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We prove the well-posedness of non-autonomous linear evolution equations for gen-
erators A(t) : D(A(t)) C X — X whose pairwise commutators are complex scalars
and, in addition, we establish an explicit representation formula for the evolution.
We also prove well-posedness in the more general case where instead of the 1-fold
commutators only the p-fold commutators of the operators A(t) are complex scalars.
All these results are furnished with rather mild regularity assumptions: indeed,
strong continuity conditions are sufficient. Additionally, we improve a well-posedness
result of Kato for group generators A(t) by showing that the original norm conti-
nuity condition can be relaxed to strong continuity. Applications include Segal field
operators and Schrédinger operators for particles in external electric fields.
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1 Introduction

In this paper, we are concerned with non-autonomous linear evolution equations
¥ =At)x (t€[s,1]) and z(s)=y (1.1)

for densely defined linear operators A(t) : D(A(t)) C X — X (¢t € [0,1]) and initial
values y € Y C D(A(s)) at initial times s € [0,1). Well-posedness of such evolution
equations has been studied by many authors in a large variety of situations. See, for
instance, [25], [27], [18], [20] for an overview. In this paper, we are primarily interested
in the special situation of semigroup generators A(t) whose first (1-fold) or higher (p-fold)
commutators at distinct times are complex scalars, in short:

[A(t1), A(t2)] = p(t1,t2) € C (1.2)

or



[ [[A(t), At)], A(ts)] - .., A(tp1)] = pte, .- tpin) € C (1.3)

in some sense to be made precise (see the commutation relations (2.1) and (2.12)). In
this special situation we prove well-posedness for (1.1) on suitable dense subspaces Y of
X and, moreover, in the case (1.2) we prove the representation formula

U(t, S) = ef: A(r)dr el/?f: f; w(r,0) dodr (14)

for the evolution generated by the operators A(t). We thereby generalize a well-posedness
result of Goldstein and of Nickel and Schnaubelt from [9], [23]| dealing with the special
case of (1.2) where p = 0: in [9] contraction semigroup generators are considered, while
in [23] contraction semigroup generators are replaced by general semigroup generators
and the formula (1.4) with ¢ = 0 is proved.

What one gains by restricting oneself to the special class of semigroup generators
with (1.2) or (1.3) — instead of considering general semigroup generators as in [11], [12],
[13], for instance — is that well-posedness follows under fairly weak regularity conditions:
indeed, strong continuity conditions are sufficient — just like in the case of commuting
operators from [9], [23] or in the elementary case of bounded operators. In general, by
contrast, strong continuity is not sufficient as is well-known from [26]. Accordingly, in the
well-posedness theorems from [12], [13] for general semigroup generators, for instance,
a strong Whl-regularity condition is imposed, and in the more special well-posedness
result from [12] for a certain kind of group generators, there still is a norm continuity
condition.

As is well-known from [17], [8], [31], in the case of bounded operators A(t) one has
representation formulas of Campbell-Baker—Hausdorff and Zassenhaus type for the evo-
lution, which in the case (1.2) reduce to our representation formula (1.4). It should
be noticed, however, that for bounded operators condition (1.2) can be satisfied only if
@ =0, so that (1.4) is independent of [17], [8], [31] (for non-zero u). In view of the rep-
resentation formulas from [31] it is desirable to prove representation formulas analogous
to (1.4) also in the case (1.3), but this is left to future research.

All proofs in connection with the special situations (1.2) or (1.3) are, in essence, based
upon the simple fact that in these situations the operators A(r) can be commuted — up
to controllable errors — through the exponential factors of the standard approximants
Un(t,s) from [9], [12], [13], [23] for the sought evolution, which are of the form

Un(t, S) = eA(Tm)Tm - eA(Tl)ﬁ

with partition points rq, ..., r, of the interval [s,¢]. See (2.4) and (2.13) respectively.
Apart from proving well-posedness for semigroup generators with (1.2) or (1.3) (which
is our primary interest), we also improve the above-mentioned special well-posedness
result from [12] for a certain kind of group generators: in the spirit of [16] we show that
strong (instead of norm) continuity is sufficient in this result — just like in our other
well-posedness results for the case (1.2) or (1.3). And in a certain special case involving
quasicontraction group generators with time-independent domains in a uniformly convex



space, these other results can also be obtained by applying the improved well-posedness
result for group generators.

In Section 2 we state and prove our abstract well-posedness results, Section 2.1 and
Section 2.2 being devoted to the case (1.2) and (1.3) respectively and Section 2.3 being
devoted to the improved well-posedness result for group generators. Section 2.4 discusses,
among other things, the relation of our well-posedness results from Section 2.1 and 2.2
to the results from [12], [13], [16] and to the result from Section 2.3. In Section 3 we give
some applications, namely to Segal field operators ®( f;) as well as to the related operators
H,, + ®(f;) describing a classical particle coupled to a time-dependent quantized field of
bosons (Section 3.1) and finally to Schrédinger operators describing a quantum particle
coupled to a time-dependent spatially constant electric field (Section 3.2).

2 Abstract well-posedness results

We will use the notion of well-posedness and evolution systems from [7]. So, if A(%) :
D(A(t)) C X — X for every t € I := [0, 1] is a linear operator and Y is a dense subspace
of N;erD(A(T)), then the initial value problems (1.1) for A are well-posed on Y if and
only if there exists an evolution system U solving (1.1) on Y or, for short, an evolution
system U for A on Y. Such an evolution system is necessarily unique (which follows by
Corollary 2.1.2 of [25]). At some places we will also use the notion of evolution systems
from [23], which is slightly weaker in that it does not require that U(t,s)Y C Y for s <t.
We will then speak of evolution systems in the wide sense for A on Y. Commutators of
possibly unbounded operators are taken in the operator-theoretic sense,

D(A, B]) := D(AB — BA) = D(AB) N D(BA),

except in some formal heuristic computations (whose formal character will always be
pointed out). As to the standard notions of (M, w)-stability, of A(t)-admissible subspaces,
and of the part of an operator A in a subspace Y, we refer to [12] or [25]. X will always
stand for a complex Banach space, I = [0, 1] denotes the compact unit interval, and A
the triangle {(s,t) € I? : s < t}.

2.1 Scalar 1-fold commutators

We begin with a well-posedness result where, instead of the formal relation (1.2), the for-
mally equivalent commutation relation (2.1) for the semigroups eA) - with the generators
A(s) is imposed. Along with the well-posedness this theorem also yields a representation
formula for the evolution. It is a generalization of a well-posedness result of Goldstein [9]
(Theorem 1.1) and — after the slight modifications discussed in (2.27) and (2.28) below
— of Nickel and Schnaubelt [23] (Theorem 2.3 and Proposition 2.5).

Theorem 2.1. Suppose A(t) : D(A(t)) C X — X for every t € I is the generator of a
strongly continuous semigroup on X such that A is (M,w)-stable for some M € [1,00)
and w € R and such that for some complex numbers p(s,t) € C

A(s)eA™ 5 AT (A(s) + p(s, t)7) (2.1)



for all s,t € I and 7 € [0,00). Suppose further that the mazimal continuity subspace
Y :={y € NrerD(A(7)) : t = A(t)y is continuous}

is dense in X and that (s,t) — u(s,t) is continuous. Then there exists a unique evolution
system U for A on Y° and it 1s given by

Ult,s) = els AT AN 1/2 [0 [T nroydodr (5 4y ¢ A),

where (fst A(r) dr)o is the (closable) operator defined by y — fst A(T)ydr on Y°.

Proof. (i) We first show, in three steps, the existence of an evolution system U for A
on Y°, which is then necessarily unique by the remark at the beginning of Section 2. In
order to do so we approximate the sought evolution U by the standard approximants U,
from hyperbolic evolution equations theory, that is, we choose partitions

= {rni:i€{0,...,my}}

of I with mesh(m,) — 0 as n — oo and, for any such partition, we evolve piecewise
according to the values of ¢ — A(t) at the finitely many partition points of m,. So,

Un(t, s) := eArn(®)(t=s) (2.2)
for (s,t) € A with s, ¢ lying in the same partition subinterval of m,, and

Un(t, 8) — eA(rn(t))(t—rn(t))eA(Tﬁ ) (rn(t)—rn (t)) ... eA(rn(s))(nJ{(s)—s) (23)

for (s,t) € A with s, t lying in different partition subintervals of m,. In the equations
above, r,(u) for u € I denotes the largest partition point of 7, less than or equal to u
and 7, (u), 77 (u) is the neighboring partition point below or above r,,(u), respectively.

We then obtain, by repeatedly applying the assumed commutation relation, the fol-
lowing important commutation relation which allows us to take A(r) from the left of
U,(t, s) to the right and which is central to the entire proof:

t
A()Un(t, $)y = Un(t, ) (A(r) + / plr, (@) do )y (2.4)
for all y € D(A(r)). As a first step, we observe that
Up(t, s)Un(s,7) = Up(t,r) and  ||Up(t,s)|| < Me*#) (2.5)

for all (s,t),(r,s) € A and that A > (s,t) — Uy(t, s) is strongly continuous.

As a second step, we show that (U,(t, s)x) for every z € X is a Cauchy sequence in
X uniformly in (s,t) € A. Since NyeyD(A(r")) is invariant under the semigroups e(")-
for all r € I, it follows that [s,t] 3 7+ Un(t, 7)Un(T, 8)y for every y € NuerD(A(1')) is



piecewise continuously differentiable (with the partition points of 7, U, as exceptional
points) and therefore

T=t

Un(t,s)y — Un(t,8)y = Upn(t, 7)Upn(7, )y

T=s

= / Un(t, T)(A(T’n(T)) — A(?”m(T)))Un(T, s)ydr = / Un(t, 7)Up(T, )
(A(TH(T)) - A(?“m(T)) + /T :U'(rn(7—>v Tn(U)) - M(rm<7')7 T'n(O')) dO’)ydT

for every y € NperD(A(r')) where, for the last equation, (2.4) has been used. So,

b
i [Un(t, 8)y — Un(t, s)y|| < MZe = (/ [A(rn(7))y — A(rm(7))yll dr
s,t)e a

b b
+/a /a W(Tn(T)arn(U)) —M(Tm(T),Tn(U)H Iyl dad7‘> — 0 (m,n — o)

for every y € Y° by the uniform continuity of 7 +— A(7)y and (7,0) — u(7,0). And
by (2.5) this uniform Cauchy property extends to all y € X. Consequently,

Ul(t,s)r = nh—>Holo Un(t,s)z

for every x € X exists uniformly in (s,t) € A and hence the properties observed in the
first step carry over from U, to U.

As a third step, we show that ¢ — U(t, s)y for every y € Y° is a continuously differen-
tiable solution to (1.1) with values in Y°. Since 7 — Uy, (7, s)y for y € NueD(A(17)) is
piecewise continuously differentiable, we have

Un(t, )y =y + /St A(rn(7))Un(r, )y dr
=yt [ U ) (A + [ nlralr), o)) o)y i
by virtue of (2.4) and therefore
Ut,s)y=y + /St U(r,s) (A(T) + /ST w(r, o) dcr)ydT

for all y € Y°. So, t — U(t,s)y is continuously differentiable for every y € Y*° with
derivative

Fo UL ) () + / plt. ) do)y = lim AU, (t. s)y = AU (L. )y,

where the last two equations hold by (2.4) and the closedness of A(t). Also, since for all
yeY®andrel

A(r)Uy(t, s)y — U(t, s) (A(r) + /: p(r,o) da)y (n — o),



we see by the closedness of the operators A(r) that U(t,s)y € Y° for y € Y°. So, in
summary, we have shown that U is an evolution system for A on Y°.

(ii) We now show, in three steps, that ( fst A(1) dr)° for every fixed (s, t) € Ais closable
and that its closure generates a strongly continuous semigroup in X with

e(]: A(r)dr)° _ U(t, 5)6_1/2fst J7 (o) dO’dT‘

As a first step, we show a discrete version of the above representation formula: more
precisely, we show that B, := fst A(rp(7)) dr is closable and that B,, generates a strongly
continuous semigroup with the following decomposition of Zassenhaus type:

B — U (¢, 8)e V2T mon(@ @) dodnirt (1 0] 50)), (2.6)

where the operators U) (t, s) are defined in the same way as the operators U, (¢, s) above
with the only difference that now the generators A(u) are all multiplied by the number
r. Indeed, by the assumed commutation relations, we obtain the following commutation
relations for semigroups,

eAiTeiT = AiTe AT T (5 7 € [0, 0)), (2.7)

where Ay := A(tg)hy and pg; := p(ty, t)hehy for arbitrary ¢y, ¢; € I and hg, by € [0, 00).
(In fact, if y € D(4;), then

eAjTeAiaemjo"ry _ eAiaeAjTy — eAi(afr)eAj‘reAire,uijr‘ry‘:zg
and [0,0] 3 r — eAi(0 ) eAiTeAireris 7Ty ig differentiable with derivative 0.) With the

help of (2.7) one verifies that
[07 OO) ST — eAmr .. €A1T€—1/2 i<y fjir? (2-8)

is a strongly continuous semigroup in X . As this semigroup, by the assumed commutation
relation, leaves the subspace D(A1) N--- N D(A,,) invariant, its generator contains the
operator A; + - -- + A,,, which is therefore closable with closure equal to the generator.
Since B, is of the form A; + --- + A,, and since the right-hand side of (2.6) is of the
form (2.8), the assertion of the first step follows.

As a second step, we observe that the limit T(r)z := lim, . e "z exists locally
uniformly in r € [0,00) for every € X and that T is a strongly continuous semigroup
in X. Indeed, with the same arguments as in (i), it follows that (U}, (¢, s)z) is convergent
locally uniformly in r for every = € X and therefore the strongly continuous semigroups
ePr- by (2.6) are strongly convergent locally uniformly in r, so that

T(r)x := lim Py = U"(t, 8)671/2(f; I3 o) dodryr? (x € X) (2.9)

n—oo

defines a strongly continuous semigroup 71" on X.



As a third step, we show that the generator A7 of this semigroup is given by B° where
B° = (f; A(T) dT)O, from which the desired representation formula for U then follows
by (2.9). Indeed, for all y € Y°,

T(h)y — Buhy 1" g e
MW i SV 3 [P By = [T By
0 0

n—o0 n—o0

— B% (h\0)

by the dominated convergence theorem. So, B? is closable with B° C AL We now want
to show that D(B°) is a core for A by verifying the invariance T'(r)D(B°) C D(B°) for
all 7 € [0,00). If y € Y°, then

_ _ t ot
BpePrnty = ¢Pnr (Bm + l/mynr)y with vy, = / / w(rm(7), o (0)) dodr
S S

by the product decomposition of eBr” from (2.6) and by the central commutation rela-
tion (2.4). So,

BOGETy — oBnr (B°+ lim vpmnr)y

m—0o0

for all y € Y°, from which it further follows that

T(r)y € D(B°) and B°T(r)y=T(r)(B°+ lim lim vp,r)y =T(r)B%
n—o0 Mm—0o0
for all y € Y°. In the last equation, we used that u(r,0) = —pu(o,7) for all o,7 € I
which can be seen from (2.7). It follows that B°T(r) D T(r)B° and, in particular,
T(r)D(B°) C D(B°) for all r € [0,00). So, D(B°) is a core for A7 and hence Ay = B°,
as desired. |

We also note the following variant of the above theorem where the form of the imposed
commutation relation is closer to (1.2). In return, one has to require relatively strong
invariance conditions.

Corollary 2.2. Suppose A(t) : D(A(t)) C X — X for every t € I is the generator of a
strongly continuous semigroup on X such that A is (M,w)-stable for some M € [1,00)
and w € R. Suppose further that Y is an A(t)-admissible subspace of X for everyt € I
such that

Y C(\D(A(r)  and  A()Y C () D(A()),
Tel Tel

A(t)|ly is a bounded operator from'Y to X, and
[A(s), A@®)]],. € p(s,1) € C

for all s,t € I. Suppose finally that (s,t) — p(s,t) and t — A(t)y are continuous for all
y € Y. Then the conclusions of the above theorem hold true.



Proof. We establish the commutation relations
eMoedem — MaT oo pmzTo (5 1 ¢ [0, 00)), (2.10)

where Ay := A(tx) and pg; := u(tg,t;) for arbitrary ¢1,ty € I. In order to do so, one
shows that

AleAQTy = CAQT (A1 + ,u127')y (211)
for y € Y by differentiating [0,7] 3 r — e42(7=") A 427y for vectors y in the domain
of the part A of Ay in Y which by the As-admissibility of Y is the generator of the
strongly continuous semigroup t — e42t|y in Y (Proposition 2.3 of [12]). (In addition to
the As-admissibility, the boundedness of A;|y from Y to X and the invariance condition
A1Y C D(A3) come into play here.) Along the same lines as (2.7), the relation (2.10)
then follows. And since (2.10) is equivalent to the commutation relations (2.1) and since
Y° DY is dense in X, the assumptions of Theorem 2.1 are satisfied, as desired. |

2.2 Scalar p-fold commutators

We begin with a well-posedness result where, instead of the formal relation (1.3), the
formally equivalent commutation relations (2.12) for the semigroups eA(®)- with the gen-
erators A(s;) = C(s;) and certain operators C*)(sy, ... s;1) (which are formally
given by k-fold commutators) are imposed.

Theorem 2.3. Suppose A(t) : D(A(t)) C X — X for every t € I is the generator of a
strongly continuous semigroup on X such that A is (M,w)-stable for some M € [1,00)
and w € R and such that for some operators C*)(sy, ... spi1), where k € {0,...,p—1}
and C0)(s) := A(s), and for some complex numbers pu(ty, ... tyr1) € C

p—1—k
CH) (5)eAD™ 5 AT (CW) (5) 4 OF D (5, t)7 - 4 CP (st ... ,t)i( T it
p—1—k)!
Pk
+u(s, t,...,t) (p—k)!) (s :=1(S1,.-,5k+1)) (2.12)

for all k € {0,...,p— 1} and s;,t € I and T € [0,00). Suppose further that the mazimal
continuity subspace

p—1
Y° = ﬂ {y € Dy (t1,... tgr1) = CP(t1, ... tey1)y is continuous}
k=0

Dy := mT1,--.,Tk+1EID(C(k) (71, Tht1)

is dense in X and that (t1,...,tp41) — p(ti, ..., tp+1) is continuous. Then there exists
a unique evolution system U for A on Y°.



Proof. We define U,, as in (2.2) and (2.3) and, for u € I, we define i,, to be the index
i € {0,...,my,} with u € [rp;,Tnit1). We then obtain, by the assumed commutation
relations, the following important commutation relation which allows us to take the
operators A(r) from the left of U, (¢, s) to the right:

AU (t, 8)y = Un(t, s)(A( )+ St s,r) + -+ SP(t,s,7))y (2.13)

Tk—1
k) .
S( (t,s,7) : / / / (r, rninT17""TninTk)/ainle--qin-rk dry, ...dradm

for all y € Y°, r € I, (s,t) € A, where «;j, . for a k-tupel (ji,...,jr) of natural
numbers denotes the number of permutations o leaving the k-tupel invariant, that is,
(jo‘(l)a v 7ja(k)) = (jlv s a]k)

(In verifying (2.13), it is best to abbreviate A(r) = Ag and Uy,(t,s) = e?m ... e and
to prove by induction over m € N, with the help of the assumed commutation relations,
that

Ageltm ety = edm et (Ao + SM 4y S(p))y
k
sO.= N o) e

1<jp<--<jism

and finally to notice that the sums S*) are nothing but the integrals sk (t,s,7)in (2.13).)
With the commutation relation (2.13) at hand, we can now proceed in the same way as

in the proof of Theorem 2.1 because the maps (t1,...,tp1) — CHE(t1, ... tpi1)y are
continuous for y € Y° by assumption and because for every (ri,...,7) € I with
T > -+ > T}, one has iy sevsin sy, k! as n — oo. |

We also note the following variant of the above theorem where the form of the imposed
commutation relation is closer to (1.3). In return, one has to require relatively strong
invariance conditions.

Proposition 2.4. Suppose A(t) : D(A(t)) C X — X for every t € I is the generator
of a strongly continuous semigroup on X such that A is (M,w)-stable for some M €
[1,00) and w € R and recursively define CO)(t) := A(t) as well as C®)(ty,... tpy1) ==
[CE=D(ty, ..., tp), A(tgs1)] for k € N. Suppose further that Y is an A(t)-admissible
subspace of X for every t € I, and p € N a natural number such that for all t; € I

Yc (] DCPV(m,...,5) and  CP V(... )Y C [ D(CO

T1yeeyTpEL el
C®)(ty,... txs1)]y is a bounded operator from'Y to X for all k € {0,...,p— 1}, and
C(p)(tl”"’tp+1)’D(A(tp+1)) C,u(tl,.. p+1) eC,

where A(t) is the part of A(t) in' Y. Suppose finally that (t1,... tyr1) = u(t, ... tpe1)
and (t1,...,tke1) — C(k)(tl, .y tgr1)y are continuous for ally € Y and k € {0,...,p—
1}. Then there exists a unique evolution system U in the wide sense for A on'Y.



Proof. With the same arguments as for (2.11) one verifies the commutation relations

p—1—k
OO (e)e A7y = A0 )+ CHD (s ) -4 CO Vst )T

Pk
+,u(§,t,...,t)m)y (s:=(51,---,8k+1))

forally € Y and k € {0,...,p— 1} and from these, in turn, one obtains the existence of
an evolution system U in the wide sense for A on Y in exactly the same way as in the
proof of Theorem 2.3. In order to obtain uniqueness, one has only to observe that for
any evolution system V in the wide sense for A on Y,

T=5

Un(t,s)y —V(t,s)y = V(t,7)Un(T, s)y‘T:t = / Vi(t, 1) (A(rn(r)) - A(T))Un(T, s)ydr

converges to 0 for every y € Y and (s,t) € A by (2.13). [

2.3 Well-posedness for group generators

After having proved well-posedness results for semigroup generators with (1.2) or (1.3),
we now improve, inspired by [16], the special well-posedness result from [12] (Theorem 5.2
in conjunction with Remark 5.3) for a certain kind of group (instead of semigroup) gen-
erators A(t) and certain uniformly convex subspaces Y of the domains D(A(t)): we
show that this result is still valid if ¢ — A(t)]y is assumed to be only strongly contin-
uous (instead of norm continuous as in [12]). In [16] the same is done for the general
well-posedness theorem from [12] (Theorem 6.1). We point out that although several
arguments from [16] can be used here as well, it is by no means obvious that the im-
provement made in [16] can be carried over to the special well-posedness result of [12].
In particular, the possibility of such an improvement is not mentioned in the literature
— at least, not in [16], [32], [33], [14], [15], [29], [30].

Theorem 2.5. Suppose A(t) : D(A(t)) C X — X for every t € I is the generator of a
strongly continuous group on X such that AT := A(.) and A~ = A(1 — .) are (M,w)-
stable for some M € [1,00) and w € R. Suppose further that Y for every t € I is an
A% (t)-admissible subspace of X contained in N,;erD(A(T)) and that A(t)|y is a bounded
operator from 'Y to X such that

tF%‘A(tHY
is strongly continuous. And finally, suppose there exists for eacht € I a norm ||. Hti onY
equivalent to the original norm of Y such that Y= := (Y, ]| . Hf) is uniformly convex and
ol < e Nlly (v €Y and st € 1) (2.14)

for some constant ¢* € (0,00) and such that the Y -part AT(t) of A*(t) generates a
quasicontraction semigroup in Yti, more precisely

HeAi(t)Ty

+
eyl (reo)yeYite (2.15)

for some wy € R. Then there exists a unique evolution system U for A on Y.

10



Proof. We adopt from [16] the shorthand notation U (¢, s, 7) for products of the semi-
groups eAT (M) associated with finite or infinite partitions 7 in I. Without further spec-
ification, convergence or continuity in X, Y will always mean convergence or continuity
in the norm of X, Y. As a first step we show that for each y € Y and s € [0,1)
there exists a sequence (m;) = (7, ,,) of partitions of I such that (UE(t,s,mr, ,)y) is
a Cauchy sequence in X for ¢ € [s,1]. What we have to show here is that for every
sequence 7 = (t), strictly monotonically increasing in I, and arbitrary ¢ € [tg, tgp11),

the following assertions are satisfied (Lemma 1 of [16]):

i) (U*(t,ty, m)x) is a Cauchy sequence in X for every z € X whose limit will be
k
denoted by U*(ts, to, T)x where too := limy ;00 th.,

(ii) (U*(t),,t0,m)y) is a Cauchy sequence in Y for every y € Y.

With the help of Lemma 2 and 3 of [16], whose proofs carry over without change to
the present situation, the existence of sequences (Trism) of partitions with the claimed
properties then follows. Assertion (i) is simple and is proven in the same way as in [16],
while assertion (ii) has to be proven in a completely different way because the proof
of [16] essentially rests on the existence of certain isomorphisms S(¢) from Y onto X
which are not available here. We show, using ideas from [12] (Section 5), that

Ut (too, to,m)y €Y and  UE(t},to, )y — UT(too, to, ™)y weakly in Y (2.16)
for every y € Y and that

limsup [|UF(th, to, M)yl < [[UT (toos to, Myl (oo =1~ tec) (2.17)
k—00

for y € Y, which two things by the uniform convexity of ¥; imply the convergence
of (U%(t,,t0,m)y) to UF(too,to,m)y in Y and in particular assertion (ii). In order to
see (2.16) notice first that A* is (M, o)-stable for some M € [1,00) and @ € R by (2.14)
and (2.15) (Proposition 3.4 of [12]), so that the sequence (U*(#}, to, 7)y) is bounded in the
norm of Y. Since Y is reflexive (Milman’s theorem), every subsequence of (U= (¢}, o, 7)y)
has in turn a weakly convergent subsequence in Y whose weak limit must be equal to
U (too, to, ™)y by assertion (i), and therefore (2.16) follows. In order to see (2.17) notice
first that (Ui(t;,tn,ﬂ)x)neN is a Cauchy sequence in X for every z € X and k € N,
where

U(t)y,7,70) == US (1, t),m) "t = o AT M) (thp1—ty) | o= AF(ra (7)) (T =7 (7))

for 7 € (t},t~) and where 7. (7) denotes the largest point of 7 less than or equal to 7.
Indeed, for every z € Y,

tn
UE (), tom, m)x — UL (th, b, )2 = —/ UE(t),, 7, m) AT (re(1))zdr — 0 (m,n — o0)
tm

in X and by the (M,w)-stability of AT, this convergence extends to all x € X. We
denote the limit by U~ (#}, too, )2 and note for later use that

U (th,too, )y €Y  and Ui(tg,tn,w)y — Ui(tg,too,ﬁ)y weakly in Y (2.18)
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by the same arguments as those for (2.16). Since U= (t;,to, 7) = UL (t}, tn, 1)U (tn, to, 7)
for all n € N, it follows that

UE(t),, to, m) = UL (th, too, T U (too, to, ). (2.19)
Also, since

Ui(tk,tn,w) — AT trp1=1) | QAT (n1)(tn—tn—1) (ti:=1—1t)

for n > k+1, it follows by successively passing from || . |7 to | . ||;i to ... to ||. ||%E_1 and
back to ||. ||l with the help of (2.14) and by using (2.15) at each successive step, that

HUi(tZ,tnﬂT)ZHio < e2¢(too—t) pwoltn—1},) HZH;;
for every z € Y, and therefore
U (# tooy w2l < ettt ettt 5| F (2.20)

for z € Y by virtue of (2.18). Combining now (2.19) and (2.20) we obtain (2.17), which
concludes our first step.

As a second step we observe that Ugt(t, s)y = limy, 500 UT(2, s,Trysn)y fory e Y
and (s,t) € A defines a linear operator from Y to X extendable to a bounded operator
U*(t,s) in X, and that U* is an evolution system in X such that t — U*(t, s)y for every
y € Y is right differentiable (in the norm of X) at s with right derivative A*(s)y. All
this follows in the same way as in [16]| (Lemma 4 and 5). In particular, it follows from the
right differentiability and evolution system properties just mentioned that [0,¢] 3 s —
U*(t,s)y is continuously differentiable (from both sides) for every y € Y with derivative
s+ —U%(t,5)A%(s)y by Corollary 2.1.2 of [25].

As a third step we show that U (¢, s) leaves the subspace Y invariant for every (s,t) €
A and that [s,1] > t +— U*(t,s)y is right continuous in Y for every y € Y. In order
to see that UT(t,s)y lies in Y for y € Y, notice that the sequence (U*(t, s,wjﬁs 2)Y) 1s
bounded in the norm of Y, whence by the same argument as for (2.16)

Ur(t,s)yeY and UE(t,s, 7Ty sn)Y — U*(t,s)y weakly in Y. (2.21)
In order to see that [s,1] 3 t + UT(t,s)y is right continuous in Y for every y € Y, we
have only to show, by the invariance property just established, that U*(t + h,t)y — y
in Y as h \ 0 for every ¢t € [0,1). And for this in turn it is sufficient to show, by the
uniform convexity of Y;, that

UL(t+h,t)y — vy weakly in Y as h \, 0 (2.22)
and
. +
hr}rll\sgp U+, )y, < Iyl (2.23)
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Since this can be achieved in a way similar to the proof of (2.16) and (2.17), we may
omit the details.

We can now show that ¢ — U™ (t,s)y is continuous in Y for every y € Y and then
conclude the proof. Indeed, since 7 +— UT(1 — 5,1 — 7)z is differentiable for z € Y with
derivative 7+ UT(1 — 5,1 — 7)AT(1 — 7)z and 7+ U*(7, s)y is right differentiable for
y € Y with right derivative 7 +— A% (7)U (7, s)y by our second and third step, the map
[s,8] > 7+ UT(1 —s,1 — 1)U*(r,5)y is right differentiable for every y € Y with right
derivative 0. So,

UT(1—s,1—)US(t,8)y —y =UT(1 —s,1 = 7)U*(7,8)y|_ =0

T=s

for every y € Y by Corollary 2.1.2 of [25] and therefore

UF(1—5,1-t)U*(t,s) =1=UT(1 1,1 -3)UT(5,1) =UT(t,s)US(1 —s,1 — 1)
for all (s,t) € A. It follows that
Ut(t—h,s)y=U"(t,t —h)'UT(t,8)y=U"(1 —t+h,1 =) UT(t,8)y — UT(t,5)y

in Y as h \, 0 by our third step, whence t — U (¢, s)y right and left continuous and
hence continuous in Y. Combining this with the previous steps, we see with the help of
Corollary 2.1.2 of [25] that ¢ — U™ (t,s)y is continuously differentiable in X for every
y € Y with derivative t — A1 (¢t)UT (¢, s)y and therefore U := U™ is an evolution system
for A= AT on Y, as desired. [ |

Incidentally, it is also possible to improve (a version of) the well-posedness theorem
from [13] (Theorem 1) in the spirit of [16]: in this theorem strong continuity of t — A(t)|y
is sufficient as well, provided that A is (M,w)-stable (instead of only quasistable) and
that ¢ — ||B(t)|| is bounded (instead of only upper integrable). (We make this proviso
in order to make sure that the boundedness condition (2.1) of [16] is still satisfied for
arbitrary partitions 7 and that (2.2) of [16] is satisfied with the modified right hand side
C =] fttfv a(1) dr, where « is a suitable integrable function. All other arguments from [16]
carry over without formal change, a bit more care being necessary in the justification of
assertion (c) of [16] because of the weaker regularity of ¢ — S(t) — see [6].)

2.4 Some remarks

We close this section about abstract well-posedness results with some remarks concerning,
in particular, the relation of the results from Section 2.1 and 2.2 with the results from [12],
[13], [16], [23] and the result from Section 2.3.

1. Clearly, the strong continuity conditions of the theorems from Section 2.1 and 2.2
are weaker than the regularity conditions of the general well-posedness results from [12]
(Theorem 6.1), [16], and [13] (Theorem 1) for general semigroup generators A(t) with-
out commutator restrictions of the kind (1.2) or (1.3). Indeed, in these results a strong
continuous differentiability condition or more generally a strong W'!-condition is im-
posed on t — A(t) in the case of time-independent domains D(A(t)) = Y or on some
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related operator function ¢ — S(t) in the case of time-dependent domains D(A(t)) D Y.
In the special well-posedness result (Theorem 5.2 and Remark 5.3) from [12]| for group
generators A(t), the imposed regularity condition is quite close to ours, namely a norm
continuity condition on ¢t — A(t)|y. As has been shown in Section 2.3, strong continuity
of t — A(t)|y is sufficient as well. And in fact, if in addition to the assumptions of The-
orem 2.3 the following three conditions are satisfied, then the well-posedness assertion of
this theorem (but no representation formula, of course) also follows from Theorem 2.5:

e A(t) for every t € I is a quasicontraction group generator with time-independent
domain D(A(t)) =Y in the uniformly convex space X such that

HeiA(t)T

< (r€0,00)) (2.24)

for some t-independent growth exponent w € R,

o O (t1,...,tg41) is a bounded operator on X for every (t1,...,txy1) € I¥T! and

sup
(tl,...,tk+1)€1k+l

oW (ty,. .. ,tkH)H < 0 (2.25)

for every k € {1,...,p — 1} (an empty condition for p = 1),
e {+— A(t)y is continuous for every y € Y.

Indeed, under these conditions the norms || . Hf appearing in Theorem 2.5 can be chosen
to be ||.||, == |[(A(0) —w —1).| for every ¢t € I (t-independent!): with this norm,
Y becomes a uniformly convex subspace admissible for the group generators £A(t) and

HeiA(t)ry

| <elyl. (e Y and € [0,00)) (2.26)

for a suitable wy € R, and finally Y° = Y. (In order to see (2.26) and the £A(?)-
admissibility of Y one checks that (2.12) holds true for 7 € (—00,0) as well, so that in
particular

Q)T = O (A(0) 4 OO0, 1)(Er) + -+ CPD 04 (&P /(1)
+ (0, ¢, ... ,t)(:I:T)p/p!)y

for all y € Y and 7 € [0,00). With the help of (2.24) and (2.25) the desired +A(t)-
admissibility and the quasicontraction group property (2.26) then readily follow.)

2. In the well-posedness theorems from [10] and [20] weaker notions of well-posedness
are used than here [21], which in return allows for weaker regularity assumptions than
those of [13] and [16]. In the second product representation theorem from [24]| (Proposi-
tion 4.9) which also asserts well-posedness, there seems to be missing, in the hyperbolic
case, an additional regularity assumption of the kind of condition (ii”) from [12]. At
least, it is not clear [19] how the asserted well-posedness should be established and how
the range condition from Chernoff’s theorem (invoked in [24]) should be verified without
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such an additional assumption. (In this respect, see in particular Theorem 4.19 of [22]
and the remarks preceding it, which state that ) is a core for G only under the additional
condition (ii”) from [12].) As far as [5] is concerned, it should be remarked that the ab-
stract well-posedness theorem of this paper is actually a corollary of the well-posedness
theorem of [13]. (Indeed, if for every y € Y the map t — S(t)y is differentiable at
all except countably many points with an exceptional set N not depending on y and if
supiep\ v 19 ()yl| < oo, then ¢ — S(t)y is already absolutely continuous (Theorem 6.3.11
of [4]) and

(0= 500+ | Sy dr

(Proposition 1.2.3 of [1]) for every y € Y, so that the strong W!'!-regularity condition
for t — S(t) from [13] is satisfied.)

3. It is clear from the proofs of Theorem 2.1 and Theorem 2.3 that the well-posedness
statements remain valid if the (M,w)-stability condition of these theorems is replaced
by the condition from [23] that there exist a sequence (m,) of partitions of I such that
mesh(m,) — 0 and

HeAm(t))(t—m(t))...6A<rn<s>>(rz(s>—s> < Me*t=9) ((s,1) € A). (2.27)

In |23] it is shown that this stability condition is strictly weaker than (M,w)-stability.
Also, it is clear from the proof of Theorem 2.1 that the representation formula for the
evolution is still valid if (2.27) is sharpened to

HeA(rn(t))r(t—rn(t)) . eA(m,,(s))r('r;L"(s)—s) < Mewr(t—s) ((5’ t) c A’ r e [O7 OO)) (228)

In particular, the method of proof of Theorem 2.1 yields an alternative and more elemen-
tary proof (without reference to the Trotter-Kato theorem) of Proposition 2.5 from [23]
(or, rather, of a slightly corrected version of it: in order for the proof of [23] to work
one has to choose as the domain of f; A(7) d7 the maximal continuity subspace Y° of A
instead of the quite arbitrary subspace denoted by Y in [23]| because such a subspace, in
contrast to Y°, is not left invariant by (B, — A\)~! in general).

4. In the case (1.2), one might think that it should be possible to (more efficiently)
obtain the well-posedness of the initial value problems (1.1) on Y*° by first defining a
candidate U for the sought evolution system through the representation formula

(](t7 3) e €Wel/2f: I (o) dadT7

and by then verifying that this candidate is indeed an evolution system for A on Y°.
In order to prove that the closure of ( fst A(T)dr)° exists and is a semigroup generator,
one might want to employ the theorem of Trotter and Kato as in [23] — instead of
exploiting the locally uniform convergence of the sequences (U} (¢, s)x) as we did. And in
order to verify the evolution system properties for U, one might want to make rigorous
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the following formal differentiation rule for exponential operators (appearing in [31], for
instance):

eBt+h) _ oB(1) B eBUANT B(H)(1-7) \7=1 _ /1 oBlt+h)T B(t+h) — B(t) BHA-T) 4o
h 7=0 0 h
1
— / eBUENT B! (1) BOA=T) gr (b — 0) (2.29)
0
with B(t f A(T)dr)°. Yet, this is possible only if Reu(r,0) > 0 for all 0 < 7

because only then can the right hand side of (2.6) be dominated by a bound M’e¥" for
all 7 € [0, 00) uniformly in n € N (a first crucial assumption of the Trotter—Kato theorem).
And moreover, the verification of the density of ran ((fst A(T)dr)° — A) in X for A > o'
(a second crucial assumption of the Trotter-Kato theorem) and the verifications of the
evolution system properties for U with the help of (2.29) are more involved than the
arguments in our approach.

3 Some applications of the abstract results

3.1 Segal field operators

In this subsection we apply the well-posedness result of Section 2.1 to Segal field operators

O(fy) in F(h) (symmetric Fock space over a Hilbert space h) with f; € h. As for
standard facts about such operators we refer to [2]. It is well-known by the Weyl form
of the canonical commutation relations that

i®(fs)e' T = U (i(f,) — i (fs, fi) 7) (3.1)

for all s, € I and 7 € R, and therefore we obtain the following well-posedness result by
means of Theorem 2.1.

Corollary 3.1. Suppose A(t) = i®(fi) in X = Fy(h) and t — fi € b is continuous.
Then there exists a unique evolution system U for A on the maximal continuity subspace
Y° for A and it is given by

_ t
Ut 5) = eUs 10U d7)° =i/2 [! 7 (- fo) dordr _ W(/ f d7_>€—i/2f: 7 I{fr fo) do dr

where W (h) := e®") denotes the Weyl operator for h € b.

Proof. Since t — f; is continuous and since for all f € h and ¢» € D(NY?) (N the
number operator in F4(h))

(vl < 22N + 1)1 2,

the maximal continuity subspace Y° for A contains the dense subspace D(N'/2) of X.
So, by (3.1) the desired well-posedness statement and the first of the asserted rep-
resentation formulas for U follow from Theorem 2.1. (Alternatively, one could also
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apply Corollary 2.2 with Y := D(N) endowed with the graph norm of N because
A(t)D(N) € D(N'/?) C ﬂfefD(A(T)) and [A(s), A(t)]|p(vy € —iIm (fs, fo),

N ) = D (N 1+ a(if) + | £]?)

for all f € h.) In order to see the second representation formula for U, repeatedly apply
the identity W (f)W (g) = W(f + g)e~/?1™{:9) to the approximants U, for U from the
proof of Theorem 2.1 and use the strong continuity of h 3 h — W (h). |

We point out that alternatively the above result could also be obtained by the strategy
sketched in the fourth remark of Section 2.4 (because here Re u(7,0) = 0 for all o, 7 € I).
Also, a slightly weaker result, namely the well-posedness in the wide sense on Y =

D(H&,/ 2), could be obtained in yet another way under the slightly stronger condition
that both ¢ — f; and ¢t — f;/\/w € h = L*(R3) are continuous (where w € C(R3,[0,0))
with w(—k) = w(k) for k € R? and where H,, is the second quantization of w). Indeed,
by exploiting the exponential series expansion for Weyl operators on vectors % in the
finite particle subspace Fo4(h), one can show that

t
t— U(t,s)y = W(/ fr dT)i/} e—i/2f; ST Im(fr,fo) dodr

is differentiable for 1 € Fy4(h) with the desired derivative. Using the fact that Fo4(h)
is a core for <I>(ft)|D(H1/z) uniformly in ¢ € I (see (3.3) below) and the commutation

relation (3.1), one then concludes that ¢t — U(¢, s)1 is continuously differentiable for all

Y € D(Hy Y 2) with the desired derivative. (Uniqueness of the thus constructed evolution
system U for A on Y in the wide sense follows from [11].)

With the help of the above well-posedness result for Segal field operators one can also
show the well-posedness of the initial value problems for A on D(H,,) with the operators
A(t) :== —i(Hy, + ®(f;)) which describe a classical particle coupled to a time-dependent
quantized field of bosons.

Corollary 3.2. Suppose A(t) = —i(H,, + ®(f;)) in X := Fy(bh), where b := L*(R?) and
w € O(R3,[0,00)) with w(—k) = w(k) for k € R3, and suppose t ~ f;, fi/\/w € b are
continuous and t — f; is even Lipschitz. Then there exists a unique evolution system U
for A on D(H,,) and it is given by (3.2) and (3.4).

Proof. 1t is well-known that A(t) is skew self-adjoint on D(H,) because fi, fi/\/w € b.
We define U as the interaction picture evolution,

Ul(t,s) := e ol (¢, 5)ettles, (3.2)
where U denotes the evolution system for A with A(t) = —ieet®(f;)e vt Since

A(t) = —ieiH‘“t(I)(ft)e_iH‘“t — 'L(I)(ft) with ft — _eiwtft’
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the maximal continuity subspace Y° for A contains the dense subspace D(Hol/ 2) by the
standard estimate

2\1/2
12wl < (LA + [/ ]*) 21 (e + 1)Y2) (3.3)
for ¢ € D(H}J/Q) and f, f/+v/w € b. And therefore, by Corollary 3.1, the evolution system
U really exists on Y° and is given by

t e
Ult,s) = W(/ fr dT)efi/Qfs St (frfo ) do dr (3.4)

We have to show (i) that U(t,s)D(H,) C D(H,) for all (s,t) € A because only then is
t — U(t, s)y differentiable for all v € D(H,,) with the desired derivative t — —i(H,, +
O(f1))U(t,s)y and (ii) that this derivative is continuous. Since, as is well-known,

H,W(g) = W(g)(He, + ®(iwg) + (g,wg) /2) (3.5)

for every g € D(w), we are led to showing that
t
gi == / frdr € D(w) and ¢+ wg; € b is continuous. (3.6)
S

In order to do so notice that t — f;, being a Lipschitz continuous function with values
in the reflexive space b, belongs to the Sobolev space W1>°(I,h) and therefore we can
perform the following integration by parts:

t t
gt = / e (iw + 1)L f dr + / e“Tiw (iw+ 1)1 f, dr
S S

=t

t t
:/ e (iw + 1) dr + T (iw + 1)1 fr —/ e (iw + 1) fLdr.

As a consequence, (3.6) ensues and by (3.5), (3.3), (3.1) the desired assertions (i) and (ii)
readily follow. [ ]

r
T=s

We point out that in order to obtain the above conclusion by the well-posedness theo-
rem from [13], [14] (Section 1), one needs the additional assumption that ¢t — fi/\/w € b
is Lipschitz as well.

3.2 Schrédinger operators for external electric fields

In this subsection we apply the well-posedness result of Section 2.2 to Schrédinger oper-
ators —A +b(t) -z in X := L*(R?%) describing a quantum particle in a time-dependent
spatially constant electric field b(t) € R%. Setting A(t) = iA —ib(t) - x, we obtain by
formal computation

d
[A(t1), A(t2)] = QZ(bn(tz) — be(t1))0k,  [[A(t1), A(t2)], A(t3)] = p(t, t2,t3)  (3.7)
k=1
with p(ty, te, t3) == —2i 2% (bu(ta) — be(t1))bs(t3) € C and we therefore expect to be

able to apply Theorem 2.3 with p = 2. Indeed, we have (see also the remarks below):
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Corollary 3.3. Suppose A(t) = Ag+ B(t) in X = L*(RY), where Ay := iA with
D(Ag) = W22(R?) and where B(t) is multiplication by —ib(t)-x, and suppose t — b(t) €
R? is continuous. Then there exists a unique evolution system U for A on the mazimal
continuity subspace Y° for A = C) and C) defined after (3.10). Additionally, U is
given by (3.11) and (3.12).

Proof. (i) We first show that Ay + B(ty) for every ¢y € I is essentially skew self-adjoint
and that the unitary group generated by A := Ay + B(tp) is given by

2 2 1213
eAt — erteBte—alblt . e—adbdt eQZb t /3 (t c R), (38)

where B := B(tg) and b= (by,...,bq) := b(ty) € R%. We do so by showing that the right
hand side of (3.8), which we abbreviate as T'(¢), defines a strongly continuous unitary
group in X with

Ao+ B CAr and T(t)D(Ap+ B) C D(Ag+ B) (te€R),

where Ap stands for the generator of T'. (In order to understand why e should decom-
pose as in (3.8), plug the following formal commutators

d
(B, Ag] = =2 b0, [[B, Ao), B] = 2i0*, [[B, Agl, Ao] =0

k=1

into the Zassenhaus formula [17], [28], [3] for bounded operators.) With the help of
the explicit formulas for the groups e40- (free Schrodinger group), e+ (multiplication
group), = (translation group) we find the following commutation relations,

erte&gs _ ea'iSert, eBteams — €8KS€Bt62b”t8,

19,2
eA()teBS — eBSert€281b1tS . 626dbdtse b t*s (S,t c R) (39)

It follows from (3.9) that 7" is indeed a strongly continuous unitary group and that

eP*D(Ag) € D(Ag), €’*D(B) c D(B), eP*D(4y) c D(4y),
e D(Ag+B) c D(B)  (s,t €R),

so that T'(t)D(Ap + B) C D(Ap + B) for all t € R and Ay + B C Ar. Consequently,
Ag + B is essentially skew self-adjoint and A = Ay + B is equal to Ap. After these
preparations we can now verify the assumptions of Theorem 2.3 for p = 2. Indeed, using
the commutation relations (3.9) we find that

eClgaeAg‘r ASTGCIQUG'MHSTU, eAlo'eAg‘r — eAgTeAlo'eCmTae,umgTQo'/Qe,ulzl‘rch/Q (310)

=e

for all 0,7 € R, where A; = A(t;) = CO(), b; := b(t;), Cir. = CO(t;,t;) is
the closure of QZizl(blm — bj )0 (that is, Cj; generates the translation group t —
k1=t )0t 2(bka=bja)0at) and pijp = —2i Zizl(bkm — bjx)bix. And from (3.10),
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in turn, the commutation relations imposed in Theorem 2.3 follow by differentiation at
o = 0. Since, moreover, the maximal continuity subspace for A = C(® and C) con-
tains the dense subspace of Schwartz functions on R%, the existence of a unique evolution
system U for A on Y° follows by Theorem 2.3.

(ii) We now show the following representation formula for U:

Ult,s) = W(t)U(t,s)W(s) ! = elo B dn)° o[S A(r) dr o=(J5 B(7) dr)°, (3.11)

where U is the evolution system for A on D := W22(R%) with A(t) := —i(—iV — ¢(t))?
and c(t) := fg b(T) dr and where the gauge transformation W is the evolution system for
B on Z°, the maximal continuity subspace for B. Clearly, since B(7) = —ib(7) -  and

A(r) = —iF Mg — e(n)*F,
oo Brydr)e _ =i f[gb(r)xdr o0 q JEAM) dr _ g1 =i [{(E—c(r)?dr (3.12)

(which last expression could be cast into a more explicit integral form similar to the
explicit integral representation of the free Schrodinger group). It should be noticed that,
due to the pairwise commutativity of the opertors A(t) and of the operators B(t), the
existence of the evolution systems U and W, and the second equality in (3.11) already
follow by [9] and [23]. In order to see the first equality in (3.11), one shows by similar
arguments as those of part (i) above that the subspace Yy := DN Z° of Y° is invariant

under W (s)~, U(t,s), W(t) and that
AW (t)f = W(HA(t)f

d d t
B(r)U(t,s)f = U(t, s) (B(r)f — 23 ba(r) (£ — 8) 0 f + QiZbﬂ(r)/ c(T) dr f)
k=1 k=1 s

for f € Y?. (Show commutation relations for eA(")7 and e(2)7 analogous to (3.9) to
obtain commutation relations for B(rs) with e(")? and then use the standard product
approximants for the evolution systems W and U .) Tt then follows that Uy defined by
Uo(t,s) := W(t)U(t, s)W(s)~" is an evolution system for A on Y, which by the standard

uniqueness argument for evolution systems must coincide with U. |

We see from part (ii) of the above proof that the existence of an evolution system Uy
for A on the subspace Y5, after a suitable gauge transformation, already follows by [9],
|23| — but in order to obtain well-posedness on Y°, the results from |9], [23] do not suffice,
because the subspace Y[ is strictly contained in Y° in general. (Indeed, if for instance
b(t) = 1 € R with d = 1, then the function @ with ¥(¢) := €%€°/3/¢ for ¢ € [1,00)
and (&) := 0 for £ € (—o0,1) does not belong to the range of C — i := 9 + £2 — 4.
Consequently, —92 + 2 —i = F}(C — i).F is not surjective so that Yy = D(Ag + B) =
D(—0%+z) C D(—0% + x) = D(A) = Y° by the standard criterion for self-adjointness.)
We finally remark that the results of [34] do not apply to the situation of this section.

Acknowledgement: T would like to thank Prof. Marcel Griesemer for many helpful
discussions and comments. Also I would like to thank DFG for financial support under
the grant GR 3213/1-1.

20



References

1]

2]

[11]

[12]

[13]

[14]

[15]

[16]

W. Arendt, C. Batty, M. Hieber, F. Neubrander: Vector-valued Laplace transforms
and Cauchy problems. 2nd edition, Birkh&user, 2012.

O. Bratteli, D. W. Robinson: Operator algebras and quantum statistical mechanics 2.
2nd edition, Springer, 1997.

F. Casas, A. Murua, M. Nadinic: Efficient computation of the Zassenhaus formula.
arXiv:1204.0389 (2012).

D. Cohn: Measure theory. 2nd edition, Birkhduser, 2013.

A. Constantin: The construction of an evolution system in the hyperbolic case and
applications. Math. Nachr. 224 (2001), 49-73.

J. R. Dorroh: A simplified proof of a theorem of Kato on linear evolution equations

J. Math. Soc. Japan 27 (1975), 474-478.

K.-J. Engel, R. Nagel: One-parameter semigroups for linear evolution equations.
Springer, 2000.

F. Fer: Résolution de l’équation matricielle dU/dt = pU par produit infini
d’exponentielles matricielles. Bull. Cl. Sci. 44 (1958), 818-829.

J. A. Goldstein: Abstract evolution equations. Trans. Amer. Math. Soc. 141 (1969),
159-184.

S. Ishii: Linear evolution equations du/dt+ A(t)u = 0: a case where A(t) is strongly
uniform-measurable. J. Math. Soc. Japan 34 (1982), 413-424.

T. Kato: Integration of the equation of evolution in a Banach space. J. Math. Soc.
Japan 5 (1953), 208-234.

T. Kato: Linear evolution equations of “hyperbolic” type. J. Fac. Sci. Univ. Tokyo
17 (1970), 241-258.

T. Kato: Linear evolution equations of “hyperbolic” type I1. J. Math. Soc. Japan 25
(1973), 648-666.

T. Kato: Abstract differential equations and nonlinear mized problems. Lezioni Fer-
miane, Accademia Nazionale dei Lincei, Scuola Normale Superiore, Pisa (1985),
1-89.

T. Kato: Abstract evolution equations, linear and quasilinear, revisited. In Lecture
Notes in Math. 1540 (1993), 241-258.

K. Kobayasi: On a theorem for linear evolution equations of hyperbolic type. J. Math.
Soc. Japan 31 (1979), 647-654.

21



[17]

[18]

[19]
[20]

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

W. Magnus: On the exponential solution of differential equations for a linear oper-
ator. Commun. Pure Appl. Math. 7 (1954), 649-673.

R. Nagel, G. Nickel: Well-posedness for nonautonomous abstract Cauchy problems.
Progr. Nonlinear Differential Equations Appl. 50 (2002), 279-293.

R. Nagel, G. Nickel, R. Schnaubelt: private communication, 2014.

H. Neidhardt, V. A. Zagrebnov: Linear non-autonomous Cauchy problems and evo-
lution semigroups. Adv. Diff. Eq. 14 (2009), 289-340.

H. Neidhardt, V. A. Zagrebnov: private communication, 2014.

G. Nickel: On evolution semigroups and wellposedness of nonautonomous Cauchy
problems. PhD thesis, 1996.

G. Nickel, R. Schnaubelt: An extension of Kato’s stability condition for mon-
autonomous Cauchy problems. Taiw. J. Math. 2 (1998), 483-496.

G. Nickel: Ewvolution semigroups and product formulas for nonautonomous Cauchy
problems. Math Nachr. 212 (2000), 101-115.

A. Pazy: Semigroups of linear operators and applications to partial differential equa-
tions. Springer, 1983.

R. S. Phillips: Perturbation theory for semi-groups of linear operators. Trans. Amer.
Math. Soc. 74 (1953), 199-221.

R. Schnaubelt: Well-posedness and asymptotic behaviour of non-autonomous linear
evolution equations. Progr. Nonlinear Differential Equations Appl. 50 (2002), 311-
338.

M. Suzuki: On the convergence of exponential operators — the Zassenhaus formula,
BCH formula and systematic approzimants. Commun. Math. Phys. 57 (1977), 193-
200.

N. Tanaka: Generation of linear evolution operators. Proc. Amer. Math. Soc. 128
(2000), 2007-2015.

N. Tanaka: A characterization of evolution operators. Studia Math. 146(3) (2001),
285-299.

R. M. Wilcox: Ezponential operators and parameter differentiation in quantum
physics. J. Math. Phys. 3 (1967), 962-982.

A. Yagi: On a class of linear evolution equations of “hyperbolic” type in reflexive
Banach spaces. Osaka J. Math. 16 (1979), 301-315.

A. Yagi: Remarks on proof of a theorem of Kato and Kobayasi on linear evolution
equations. Osaka J. Math. 17 (1980), 233-244.

22



[34] K. Yajima: Ezistence of solutions for Schrodinger evolution equations. Commun.
Math. Phys. 110 (1987), 415-426.

23



Jochen Schmid

Universitat Stuttgart

Fachbereich Mathematik

Pfaffenwaldring 57

70569 Stuttgart

Germany

E-Mail:| jochen.schmid@mathematik.uni-stuttgart.de


mailto:jochen.schmid@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2012-001
Komplette Liste: | http://www.mathematik.uni-stuttgart.de/preprints

2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for

2014-017
2014-016

2014-015

2014-014
2014-013

2014-012

2014-011
2014-010
2014-009
2014-008
2014-007

2014-006

2014-005

2014-004
2014-003

2014-002
2014-001

2013-016
2013-015

2013-014

2013-013
2013-012
2013-011

2013-010

2013-009
2013-008

generators whose commutators are scalar
Margolis, L.: A Sylow theorem for the integral group ring of PSL(2, q)

Rybak, I.; Magiera, J.; Helmig, R.; Rohde, C.: Multirate time integration for coupled
saturated/unsaturated porous medium and free flow systems

Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: Optimal Grading of the Newest Vertex
Bisection and H*-Stability of the L,-Projection

Kohler, M.; Krzyzak, A.; Walk, H.: Nonparametric recursive quantile estimation

Kohler, M.; Krzyzak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation
using importance sampling

Gyorfi, L.; Ottucsak, G.; Walk, H.: The growth optimal investment strategy is secure,
too.

Gyorfi, L.; Walk, H.:  Strongly consistent detection for nonparametric hypotheses
Kbster, I.: Finite Groups with Sylow numbers {¢*, a, b}

Kahnert, D.: Hausdorff Dimension of Rings

Steinwart, I.:  Measuring the Capacity of Sets of Functions in the Analysis of ERM

Steinwart, I..  Convergence Types and Rates in Generic Karhunen-Loéve
Expansions with Applications to Sample Path Properties

Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of
Properties

Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution
Equations

Markhasin, L.:  Ly- and S},  B-discrepancy of (order 2) digital nets

Markhasin, L.: Discrepancy and integration in function spaces with dominating
mixed smoothness

Eberts, M.; Steinwart, I.:  Optimal Learning Rates for Localized SVMs

Giesselmann, J.: A relative entropy approach to convergence of a low order
approximation to a nonlinear elasticity model with viscosity and capillarity

Steinwart, I.:  Fully Adaptive Density-Based Clustering

Steinwart, .. Some Remarks on the Statistical Analysis of SVMs and Related
Methods

Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase
Flow with Phase Transition and Surface Tension

Moroianu, A.; Semmelmann, U.:  Generalized Killling spinors on Einstein manifolds
Moroianu, A.; Semmelmann, U.:  Generalized Killing Spinors on Spheres

Kohls, K; Rdsch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for
Control Constrained Optimal Control Problems

Corli, A.; Rohde, C.; Schleper, V.:  Parabolic Approximations of Diffusive-Dispersive
Equations

Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds

Béchle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings
of non-solvable groups


http://www.mathematik.uni-stuttgart.de/preprints
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-018.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-017.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-016.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-015.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-014.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-013.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-012.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-008.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-007.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2014/2014-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-016.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-015.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-014.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-013.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-012.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-008.pdf

2013-007
2013-006
2013-005

2013-004
2013-003

2013-002

2013-001

2012-013

2012-012
2012-011
2012-010
2012-009
2012-008
2012-007

2012-006
2012-005
2012-004
2012-003
2012-002
2012-001

Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes

Eck, C.; Kutter, M.; Sdndig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase
Epitaxy with Elasticity: An Iterative Procedure

Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields

Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces
on the Stability of Liquid-Vapor Interfaces

Devroye, L.; Ferrario, PG.; Gyérfi, L.; Walk, H.: Strong universal consistent estimate
of the minimum mean squared error

Kohls, K.; Rdsch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control
Problems with Control Constraints

Diaz Ramos, J.C.; Dominguez Vazquez, M.; Kollross, A.: Polar actions on complex
hyperbolic spaces

Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
Hamilton, M.J.D.: lterated fibre sums of algebraic Lefschetz fibrations
Hamilton, M.J.D.:  The minimal genus problem for elliptic surfaces

Ferrario, P: Partitioning estimation of local variance based on nearest neighbors
under censoring

Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
Grundhéfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhnmedov and Park

Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian


http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-007.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2013/2013-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-013.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-012.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-008.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-007.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2012/2012-001.pdf

