwind scheme is applied for the gravity-driven advection
terms

ũe = −kxx,e
µe

krel (S (p̃P )) + krel (S (p̃E))

2

p̃E − p̃P
hx

,

ũw = −kxx,w
µw

krel (S (p̃P )) + krel (S (p̃W ))

2

p̃P − p̃W
hx

,
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ṽn = −kyy,n
µn

krel (S (p̃N)) + krel (S (p̃P ))

2

p̃N − p̃P
hy

− kyy,nkrel (S (p̃N))

µn
ρng,

ṽs = −kyy,s
µs

krel (S (p̃P )) + krel (S (p̃S))

2

p̃P − p̃S
hy

− kyy,skrel (S (p̃P ))

µs
ρsg.

Here, the intrinsic permeability tensor is assumed to be diagonal K = diag (kxx, kyy),
and the grid nodes are chosen according to Fig. 5.

P

s

n

w e

N

S

EW

Fig. 5. Control volume for the porous medium pressure p̃.

Due to the functional dependencies between the pressure and saturation, and
between the relative permeability and saturation, the porous medium problem
is nonlinear. The Newton method is applied to solve it.

Let I be the index set of all degrees of freedom for the subsurface domain. At
each time level tmk+1

, the following nonlinear system of equations

F (p̃mk+1 , p̃mk) = 0 (18)

is solved for the given p̃mk , where

F (p̃mk+1 , p̃mk) = [Fij (p̃mk+1 , p̃mk)]ij∈I ,

and for each inner node

Fij := φ
S
(
p̃
mk+1

P

)
− S (p̃mkP )

∆T
+
ũmk+1
e − ũmk+1

w

hx
+
ṽmk+1
n − ṽmk+1

s

hy
.

The time step ∆T is regulated adaptively according to the number of the
Newton iterations.

On the boundary, we distinguish between the Dirichlet boundary nodes

Fij := pP − pD(xP ),

and the Neumann boundary nodes

Fij := v (pP , pQ) ·n− pN(xP ),
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where xQ are the coordinates of the point Q ∈ I, and v (pP , pQ) is an approx-
imation of the fluid velocity at the node P using neighbouring nodes Q.

The nonlinear system (18) is solved by a Jacobian-explicit Newton scheme
using the NOX package of the Trilinos framework [11]. For the resulting system
of linear equations the direct solver SuperLU [15] is applied.

3.2.3 Coupling of flow domains

The mass conservation across Γ given by the interface condition (11) is ap-
proximated as

vP = −kyy,Pkrel (S (p̃P ))

µP

[
p̃s − p̃P
0.5hy

+ ρPg

]
, (19)

where the stencil of the scheme is presented in Fig. 6.

Discretization of the balance of normal forces (12) is written in the following
way

pn − 2µn
vN − vP
hy

= p̃P . (20)

The Beavers–Joseph condition (13) is approximated as

uw +

√
kxx
αBJ

(
unw − uw

0.5hy
+
vP − vW

hx

)
= 0. (21)

The flow systems are not coupled at the two corner points where the inter-
face meets the boundary (nodes BC, Fig. 6). At these nodes, the boundary
conditions are specified.

Γ
BCBC

i− 1 i i+ 1

Ωff

Ωpm

nw n

wW

N

P

s

Fig. 6. Grid nodes for the interface conditions.
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4 Numerical simulations

In this section, we present numerical simulation results for two problems.
First, we test the algorithm for a model problem where the exact solutions in
both flow domains are chosen such that the interface conditions are satisfied,
and the relationships between the relative permeability and saturation, and
between the capillary pressure and saturation are reasonable. We perform
the numerical convergence study of the splitting algorithm and evaluate the
speedup of computations for different ratios between the time steps. Then, we
study the effectivity of the numerical scheme for a realistic example.

4.1 Model problem

We consider the flow domains Ωff = [0, 1] × [1, 2] and Ωpm = [0, 1] × [0, 1]
with the interface Γ = (0, 1) × {1}, and choose the model parameters φ = 1,
ρ = 1, µ = 1, αBJ = 1, K = I, g = 0. We apply the following relationships
between the relative permeability and saturation kr(S) = S2, and between
the capillary pressure and saturation pc(S) = −S. The exact solution which
satisfies the interface conditions (11)-(13) is chosen as follows

u(x, y, t) = − cos (πx) sin (πy) exp(t),

v(x, y, t) = sin (πx) cos (πy) exp(t),

p(x, y, t) = sin
1
3 (πx) y2 exp(t),

p̃(x, y, t) = sin
1
3 (πx) y exp(t).

(22)

The right-hand sides and the corresponding initial and boundary conditions
are defined by substitution of the parameters and the exact solution (22) into
the problem formulation (1)-(10). We consider Dirichlet boundary conditions
at the external boundary of the domain.

For the computations we apply the decoupled scheme described in Algorithm 1
with the same time steps in both subdomains (r = 1) and with a larger time
step in the porous medium using different ratios r between the time steps. We
consider five levels of grid refinement starting from hx = hy = h = 0.2 and
∆t = 0.04 and decreasing the space step by a factor of two and time step by
a factor of four. For all the primary variables we compute the relative errors
εf = ‖f − fh‖L2 / ‖f‖L2 , where f ∈ {u, v, p, p̃}.

The numerical simulation results are presented in Fig. 7 for the free flow and
porous medium solutions. These results demonstrate second order convergence
in space and first order in time for different ratios r between the time steps
applied in Algorithm 1. The multiple-time-step schemes (r = 5 and r = 10) are
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slightly less accurate in comparison with that of the single-time-step algorithm
(r = 1) due to larger time steps used in the porous medium domain (∆T =
r∆t). However, the errors are of the same order of magnitude, and all the
schemes exhibit the same convergence order in space and time. In addition,
the multirate schemes are much faster.
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Fig. 7. Error analysis for Algorithm 1 (free flow and porous medium solutions), time
step ratio 1 : r.

To demonstrate the advantage of the multirate time integration, we run simu-
lations using Algorithm 1 for T = 1 and compare computational times needed
for solving the coupled flow problem applying different ratios between the
time steps in the free flow and porous medium domains. For the numerical
simulations we consider hx = hy = h = 2.5 · 10−2 and ∆t = 6.25 · 10−4. The
preassigned tolerance for the Newton method is taken εtol = 10−10.

In Table 1, we present the CPU times spent on solving the coupled flow prob-
lem for different ratios r, and determine the speedup of the computations.

Speedup =
CPU time for r = i

CPU time for r = 1
, i = 1, 2, 5, 10, 20, 30.
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Ratio r 1 2 5 10 20 30

CPU time, [s] 150.2 77.1 36.7 21.2 11.8 8.6

Speedup 1 1.9 4.1 7.1 12.7 17.5
Table 1
Speedup of Algorithm 1 for different time step ratios (model problem).

The results presented in Table 1 demonstrate the effectivity of applying the
multirate time-splitting scheme given in Algorithm 1 for solving the coupled
flow problem (1)–(10).

4.2 Realistic example

Consider Ωff = [0, 4m] × [1, 2m], Ωpm = [0, 4m] × [0, 1m], and Γ = (0, 4m) ×
{1m}. The fluid is water with density ρ = 103 [kg/m3] and dynamic viscosity
µ = 8.9 × 10−4 [Pa s]. The soil is isotropic with permeability kxx = kyy =
5 ·10−8 [m2] and porosity φ = 0.38. The Beavers–Joseph coefficient is αBJ = 1.
Gravitational effects are neglected g = (0, 0).
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Fig. 8. Initial and boundary conditions for the realistic setup.

We consider the Brooks–Corey relative permeability-saturation relationship

kr(S) = S
3+ 2

λ
e , and the relationship between the effective saturation Se and

pressure

Se(p) =





(
p
pd

)−λ
, p ≤ pd,

1, p > pd,

where the entry pressure is taken pd = −0.0136 [Pa], and the Brooks–Corey
parameter λ = 1.09. The saturation is computed as

S(p) = (Swm − Swr)Se(p) + Swr,

with the residual water-phase saturation Swr = 0.21, and the maximum satu-
ration Swm = 0.95.
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The initial and boundary conditions are described in Fig. 8. The inflow con-
dition at the part of the left boundary of the free flow region ∂Ωin

ff = {0} ×
(1.3, 1.7m) reads u = 0.075 arctan(2πt) × cos(π

4
)(y − 1

2
) [m/s], v = 0, and

the outflow condition at the right boundary of the free flow domain ∂Ωout
ff =

{4} × (1, 2m) is given by ∂v/∂n = 0. At the remaining boundary of the free

flow domain ∂Ωff \
(
∂Ωin

ff ∪ ∂Ωout
ff ∪ Γ

)
, zero fluid velocity v = (0, 0) is pre-

scribed. At the left and right boundaries of the porous medium domain the
no-flow conditions ∂p̃/∂n = 0 are considered, and at the bottom boundary
the pressure is specified as p = 3pd. The initial free flow velocity is chosen to
be zero, and the initial porous medium pressure is p0 = 3pd, which means that
the porous medium is initially not fully saturated.

The porous medium is assumed to be fully saturated when the water-phase
saturation becomes S ≥ 0.95. Therefore, when this value is exceeded, only
the water is considered to be present in the system, and instead of solving
the non-stationary nonlinear equation (7), the stationary linear equation (8)
is solved. These phase changes are dealt with inside the Newton loop and are
updated in each iteration.

We choose h = 0.04, ∆t = 10−4, and r = 5. The time step is changing adap-
tively, depending on the convergence of the solver in the free flow domain and
the number of the Newton iterations in the porous medium. When the residual
of the free flow solution exceeds εtol = 10−10, or the number of the Newton
steps in the porous medium region exceeds Ntol = 20, then the time step
is reduced ∆tnew := 0.9∆t. When both solvers demonstrate fast convergence
behaviour, the time step is increased ∆tnew := 1.02∆t.

We plot the fluid velocity u in the free flow region (Fig. 9, upper subdomains)
and the water-phase saturation S in the porous medium (Fig. 9, lower sub-
domains) at different times. Initially, the soil is saturated with 43% of water.
In the beginning, mainly the inflow of water from the free flow region into
the porous medium is observed (Fig. 9, top, middle). Then, when the upper
layers of the soil system are fully saturated, the free fluid mainly flows out of
the domain, and more and more porous medium layers become fully saturated
(Fig. 9, bottom).

In Table 2, we present the time measurements and evaluate the efficiency of
the decoupled algorithm. The results demonstrate the essential speedup of
the multiple time-step scheme (Algorithm 1) applied for modeling realistic
applications with phase changes.

Ratio r 1 2 5 10 20 30

CPU time, [s] 3838 2087 932 530 511 396

Speedup 1 1.84 4.12 7.24 7.51 9.69
Table 2
Speedup of Algorithm 1 for different time step ratios (realistic example).
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Fig. 9. Free flow velocity u and water-phase saturation S at t = 0.5 s (top), t = 2 s
(middle), and t = 5 s (bottom).

In Fig.10, we present the computational times spent on solving the coupled
flow problem (red line), and the times spent on solving the Stokes equations
(blue line) and the Richards equation (green line) separately for different ratios
r. The total time needed to solve the free flow problem is reduced due to reuse
of the factorizations at each coarse time interval.
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Fig. 10. Computational time reduction for different ratios r.

5 Discussion and conclusions

Due to increasing interest to simulations of interactions between the free flow
and porous medium systems, the model formulations and numerical methods
for their solution are of major importance. While the governing equations
for the individual domains have been widely investigated, a challenge arises in
accurate coupling of these flow models and development of efficient algorithms
to solve these coupled problems.

For many environmental and industrial applications the physical processes in
two subdomains evolve on different time scales. Therefore, the application of
time-splitting schemes using different time steps (small step for fast solutions
and large step for slow solutions) is an efficient alternative to conventional
time-splitting methods typically used to solve such problems.

In this paper, we have coupled the Stokes equations and the Richards equation
to describe fluid flow in the coupled free flow and variably saturated porous
medium systems, and proposed a multiple-time-step scheme for efficient solu-
tion of such problems. Numerical simulations provided for the model problem
with known analytical solution and for the realistic application demonstrate
the convergence of the method and its efficiency.

Many extensions to the present work are possible: analysis of the time-splitting
algorithm, development of different time-partitioning methods, considering
higher order schemes, etc. From the modeling point of view, the full two-fluid-
phase porous medium equations can be coupled with the free flow equations,
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and transport of chemical species and energy can be taken into account. The
proposed scheme seems to be especially efficient to model fluid flows in frac-
tures where the solid matrix represents the porous medium system and the
fracture network is treated as the free flow system.
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2008-002 Hertweck, M.; Höfert, C.R.; Kimmerle, W.: Finite groups of units and their
composition factors in the integral group rings of the groups PSL(2, q)

2008-001 Kovarik, H.; Vugalter, S.; Weidl, T.: Two dimensional Berezin-Li-Yau inequalities with
a correction term

2007-006 Weidl, T.: Improved Berezin-Li-Yau inequalities with a remainder term

2007-005 Frank, R.L.; Loss, M.; Weidl, T.: Polya’s conjecture in the presence of a constant
magnetic field

2007-004 Ekholm, T.; Frank, R.L.; Kovarik, H.: Eigenvalue estimates for Schrödinger
operators on metric trees

2007-003 Lesky, P.H.; Racke, R.: Elastic and electro-magnetic waves in infinite waveguides



2007-002 Teufel, E.: Spherical transforms and Radon transforms in Moebius geometry

2007-001 Meister, A.: Deconvolution from Fourier-oscillating error densities under decay and
smoothness restrictions


