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Abstract: For G = PSL(2,p/) denote by ZG the integral group ring over G and by
V(ZG) the group of units of augmentation 1 in ZG. Let r be a prime different from
p. Using the so called HeLP-method we prove that units of r-power order in V(ZG)
are rationally conjugate to elements of G. As a consequence we prove that subgroups of

prime power order in V (ZG) are rationally conjugate to subgroups of G, if p = 2 or f < 2.

Let G be a finite group and ZG the integral group ring over G. Denote by V(ZG)
the group of units of augmentation 1 in ZG. We say that a finite subgroup U of V(ZG)
is rationally conjugate to a subgroup W of G, if there exists a unit z € QG such that
27 'Ux = W. The question if some, or even all, finite subgroups of V(ZG) are ratio-
nally conjugate to subgroups of G was proposed by H. J. Zassenhaus in the ’60s and
published in [Zas74]. This so called Zassenhaus Conjectures motivated a lot of research.
E.g. A. Weiss proved the strongest version, that all finite subgroups of V(ZG) are ra-
tionally conjugate to subgroups of G, provided G is nilpotent [Wei88] [Wei91]. K. W.
Roggenkamp and L. L. Scott obtained a counterexample [Rog91| to this strong conjec-
ture. The version, which asks whether all finite cyclic subgroups of V(ZG) are rationally
conjugate to subgroups of GG, the so called First Zassenhaus Conjecture, is however still
open, see e.g. [Her08a], [CMdR13|. Though mostly solvable groups were considered
when studying such questions, there are some results available for non-solvable series of
groups. E.g. a work on the symmetric groups [Pet76] or for Lie-groups of small rank
[Ble99]. The groups PSL(2,q), which are also the object of study in this paper, found
also some special attention in [Wag95|, [Her07|, [HHKO09] or in [BK11]. In this paper we



will limit our attention to finite p-subgroups of V(ZG).

One could ask, what a Sylow-like theorem could mean for V(ZG). One variation, lets
say a weak Sylow theorem, would be that every finite p-subgroup of V(ZG) is isomor-
phic to some subgroup of G. A stronger result, say a strong Sylow theorem, would
be, if every finite p-subgroup of V(ZG) is even rationally conjugate to a subgroup of
G. First Sylow-like results for integral group rings were obtained in [KR93|. Later M.
A. Dokuchaev and S. O. Juriaans proved a strong Sylow theorem for special classes of
solvable groups [DJ96] and M. Hertweck, C. Hofert and W. Kimmerle proved a weak
Sylow theorem for PSL(2,p’), where p = 2 or f < 2. The results of this article are as

follows:

Proposition 1: Let G = PSL(2,p/), let v be a prime different from p and let u be
a torsion unit in V(ZG) of r-power order. Then w is rationally conjugate to a group

element.

Theorem 2: Let G = PSL(2,p’) such that f < 2 or p = 2. Then a strong Sylow
theorem holds in V (ZG).

1 HeLP-method and known results

Let G be a finite group. A very useful notion to study rational conjugacy of torsion

units are partial augmentations: Let u = Y a,g € ZG and 2% be the conjugacy class
of the element z € G in G. Then ¢,(u) :gezG: a, is called the partial augmentation
of u at x. This relates to rational Conjugacgfeff?a:

Lemma 1.1 (][MRSWS87, Th. 2.5|). Let u € V(ZG) be a torsion unit. Then u is
rationally conjugate to a group element if and only if ,(u*) > 0 for all x € G and all

powers u¥ of u.

It is well known that if u # 1 is a torsion unit in V(ZG), then £;(u) = 0 by the so
called Berman-Higman Theorem [Seh93, Prop. 1.4]. If ,(u) # 0, then the order of x
divides the order of u [MRSW87, Th. 2.7|, [Her06, Prop. 3.1]. Moreover the exponent of
G and of V(ZG) coincide [CL65|. We will use this facts in the following without further

mentioning.



Let u be a torsion unit in V(ZG) of order n and ¢ an n-th root of unity in some field
K, whose characteristic does not divide n. Let £ be an (not necessarily primitive) n-th
root of unity in K and let ¢ be a K-representation of G. It was first obtained by Luthar
and Passi for K having characteristic 0 [LP89| and later generalized by Hertweck for
positive characteristic [Her07] that the multipilicity of £ as an eigenvalue of ¢(u), which

we denote by u(&, u, ¢) and which is of cause a non-negative integer, may be computed

as
1 _
(& u, p) ZTYQ orelphe) + - Zex w) Trge)/(w()€7),
§l7|£n1 T p— regular
where as usual Trg)o(®) = Z o(x).

0€Gal(Q(¢)/Q)
If u is of prime power order p* for the first sum in the expression above we obtain

1 _ 1
2 Traoyale(u)e ) = (e, ¢)
d|n
i
Using these formulas to find possible partial augmentations for torsion units in integral
group rings of finite groups is today called HeLP-method. For a diagonalizable matrix

A we will write A ~ (aq, ..., a,), if the eigenvalues of A, with multiplicities, are ay, ..., a,.

All subgroups of G = PSL(2,p’) were first known to Dickson [Dic01, Theorem 620].
Let d = ged(2,p — 1). There are cyclic groups of order p, ’% and pd in G and
every element of G lies in a conjugate of such a group. The p-Sylow subgroups are
elementary-abelian, the Sylow subgroups for all other primes, which are odd, are cyclic
and if p # 2 the 2-Sylow subgroup is dihedral or a Kleinian four-group. There are d
conjugacy classes of elements of order p. If g € GG is not of order p or 2 its only distinct

conjugate in (g) is g~'. Especially there is always only one conjugacy class of involu-

f41

tions. We denote by a a fixed element of order 2=— = y L and by b a fixed element of order 21 7

The modular representation theory of PSL(2, ¢) in defining characteristic is well known.
All irreducible representations were first given by R. Brauer and C. Nesbitt [BN41|. The
explicit Brauer table of SL(2, ¢), which contains the Brauer table of PSL(2, ¢), may be
found in [Sri64]. However, I was not able to find the following Lemma in the literature,

except, whitout proof, in Hertwecks preprint [Her07], so a short proof is included.



Lemma 1.2. Let G = PSL(2,p/) and d = ged(2,p — 1) There are p-modular represen-
tations of G given by o, p1, P2, ... such that there is a B==-th primitive root of unity o

p+1

and a -th primitive root of unity B satisfying

(b)) ~ (1,8,571, 8%, 872, .., 85 87F)

or(a) ~ (1L,a,a % a2, ... aF a™F)

for every k € Nj.

Proof: The group SL(2, q) acts on the vector space spanned by the homogenous poly-
nomials in two commuting variables x, y of some fixed degree e extending the natural

operation of the 2-dimensional vector space spanned by x, vy, see e.g. [Alp86, p. 14-16|.
—1 0 o o

Since 0 1 x'y? = (=1)""z'y? this action affords a PSL(2, g)-representation if

and only if e is even and p is odd or p = 2. so let from now on e be even for odd p.

Call this representation <. Let v be an eigenvalue of an element in SL(2, ¢) mapping

onto a under the natural projection from SL(2, ¢) to PSL(2, g). Then ¢« (a) has the same

0 0 o o
eigenvalues as e 7 . Now 7 x'y! =" Ix'y’, so the eigenvalues
d 0 ,Y—l 0 ,Y
—76

are {v"77 | 0<i,j<d, i+j=¢e}={(y)"| =t <t <<} Thus setting o = ¢ proves
the first part of the claim.

€
d

Now let § be an eigenvalue of an element in SL(2, ¢) mapping onto b under the natural
projection from SL(2, ¢q) to PSL(2, q). The action of SL(2, ¢) may of course be extended

0 &t
may be seen as an element in SL(2, ¢?). Then doing the same calculations as above and

b 0
to SL(2, ¢%). So we (b) has the same eigenvalues as ¢ << )) , where the matrix

setting 3 = d¢ proves the Lemma.

Using the HeLP-method R. Wagner [Wag95| and Hertweck [Her07]| obtained already
some results about rational conjugacy of torsion units of prime power order in PSL(2, ¢).
Part of Wagners result was published in [BHKO04].

Lemma 1.3. [Wag95] Let G = PSL(2,p’) and f < 2. If u is a unit of order p in V(ZGQ),

then u s rationally conjugate to a group element.

Remark: The HeLLP-method does not suffice to prove rational conjugacy of units of
order p in V(ZPSL(2,p’)) if p is odd and f > 3. There is also no other method or idea



around how one could e.g. obtain, if units of order 3 in V(ZPSL(2,27)) are rationally

conjugate to group elements or not.

Lemma 1.4. [Her07, Prop. 6.4] Let G = PSL(2,p’) and let r be a prime different from

p. If u is a unit of order r in V(ZG), then u is rationally conjugate to an element of G.

Lemma 1.5. [Her07, Prop. 6.5] Let G = PSL(2,p/), let v be a prime different from
p and u a torsion unit in V(ZG) of order r". Let m < n and denote by S a set of

representatives of conjugacy classes of elements of order r™ in G. Then Y e.(u) = 0.
z€S
If moreover g is an element of order r" in G, then u(1l,u,v) = p(l,g,¢) for every

p-modular Brauer character ¢ of G.

If one is interested not only in cyclic groups the following result is very useful. It may
be found e.g. in [Seh93, Lemma 37.6] or in [Val94, Lemma 4.

Lemma 1.6. Let G be a finite group, U a finite subgroup of V(ZG) and H a subgroup
of G isomorphic to U. If o : U — H is an isomorphism such that x(u) = x(o(u)) for
all w € U and all irreducible complex characters x of G, then U 1is rationally conjugate
to H.

2 Proof of the results

We will first sum up some elementary number theoretical facts. The notatian a = b (c)

will mean, that a is congruent b modulo c.

Lemma 2.1. Let t and s be natural numbers such that s divides t and denote by (; and

(s a primitive complex t-th root of unity and s-th root of unity respectively. Then

Tro/a(G) = u(S)%,

where p denotes the Mobius function and ¢ Fuler’s totient function. So for a prime r

and natural numbers n, m with m < n we have

Troen)(Gm) =9 —r" 1, m =1



Let moreover i and j be integers prime to r, then

r e —1), i=j (r™)

Tro(nyo(GimGd) = 3 =", iEj (™), i=j (™
0, i#Ej ()
Proof of Lemma 2.1: Let s = pi' - ... -pg’“ be the prime factorisation of s. For a

natural number [ let I(l) = {i € N | 1 < i < [, ged(i,l) = 1}. As is well known,
Gal(Q(¢&)/Q) = {os : ¢ = ¢} | i € I(t)}. From this the case s = 1 follows immediately.

Otherwise we have

Tro)/0(Cs) = Z (i = % Z (= %H >y

A -1 =1
Now > (') = R and this gives the first formula. The other formulas
£

iel(p;j) P; 0, fj >1

are special cases of this general formula since ¢(r") = (r — 1)(r"~1).

Proof of Proposition 1: Let G = PSL(2,p’), let r be a prime different from p and let
u be a torsion unit in V(ZG) of order r". Let ¢ be an r"-th primitive complex root of
unity and set Trg)@ = Tr. If n = 1, then by Lemma 1.4 w is rationally conjugate to
an element in G, so assume n > 2. Assume further that by induction «" is rationally
conjugate to an element in GG. Let m be a natural number such that m < n.
We will proceed by induction on m to show that ,(u) = 0, if the order of = is r™. If
m = 0 this is the Berman-Higman Theorem and if » = 2 and m = 1 this follows from
Lemma 1.5. So assume we know &,(u) = 0 for o(z) < r™. Let | = ==L if r is odd and
=220 r =2 Let {; | 1 <i <1, ged(i,r) = 1} be a full set of representatives of
conjugacy classes of elements of order 7™ in G such that 2! = z; (this is possible by the

group theoretical properties of G given above).

We will prove by induction on k that e,,(u) = ,,(u) for i = £5 (r™*). This is certainly
true for £k = 0 and once we establish it for k = m, if r is odd, and k =m — 1, if r = 2,
it will follow from Lemma 1.5 that e,,(u) = 0 for all i. So assume e,,(u) = &;,;(u)
for i = £j (r™*). Since u" is rationally conjugate to a group element, there exists a

primitive 7" !-th root of unity ¢,»-1 such that

k k

QOTk (uT) ~ (17 CT"_lu C;rbl—h CE"*M C;n2—17 (RS C:nfla C,r;LT—1>



Now all p-modular Bruaer characters of G are real valued and thus we obtain that
or(u) ~ (1,a1,a7", ag, a5, ...,ark,ar_,}), where for every ¢ we have a; a root of unity
such that a!™ " # 1. So for every primitive r™ *-th root of unity (m-» we have
1(Com—ryu, o) = 0. Let (m be a primitive r™-th root of unity such that we have
(1) ~ (1, Gom, Gty oo o Gt ) and set € = (7. Let S be a set of representatives of
elements of G of r-power order not greater than r” containing 1, ..., z; and let moreover
a be a natural number prime to r such that 1 < o <.

Thus (€% u, o) = 0 and e,(u) = 0 for o(x) < r™. From here on a sum over i will
always mean a sum over all defined ¢, that will be 1 <4 <[ and r {1 4. Then using the

HeLLP-method we get

= (&% u, ppr) = 1,u(§°” u”, pr) + _ng )Tr(ppr (2)€7)

€S
1
= — ar r x T r - x T T 7 “
H(ET " ) erSs r(py )+ - Zez r(ip, (1))
o(z)>rm
]' ar T 1
= (¢ ,u,¢rk>+r—nzex<u>Tr< +—Zexz JTe((€"+ €767
Z‘GS

- %M<§ar’u7”(prk)+ ng’ TI' g +£ )g ) (1)

In the third line we used that if ¢ is a root of unity of r-power order such that ¢ " # 1,
then (¢ has the same order as ¢ and so Tr(gtﬁ) = 0 by Lemma 2.1. Note that as 7 is
m=k) implies —i #Z o (r™ %) for r™* ¢ {1,2} and

these exceptions don’t have to be considered by our assumptions on m and k.

prime to r the congruence i = « (r

There are now two cases to consider. First assume k£ < m — 1, so £ is at least of order

r?. Then we have p(€%,u”, ¢,+) = 0 and using Lemma 2.1 in (1) we obtain
Zazz )Tr((&+£7)E™)
:i > ea (u)(r" 1r—1))+i > g (u)(—r""
rm ! rm ’

i=Fa(rm—Fk) i=fa(rm—kl)
iZta(rm—Fk)
1
= Dew -~ Y en(w) (2)
i=ta(rm—Fk) i=da(rmTrl)



So

r Z ez, (u) = Z ez, (u
i=Fa(rm=F) i=Fa(rm—k-l)
But since by induction e,,(u) = e,,(u) for i = £j (r™*) the summands on the left
hand side are all equal and since changing o by 7™ *~! does not change the right hand
side of the equation we get &,, (u) = &,,(u) for i = +5 (r™*1).
Now consider £ = m — 1, then ¢ is a primitive r-th root of unity and thus we have

w(&¥ u" ) = 1. So using Lemma 2.1 in (1) we get

1ol
0 = — J— s — " n 1 _ _ n—1
r+ p +7’" Ze(u)( Zea (r—1)—r""")
+iZo(r) :I:z o(r)
2
+i=a(r) i

So
T Z £z, (u) =2 Z €z, (1)
+i=a(r) i
Now by Lemma 1.5 the right side of this equation is zero and by induction all summands

on the left side are equal. Hence varying « gives €,(u) = 0 for o(x) = r™.

So it only remains to show that e,(u) = 1 for exactly one conjugacy class ¢ in G,
where o(x) = r™. The arguments in this case are very close to the arguments above. Let
k < n. Asin the computation above we have . (u") ~ (1, {n-1, C;},l, . Crn 15 G 1) for
some primitive 7" ~!-th root of unity and ¢« (u) ~ (1,a1,a7",as,a5", ..., ax, '), where
a; are roots of unity such that a;’"_k # 0 for 1 < z' < 'rk — 1 and a,+ is some primitive
r"~F_th root of unity. Set & = a,+ and let [ = , 22 i = 2.

Let {z; | 1 < i <, ged(i,r) = 1} be a set a representatives of conjugacy classes of

elements of order 7 in G such that z; = 2% and ¢, (z;) ~ ;(u). Then 27 is rationally

conjugate to u”. We will prove by induction on k that:
(i) €s(u) =1 and e,,(u) =0 for i = £1 (r"%),i # 1.
(il) €4, (u) = e4,(u) for i = x5 (r" %) and i # £1 ("),

We will prove these two facts for k = n — 1. If r = 2, then the Proposition will follow

from this. If r is odd, we will prove afterwards that > e, (u) = 0 for a # £1 (1),
i=a(r)
which then also implies the Proposition.



Let a be a natural number prime to r with 1 < a < [. Using the HeLLP-method and

ez(u) = 0 for o(x) < r™ we obtain, doing the same calculations as in (1):

HE o) = €T ) +—Ze% (€ +E9E) (@)

As u" is rationally conjugate to ] we know that £*" are eigenvalues of ¢,«(u"). So we

get

1, a==+1 (" 1, a==+1 (!
M(f“,u,wrk)Z{ U mfar,umom:{ )

0, else 0, else

There are now several cases to consider: (ii) is clear for k = 0 and if o # +1 (r"%)
we can do the same computations as in (2) to obtain (ii), if £ < n — 1. So (ii) holds for
k=n-—1.

To obtain the base case for (i) set k& = 0. Then from (4) we obtain (similar to the

computation in (2)):

1= % + &4, (1) —% Zex(u)

i=1(rm71)

and

for « = £1 (r"!) and a # 1. Substracting two such equations gives

1 =¢e,(u) — ey, (u) (5)

for every a = £1 (r" ') and a # 1. Let ¢t = |[{i € Nli < [,s = +1 (" 1)}|. Then

summing up the equations for all a = +1 (r"~1) gives

1:_+ Zgzl ; Zgzl _;_'_(1_;) ngl

i=+1(r i=+1(r i=£1(r"1)
So Z ex = 1 and the base case of (i) follows from (5).
i=+1(r
So assume 1 < k <n—1. Then Ze% = 1 by induction and for a = £1 (r"%)
i==%1 (rF)



from (4) computing as in (2) we obtain
1 1 1 1
1== (u) — = (W) ==41—- ().
i=x1(rn k) i=x1(rn—k-1) =1 (k1)
For a # £1 (7" %) and a = £1 (r"*°!) we obtain the same way
0=t Yoy T
= — €z, (u) — = £, ().
T ‘ r ’
i;ia(rnfk) ’L’E:l:l('r‘nikil)

Thus subtracting the last equation from the one before gives

I=1— ) &, (u).

i=ta(rnF)

The summands on the right hand side are all equal by (ii), so €,_(u) = 0, as claimed.
Finally let » be odd, k =n —1 and a #Z £1 (r). Then pu(£* u”, @) = u(l,u”, px) = 3.

So from (4) computing as in (3) we obtain

Oz%—l—_:r: —%Ze%(u)—% ZEIZ.(U): Zex(u)
i )

i=ta(r i=to(r)

As by (ii) all summands in the last sum are equal, we get ¢,_(u) = 0 and the Proposition

is finally proved.

Proof of Theorem 2: Let G = PSL(2,p’) such that f <2 or p = 2. Assume first that r
is an odd prime, which is not p, and R is an r-subgroup of V(ZG). As every r-subgroup
of G is cyclic so is R by [Her08b, Theorem A| and thus R is rationally conjugate to a
subgroup of G by Proposition 1. If p # 2 and R is a 2-subgroup of V(ZG), then R
is either cyclic or dihedral or a Kleinian four group by [HHKO09, Theorem 2.1|. If R
is cyclic, then it is rationally conjugate to a subgroup of G by Proposition 1. If R is
dihedral or a Kleinian four group let S = (s) be a maximal cyclic subgroup of R. Then s
is rationally conjugate to an element g € GG by Proposition 1. Moreover R is isomorphic
to some subgroup of H of GG, such that the maximal cyclic subgroup of H is generated
by g. As there is only one conjugacy class of invoultions in GG every isomorphism o
between R and H mapping s to g satisfies x(o(u)) = x(u) for every irreducible complex
character of G. Thus R is rationally conjugate to H by Lemma 1.6.

If p =2 and P is a 2-subgroup of V(ZG) then all non-trivial elements of P are in-

10



volutions, so P is elementary abelian. As there is again only one conjugacy class of
involutions in G every isomorphism o between P and a subgroup of G isomorphic with
P satisfies x(o(u)) = x(u) for every irreducible complex character of G. So P is ratio-
nally conjugate to a subgroup of G by Lemma 1.6. Finally assume that p is odd and P
is a p-subgroup of V(ZG@G). If P is of order p it is rationally conjugate to a subgroup of G
by Lemma 1.3. If P is of order p?, it is elementary abelian. Let ¢ and d be generators of
P, then they are rationally conjugate to group elements by Lemma 1.3. But there are
only two conjugacy classes of elements of order p and to whichever elements ¢ and d are
conjugate, it is possible to pick some, which generate an elementary abelian subgroup

of G of order p?. Then again we obtain an isomorphism o preserving character values.

Remark: Let G = PSL(2, p/) and let n be a number prime to p. The structure of the

Brauer table of GG in defining characteristic yields immidiately, that if we can prove that
a unit u € V(ZGQG) of order n is rationally conjugate to an element in G applying the
HeL.P-method to the Brauer table, then this calculations will hold over any PSL(2, q), if
n and ¢ are coprime. In this sense it would be interesting, and seems actually achievable,
to determine a subset A,; of N such that we can say: The HeLP-method proves that
a unit u € V(ZG) of order n is rationally conjugate to an element in G if and only
if n € A,s. Test computations yield the conjecture that A,; actually contains all odd
numbers prime to p. If this turned out to be true this would yield, using the results in
[Her07], the First Zassenhaus Conjecture for the groups PSL(2, p), where p is a Fermat-
or Mersenne prime.
Other interesting questions concerning torsion units of the integral group ring of G =
PSL(2, p/) were mentioned at the end of [HHKO09| and are still open today: If the order
of u € V(ZQ) is divisable by p, is u of order p? Are units of order p rationally conjugate
to elements of G? Are there non-abelian p-subgroups in V(ZG)?

Acknowledgement: The computations given above were all done by hand, but some
motivating computations were done using a GAP-implementation of the HeLLP-algorithm
written by Andreas Béchle.
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