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A Sylow theorem for the integralgroup ring of PSL(2, q)Leo MargolisAugust 26, 2014Abstra
t: For G = PSL(2, pf) denote by ZG the integral group ring over G and by
V (ZG) the group of units of augmentation 1 in ZG. Let r be a prime di�erent from
p. Using the so 
alled HeLP-method we prove that units of r-power order in V (ZG)are rationally 
onjugate to elements of G. As a 
onsequen
e we prove that subgroups ofprime power order in V (ZG) are rationally 
onjugate to subgroups ofG, if p = 2 or f ≤ 2.Let G be a �nite group and ZG the integral group ring over G. Denote by V (ZG)the group of units of augmentation 1 in ZG. We say that a �nite subgroup U of V (ZG)is rationally 
onjugate to a subgroup W of G, if there exists a unit x ∈ QG su
h that
x−1Ux = W. The question if some, or even all, �nite subgroups of V (ZG) are ratio-nally 
onjugate to subgroups of G was proposed by H. J. Zassenhaus in the '60s andpublished in [Zas74℄. This so 
alled Zassenhaus Conje
tures motivated a lot of resear
h.E.g. A. Weiss proved the strongest version, that all �nite subgroups of V (ZG) are ra-tionally 
onjugate to subgroups of G, provided G is nilpotent [Wei88℄ [Wei91℄. K. W.Roggenkamp and L. L. S
ott obtained a 
ounterexample [Rog91℄ to this strong 
onje
-ture. The version, whi
h asks whether all �nite 
y
li
 subgroups of V (ZG) are rationally
onjugate to subgroups of G, the so 
alled First Zassenhaus Conje
ture, is however stillopen, see e.g. [Her08a℄, [CMdR13℄. Though mostly solvable groups were 
onsideredwhen studying su
h questions, there are some results available for non-solvable series ofgroups. E.g. a work on the symmetri
 groups [Pet76℄ or for Lie-groups of small rank[Ble99℄. The groups PSL(2, q), whi
h are also the obje
t of study in this paper, foundalso some spe
ial attention in [Wag95℄, [Her07℄, [HHK09℄ or in [BK11℄. In this paper we1



will limit our attention to �nite p-subgroups of V (ZG).One 
ould ask, what a Sylow-like theorem 
ould mean for V (ZG). One variation, letssay a weak Sylow theorem, would be that every �nite p-subgroup of V (ZG) is isomor-phi
 to some subgroup of G. A stronger result, say a strong Sylow theorem, wouldbe, if every �nite p-subgroup of V (ZG) is even rationally 
onjugate to a subgroup of
G. First Sylow-like results for integral group rings were obtained in [KR93℄. Later M.A. Doku
haev and S. O. Juriaans proved a strong Sylow theorem for spe
ial 
lasses ofsolvable groups [DJ96℄ and M. Hertwe
k, C. Höfert and W. Kimmerle proved a weakSylow theorem for PSL(2, pf), where p = 2 or f ≤ 2. The results of this arti
le are asfollows:Proposition 1: Let G = PSL(2, pf), let r be a prime di�erent from p and let u bea torsion unit in V (ZG) of r-power order. Then u is rationally 
onjugate to a groupelement.Theorem 2: Let G = PSL(2, pf) su
h that f ≤ 2 or p = 2. Then a strong Sylowtheorem holds in V (ZG).

1 HeLP-method and known resultsLet G be a �nite group. A very useful notion to study rational 
onjuga
y of torsionunits are partial augmentations: Let u =
∑

g∈G

agg ∈ ZG and xG be the 
onjuga
y 
lassof the element x ∈ G in G. Then εx(u) =
∑

g∈xG

ag is 
alled the partial augmentationof u at x. This relates to rational 
onjuga
y via:Lemma 1.1 ([MRSW87, Th. 2.5℄). Let u ∈ V(ZG) be a torsion unit. Then u isrationally 
onjugate to a group element if and only if εx(uk) ≥ 0 for all x ∈ G and allpowers uk of u.It is well known that if u 6= 1 is a torsion unit in V(ZG), then ε1(u) = 0 by the so
alled Berman-Higman Theorem [Seh93, Prop. 1.4℄. If εx(u) 6= 0, then the order of xdivides the order of u [MRSW87, Th. 2.7℄, [Her06, Prop. 3.1℄. Moreover the exponent of
G and of V(ZG) 
oin
ide [CL65℄. We will use this fa
ts in the following without furthermentioning.
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Let u be a torsion unit in V (ZG) of order n and ζ an n-th root of unity in some �eld
K, whose 
hara
teristi
 does not divide n. Let ξ be an (not ne
essarily primitive) n-throot of unity in K and let ϕ be a K-representation of G. It was �rst obtained by Lutharand Passi for K having 
hara
teristi
 0 [LP89℄ and later generalized by Hertwe
k forpositive 
hara
teristi
 [Her07℄ that the multipili
ity of ξ as an eigenvalue of ϕ(u), whi
hwe denote by µ(ξ, u, ϕ) and whi
h is of 
ause a non-negative integer, may be 
omputedas

µ(ξ, u, ϕ) =
1

n

∑

d|n
d6=1

TrQ(ζ)/Q(ϕ(u
d)ξ−d) +

1

n

∑

xG

x p−regular

εx(u)TrQ(ζ)/Q(ϕ(x)ξ
−1),where as usual TrQ(ζ)/Q(x) =

∑

σ∈Gal(Q(ζ)/Q)

σ(x).If u is of prime power order pk for the �rst sum in the expression above we obtain
1

n

∑

d|n
d6=1

TrQ(ζ)/Q(ϕ(u
d)ξ−d) =

1

p
µ(ξp, up, ϕ).Using these formulas to �nd possible partial augmentations for torsion units in integralgroup rings of �nite groups is today 
alled HeLP-method. For a diagonalizable matrix

A we will write A ∼ (a1, ..., an), if the eigenvalues of A, with multipli
ities, are a1, ..., an.All subgroups of G = PSL(2, pf) were �rst known to Di
kson [Di
01, Theorem 620℄.Let d = gcd(2, p − 1). There are 
y
li
 groups of order p, pf+1
d

and pf−1
d

in G andevery element of G lies in a 
onjugate of su
h a group. The p-Sylow subgroups areelementary-abelian, the Sylow subgroups for all other primes, whi
h are odd, are 
y
li
and if p 6= 2 the 2-Sylow subgroup is dihedral or a Kleinian four-group. There are d
onjuga
y 
lasses of elements of order p. If g ∈ G is not of order p or 2 its only distin
t
onjugate in 〈g〉 is g−1. Espe
ially there is always only one 
onjuga
y 
lass of involu-tions. We denote by a a �xed element of order pf−1
d

and by b a �xed element of order pf+1
d.The modular representation theory of PSL(2, q) in de�ning 
hara
teristi
 is well known.All irredu
ible representations were �rst given by R. Brauer and C. Nesbitt [BN41℄. Theexpli
it Brauer table of SL(2, q), whi
h 
ontains the Brauer table of PSL(2, q), may befound in [Sri64℄. However, I was not able to �nd the following Lemma in the literature,ex
ept, whitout proof, in Hertwe
ks preprint [Her07℄, so a short proof is in
luded.
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Lemma 1.2. Let G = PSL(2, pf) and d = gcd(2, p− 1). There are p-modular represen-tations of G given by ϕ0, ϕ1, ϕ2, ... su
h that there is a pf−1
d

-th primitive root of unity αand a pf+1
d

-th primitive root of unity β satisfying
ϕk(b) ∼ (1, β, β−1, β2, β−2, ..., βk, β−k)

ϕk(a) ∼ (1, α, α−1, α2, α−2, ..., αk, α−k)for every k ∈ N0.Proof: The group SL(2, q) a
ts on the ve
tor spa
e spanned by the homogenous poly-nomials in two 
ommuting variables x, y of some �xed degree e extending the naturaloperation of the 2-dimensional ve
tor spa
e spanned by x, y, see e.g. [Alp86, p. 14-16℄.Sin
e ( −1 0

0 −1

)

xiyj = (−1)i+jxiyj this a
tion a�ords a PSL(2, q)-representation ifand only if e is even and p is odd or p = 2. so let from now on e be even for odd p.Call this representation ϕ e
d
. Let γ be an eigenvalue of an element in SL(2, q) mappingonto a under the natural proje
tion from SL(2, q) to PSL(2, q). Then ϕ e

d
(a) has the sameeigenvalues as ϕ e

d

((

γ 0

0 γ−1

))

. Now ( γ 0

0 γ−1

)

xiyj = γi−jxiyj, so the eigenvaluesare {γi−j | 0 ≤ i, j ≤ d, i+ j = e} = {(γd)t | −e
d

≤ t ≤ e
d
}. Thus setting α = γd provesthe �rst part of the 
laim.Now let δ be an eigenvalue of an element in SL(2, q) mapping onto b under the naturalproje
tion from SL(2, q) to PSL(2, q). The a
tion of SL(2, q) may of 
ourse be extendedto SL(2, q2). So ϕ e

d
(b) has the same eigenvalues as ϕ e

d

((

δ 0

0 δ−1

))

, where the matrixmay be seen as an element in SL(2, q2). Then doing the same 
al
ulations as above andsetting β = δd proves the Lemma.Using the HeLP-method R. Wagner [Wag95℄ and Hertwe
k [Her07℄ obtained alreadysome results about rational 
onjuga
y of torsion units of prime power order in PSL(2, q).Part of Wagners result was published in [BHK04℄.Lemma 1.3. [Wag95℄ Let G = PSL(2, pf) and f ≤ 2. If u is a unit of order p in V (ZG),then u is rationally 
onjugate to a group element.Remark: The HeLP-method does not su�
e to prove rational 
onjuga
y of units oforder p in V (ZPSL(2, pf)) if p is odd and f ≥ 3. There is also no other method or idea
4



around how one 
ould e.g. obtain, if units of order 3 in V (ZPSL(2, 27)) are rationally
onjugate to group elements or not.Lemma 1.4. [Her07, Prop. 6.4℄ Let G = PSL(2, pf) and let r be a prime di�erent from
p. If u is a unit of order r in V (ZG), then u is rationally 
onjugate to an element of G.Lemma 1.5. [Her07, Prop. 6.5℄ Let G = PSL(2, pf), let r be a prime di�erent from
p and u a torsion unit in V (ZG) of order rn. Let m < n and denote by S a set ofrepresentatives of 
onjuga
y 
lasses of elements of order rm in G. Then ∑

x∈S

εx(u) = 0.If moreover g is an element of order rn in G, then µ(1, u, ϕ) = µ(1, g, ϕ) for every
p-modular Brauer 
hara
ter ϕ of G.If one is interested not only in 
y
li
 groups the following result is very useful. It maybe found e.g. in [Seh93, Lemma 37.6℄ or in [Val94, Lemma 4℄.Lemma 1.6. Let G be a �nite group, U a �nite subgroup of V (ZG) and H a subgroupof G isomorphi
 to U . If σ : U → H is an isomorphism su
h that χ(u) = χ(σ(u)) forall u ∈ U and all irredu
ible 
omplex 
hara
ters χ of G, then U is rationally 
onjugateto H.2 Proof of the resultsWe will �rst sum up some elementary number theoreti
al fa
ts. The notatian a ≡ b (c)will mean, that a is 
ongruent b modulo c.Lemma 2.1. Let t and s be natural numbers su
h that s divides t and denote by ζt and
ζs a primitive 
omplex t-th root of unity and s-th root of unity respe
tively. Then

TrQ(ζt)/Q(ζs) = µ(s)
ϕ(t)

ϕ(s)
,where µ denotes the Möbius fun
tion and ϕ Euler's totient fun
tion. So for a prime rand natural numbers n,m with m ≤ n we have

TrQ(ζrn )/Q(ζrm) =











rn−1(r − 1), m = 0

−rn−1, m = 1

0, m > 1
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Let moreover i and j be integers prime to r, then
TrQ(ζrn)/Q(ζ

i
rmζ

−j
rm) =











rn−1(r − 1), i ≡ j (rm)

−rn−1, i 6≡ j (rm), i ≡ j (rm−1)

0, i 6≡ j (rm−1)Proof of Lemma 2.1: Let s = pf11 · ... · pfkk be the prime fa
torisation of s. For anatural number l let I(l) = {i ∈ N | 1 ≤ i ≤ l, gcd(i, l) = 1}. As is well known,
Gal(Q(ζt)/Q) = {σi : ζt 7→ ζ it | i ∈ I(t)}. From this the 
ase s = 1 follows immediately.Otherwise we have

TrQ(ζt)/Q(ζs) =
∑

i∈I(t)

ζ is =
ϕ(t)

ϕ(s)

∑

i∈I(s)

ζ is =
ϕ(t)

ϕ(s)

k
∏

j=1

∑

i∈I(p
fj
j )

ζ i
p
fj
j

.

Now ∑

i∈I(p
fj
j )

ζ i
p
fj
j

=

{

−1, fj = 1

0, fj > 1
and this gives the �rst formula. The other formulasare spe
ial 
ases of this general formula sin
e ϕ(rn) = (r − 1)(rn−1).Proof of Proposition 1: Let G = PSL(2, pf), let r be a prime di�erent from p and let

u be a torsion unit in V (ZG) of order rn. Let ζ be an rn-th primitive 
omplex root ofunity and set TrQ(ζ)/Q = Tr. If n = 1, then by Lemma 1.4 u is rationally 
onjugate toan element in G, so assume n ≥ 2. Assume further that by indu
tion ur is rationally
onjugate to an element in G. Let m be a natural number su
h that m < n.We will pro
eed by indu
tion on m to show that εx(u) = 0, if the order of x is rm. If
m = 0 this is the Berman-Higman Theorem and if r = 2 and m = 1 this follows fromLemma 1.5. So assume we know εx(u) = 0 for ◦(x) < rm. Let l = rm−1

2
if r is odd and

l = rm−2
2

if r = 2. Let {xi | 1 ≤ i ≤ l, gcd(i, r) = 1} be a full set of representatives of
onjuga
y 
lasses of elements of order rm in G su
h that xi
1 = xi (this is possible by thegroup theoreti
al properties of G given above).We will prove by indu
tion on k that εxi

(u) = εxj
(u) for i ≡ ±j (rm−k). This is 
ertainlytrue for k = 0 and on
e we establish it for k = m, if r is odd, and k = m − 1, if r = 2,it will follow from Lemma 1.5 that εxi

(u) = 0 for all i. So assume εxi
(u) = εxj

(u)for i ≡ ±j (rm−k). Sin
e ur is rationally 
onjugate to a group element, there exists aprimitive rn−1-th root of unity ζrn−1 su
h that
ϕrk(u

r) ∼ (1, ζrn−1, ζ−1
rn−1 , ζ

2
rn−1, ζ−2

rn−1, ..., ζ
rk

rn−1, ζ−rk

rn−1).6



Now all p-modular Bruaer 
hara
ters of G are real valued and thus we obtain that
ϕrk(u) ∼ (1, a1, a

−1
1 , a2, a

−1
2 , ..., ark , a

−1
rk
), where for every i we have ai a root of unitysu
h that ar

m−k

i 6= 1. So for every primitive rm−k-th root of unity ζrm−k we have
µ(ζrm−k , u, ϕrk) = 0. Let ζrm be a primitive rm-th root of unity su
h that we have
ϕrk(x1) ∼ (1, ζrm, ζ

−1
rm , ..., ζ

rk

rm, ζ
−rk

rm ) and set ξ = ζr
k

rm. Let S be a set of representatives ofelements of G of r-power order not greater than rn 
ontaining x1, ..., xl and let moreover
α be a natural number prime to r su
h that 1 ≤ α ≤ l.Thus µ(ξα, u, ϕrk) = 0 and εx(u) = 0 for ◦(x) < rm. From here on a sum over i willalways mean a sum over all de�ned i, that will be 1 ≤ i ≤ l and r ∤ i. Then using theHeLP-method we get

0 = µ(ξα, u, ϕrk) =
1

r
µ(ξαr, ur, ϕrk) +

1

rn

∑

x∈S

εx(u)Tr(ϕrk(x)ξ
−α)

=
1

r
µ(ξαr, ur, ϕrk) +

1

rn

∑

x∈S
◦(x)>rm

εx(u)Tr(ϕrk(x)ξ
−α) +

1

rn

∑

i

εxi
(u)Tr(ϕrk(xi)ξ

−α)

=
1

r
µ(ξαr, ur, ϕrk) +

1

rn

∑

x∈S

εx(u)Tr(ξ
−α) +

1

rn

∑

i

εxi
(u)Tr((ξi + ξ−i)ξ−α)

=
1

r
µ(ξαr, ur, ϕrk) +

Tr(ξ−α)

rn
+

1

rn

∑

i

εxi
(u)Tr((ξi + ξ−i)ξ−α). (1)In the third line we used that if ζ̃ is a root of unity of r-power order su
h that ζ̃rm−k

6= 1,then ζ̃ξ has the same order as ζ̃ and so Tr(ζ̃ξ) = 0 by Lemma 2.1. Note that as i isprime to r the 
ongruen
e i ≡ α (rm−k) implies −i 6≡ α (rm−k) for rm−k /∈ {1, 2} andthese ex
eptions don't have to be 
onsidered by our assumptions on m and k.There are now two 
ases to 
onsider. First assume k < m − 1, so ξ is at least of order
r2. Then we have µ(ξαr, ur, ϕrk) = 0 and using Lemma 2.1 in (1) we obtain

0 =
1

rn

∑

i

εxi
(u)Tr((ξi + ξ−i)ξ−α)

=
1

rn

∑

i≡±α(rm−k)

εxi
(u)(rn−1(r − 1)) +

1

rn

∑

i≡±α(rm−k−1)
i 6≡±α(rm−k)

εxi
(u)(−rn−1)

=
∑

i≡±α(rm−k)

εxi
(u)−

1

r

∑

i≡±α(rm−k−1)

εxi
(u). (2)
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So
r
∑

i≡±α(rm−k)

εxi
(u) =

∑

i≡±α(rm−k−1)

εxi
(u).But sin
e by indu
tion εxi

(u) = εxj
(u) for i ≡ ±j (rm−k) the summands on the lefthand side are all equal and sin
e 
hanging α by rm−k−1 does not 
hange the right handside of the equation we get εxi

(u) = εxj
(u) for i ≡ ±j (rm−k−1).Now 
onsider k = m − 1, then ξ is a primitive r-th root of unity and thus we have

µ(ξαr, ur, ϕrk) = 1. So using Lemma 2.1 in (1) we get
0 =

1

r
+

−rn−1

rn
+

1

rn

∑

±i 6≡α(r)

εxi
(u)(−2rn−1) +

1

rn

∑

±i≡α(r)

εxα
(u)(rn−1(r − 1)− rn−1)

=
∑

±i≡α(r)

εxi
(u)−

2

r

∑

i

εxi
(u). (3)So
r
∑

±i≡α(r)

εxi
(u) = 2

∑

i

εxi
(u).Now by Lemma 1.5 the right side of this equation is zero and by indu
tion all summandson the left side are equal. Hen
e varying α gives εx(u) = 0 for ◦(x) = rm.So it only remains to show that εx(u) = 1 for exa
tly one 
onjuga
y 
lass xG in G,where ◦(x) = rn. The arguments in this 
ase are very 
lose to the arguments above. Let

k ≤ n. As in the 
omputation above we have ϕrk(u
r) ∼ (1, ζrn−1, ζ−1

rn−1, ..., ζ
rk

rn−1, ζ
−rk

rn−1) forsome primitive rn−1-th root of unity and ϕrk(u) ∼ (1, a1, a
−1
1 , a2, a

−1
2 , ..., ark , a

−1
rk
), where

ai are roots of unity su
h that arn−k

i 6= 0 for 1 ≤ i ≤ rk − 1 and ark is some primitive
rn−k-th root of unity. Set ξ = ark and let l = rn−1

2
, if r is odd, and l = rn−2

2
, if r = 2.Let {xi | 1 ≤ i ≤ l, gcd(i, r) = 1} be a set a representatives of 
onjuga
y 
lasses ofelements of order rn in G su
h that xi = xi

1 and ϕ1(x1) ∼ ϕ1(u). Then xr
1 is rationally
onjugate to ur. We will prove by indu
tion on k that:(i) εx1

(u) = 1 and εxi
(u) = 0 for i ≡ ±1 (rn−k), i 6= 1.(ii) εxi

(u) = εxj
(u) for i ≡ ±j (rn−k) and i 6≡ ±1 (rn−k).We will prove these two fa
ts for k = n − 1. If r = 2, then the Proposition will followfrom this. If r is odd, we will prove afterwards that ∑

i≡α(r)

εxi
(u) = 0 for α 6≡ ±1 (r),whi
h then also implies the Proposition. 8



Let α be a natural number prime to r with 1 ≤ α ≤ l. Using the HeLP-method and
εx(u) = 0 for ◦(x) < rn we obtain, doing the same 
al
ulations as in (1):

µ(ξα, u, ϕrk) =
1

r
µ(ξαr, ur, ϕrk) +

Tr(ξ−α)

rn
+

1

rn

∑

i

εxi
(u)Tr((ξi + ξ−i)ξ−α). (4)As ur is rationally 
onjugate to xr

1 we know that ξ±r are eigenvalues of ϕrk(u
r). So weget

µ(ξα, u, ϕrk) =

{

1, α ≡ ±1 (rn−k)

0, else
and µ(ξαr, ur, ϕrk) =

{

1, α ≡ ±1 (rn−k−1)

0, elseThere are now several 
ases to 
onsider: (ii) is 
lear for k = 0 and if α 6≡ ±1 (rn−k)we 
an do the same 
omputations as in (2) to obtain (ii), if k < n− 1. So (ii) holds for
k = n− 1.To obtain the base 
ase for (i) set k = 0. Then from (4) we obtain (similar to the
omputation in (2)):

1 =
1

r
+ εx1

(u)−
1

r

∑

i≡±1(rn−1)

εxi
(u)and

0 =
1

r
+ εxα

(u)−
1

r

∑

i≡±1(rn−1)

εxi
(u)for α ≡ ±1 (rn−1) and α 6= 1. Substra
ting two su
h equations gives

1 = εx1
(u)− εxα

(u) (5)for every α ≡ ±1 (rn−1) and α 6= 1. Let t = |{i ∈ N|i ≤ l, i ≡ ±1 (rn−1)}|. Thensumming up the equations for all α ≡ ±1 (rn−1) gives
1 =

t

r
+

∑

i≡±1(rn−1)

εxi
(u)−

t

r

∑

i≡±1(rn−1)

εxi
(u) =

t

r
+ (1−

t

r
)

∑

i≡±1(rn−1)

εxi
(u).So ∑

i≡±1(rn−1)

εxi
(u) = 1 and the base 
ase of (i) follows from (5).So assume 1 ≤ k < n− 1. Then ∑

i≡±1 (rn−k)

εxi
(u) = 1 by indu
tion and for α ≡ ±1 (rn−k)

9



from (4) 
omputing as in (2) we obtain
1 =

1

r
+

∑

i≡±1(rn−k)

εxi
(u)−

1

r

∑

i≡±1(rn−k−1)

εxi
(u) =

1

r
+ 1−

1

r

∑

i≡±1(rn−k−1)

εxi
(u).For α 6≡ ±1 (rn−k) and α ≡ ±1 (rn−k−1) we obtain the same way

0 =
1

r
+

∑

i≡±α(rn−k)

εxi
(u)−

1

r

∑

i≡±1(rn−k−1)

εxi
(u).Thus subtra
ting the last equation from the one before gives

1 = 1−
∑

i≡±α(rn−k)

εxi
(u).The summands on the right hand side are all equal by (ii), so εxα

(u) = 0, as 
laimed.Finally let r be odd, k = n− 1 and α 6≡ ±1 (r). Then µ(ξα, ur, ϕrk) = µ(1, ur, ϕrk) = 3.So from (4) 
omputing as in (3) we obtain
0 =

3

r
+

−rn−1

rn
−

2

r

∑

i

εxi
(u) +

∑

i≡±α(r)

εxi
(u) =

∑

i≡±α(r)

εxi
(u).As by (ii) all summands in the last sum are equal, we get εxα

(u) = 0 and the Propositionis �nally proved.Proof of Theorem 2: Let G = PSL(2, pf) su
h that f ≤ 2 or p = 2. Assume �rst that ris an odd prime, whi
h is not p, and R is an r-subgroup of V (ZG). As every r-subgroupof G is 
y
li
 so is R by [Her08b, Theorem A℄ and thus R is rationally 
onjugate to asubgroup of G by Proposition 1. If p 6= 2 and R is a 2-subgroup of V (ZG), then Ris either 
y
li
 or dihedral or a Kleinian four group by [HHK09, Theorem 2.1℄. If Ris 
y
li
, then it is rationally 
onjugate to a subgroup of G by Proposition 1. If R isdihedral or a Kleinian four group let S = 〈s〉 be a maximal 
y
li
 subgroup of R. Then sis rationally 
onjugate to an element g ∈ G by Proposition 1. Moreover R is isomorphi
to some subgroup of H of G, su
h that the maximal 
y
li
 subgroup of H is generatedby g. As there is only one 
onjuga
y 
lass of invoultions in G every isomorphism σbetween R and H mapping s to g satis�es χ(σ(u)) = χ(u) for every irredu
ible 
omplex
hara
ter of G. Thus R is rationally 
onjugate to H by Lemma 1.6.If p = 2 and P is a 2-subgroup of V (ZG) then all non-trivial elements of P are in-10



volutions, so P is elementary abelian. As there is again only one 
onjuga
y 
lass ofinvolutions in G every isomorphism σ between P and a subgroup of G isomorphi
 with
P satis�es χ(σ(u)) = χ(u) for every irredu
ible 
omplex 
hara
ter of G. So P is ratio-nally 
onjugate to a subgroup of G by Lemma 1.6. Finally assume that p is odd and Pis a p-subgroup of V (ZG). If P is of order p it is rationally 
onjugate to a subgroup of Gby Lemma 1.3. If P is of order p2, it is elementary abelian. Let c and d be generators of
P , then they are rationally 
onjugate to group elements by Lemma 1.3. But there areonly two 
onjuga
y 
lasses of elements of order p and to whi
hever elements c and d are
onjugate, it is possible to pi
k some, whi
h generate an elementary abelian subgroupof G of order p2. Then again we obtain an isomorphism σ preserving 
hara
ter values.Remark: Let G = PSL(2, pf) and let n be a number prime to p. The stru
ture of theBrauer table of G in de�ning 
hara
teristi
 yields immidiately, that if we 
an prove thata unit u ∈ V (ZG) of order n is rationally 
onjugate to an element in G applying theHeLP-method to the Brauer table, then this 
al
ulations will hold over any PSL(2, q), if
n and q are 
oprime. In this sense it would be interesting, and seems a
tually a
hievable,to determine a subset Apf of N su
h that we 
an say: The HeLP-method proves thata unit u ∈ V (ZG) of order n is rationally 
onjugate to an element in G if and onlyif n ∈ Apf . Test 
omputations yield the 
onje
ture that Apf a
tually 
ontains all oddnumbers prime to p. If this turned out to be true this would yield, using the results in[Her07℄, the First Zassenhaus Conje
ture for the groups PSL(2, p), where p is a Fermat-or Mersenne prime.Other interesting questions 
on
erning torsion units of the integral group ring of G =

PSL(2, pf) were mentioned at the end of [HHK09℄ and are still open today: If the orderof u ∈ V (ZG) is divisable by p, is u of order p? Are units of order p rationally 
onjugateto elements of G? Are there non-abelian p-subgroups in V (ZG)?A
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2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase
Epitaxy with Elasticity: An Iterative Procedure

2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields

2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces
on the Stability of Liquid-Vapor Interfaces

2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate
of the minimum mean squared error
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