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Well-posedness of non-autonomous linear

evolution equations for generators whose

commutators are scalar

Jochen Schmid

Fachbereich Mathematik, Universität Stuttgart, D-70569 Stuttgart, Germany

jochen.schmid@mathematik.uni-stuttgart.de

We prove the well-posedness of non-autonomous linear evolution equations for gen-
erators A(t) : D(A(t)) ⊂ X → X whose pairwise commutators are complex scalars
and, in addition, we establish an explicit representation formula for the evolution.
We also prove well-posedness in the more general case where instead of the 1-fold
commutators only the p-fold commutators of the operators A(t) are complex scalars.
All these results are furnished with rather mild regularity assumptions: indeed,
strong continuity conditions are su�cient. Additionally, we improve a well-posedness
result of Kato for group generators A(t) by showing that the original norm conti-
nuity condition can be relaxed to strong continuity. Applications include Segal �eld
operators and Schrödinger operators for particles in external electric �elds.

2010 Mathematics Subject Classi�cation: 47D06 (primary), 35Q41 (secondary)

Key words and phrases: well-posedness of non-autonomous linear evolution equations for semi-

group generators whose pairwise commutators are complex scalars and for group generators

1 Introduction

In this paper, we are concerned with non-autonomous linear evolution equations

x′ = A(t)x (t ∈ [s, 1]) and x(s) = y (1.1)

for densely de�ned linear operators A(t) : D(A(t)) ⊂ X → X (t ∈ [0, 1]) and initial
values y ∈ Y ⊂ D(A(s)) at initial times s ∈ [0, 1). Well-posedness of such evolution
equations has been studied by many authors in a large variety of situations. See, for
instance, [25], [27], [18], [20] for an overview. In this paper, we are primarily interested
in the special situation of semigroup generators A(t) whose �rst (1-fold) or higher (p-fold)
commutators at distinct times are complex scalars, in short:

[A(t1), A(t2)] = µ(t1, t2) ∈ C (1.2)

or
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[
. . .
[
[A(t1), A(t2)], A(t3)

]
. . . , A(tp+1)

]
= µ(t1, . . . , tp+1) ∈ C (1.3)

in some sense to be made precise (see the commutation relations (2.1) and (2.12)). In
this special situation we prove well-posedness for (1.1) on suitable dense subspaces Y of
X and, moreover, in the case (1.2) we prove the representation formula

U(t, s) = e
∫ t
s A(τ) dτ e1/2

∫ t
s

∫ τ
s µ(τ,σ) dσdτ (1.4)

for the evolution generated by the operators A(t). We thereby generalize a well-posedness
result of Goldstein and of Nickel and Schnaubelt from [9], [23] dealing with the special
case of (1.2) where µ ≡ 0: in [9] contraction semigroup generators are considered, while
in [23] contraction semigroup generators are replaced by general semigroup generators
and the formula (1.4) with µ ≡ 0 is proved.
What one gains by restricting oneself to the special class of semigroup generators

with (1.2) or (1.3) � instead of considering general semigroup generators as in [11], [12],
[13], for instance � is that well-posedness follows under fairly weak regularity conditions:
indeed, strong continuity conditions are su�cient � just like in the case of commuting
operators from [9], [23] or in the elementary case of bounded operators. In general, by
contrast, strong continuity is not su�cient as is well-known from [26]. Accordingly, in the
well-posedness theorems from [12], [13] for general semigroup generators, for instance,
a strong W 1,1-regularity condition is imposed, and in the more special well-posedness
result from [12] for a certain kind of group generators, there still is a norm continuity
condition.
As is well-known from [17], [8], [31], in the case of bounded operators A(t) one has

representation formulas of Campbell�Baker�Hausdor� and Zassenhaus type for the evo-
lution, which in the case (1.2) reduce to our representation formula (1.4). It should
be noticed, however, that for bounded operators condition (1.2) can be satis�ed only if
µ ≡ 0, so that (1.4) is independent of [17], [8], [31] (for non-zero µ). In view of the rep-
resentation formulas from [31] it is desirable to prove representation formulas analogous
to (1.4) also in the case (1.3), but this is left to future research.
All proofs in connection with the special situations (1.2) or (1.3) are, in essence, based

upon the simple fact that in these situations the operators A(r) can be commuted � up
to controllable errors � through the exponential factors of the standard approximants
Un(t, s) from [9], [12], [13], [23] for the sought evolution, which are of the form

Un(t, s) = eA(rm)τm · · · eA(r1)τ1

with partition points r1, . . . , rm of the interval [s, t]. See (2.4) and (2.13) respectively.
Apart from proving well-posedness for semigroup generators with (1.2) or (1.3) (which

is our primary interest), we also improve the above-mentioned special well-posedness
result from [12] for a certain kind of group generators: in the spirit of [16] we show that
strong (instead of norm) continuity is su�cient in this result � just like in our other
well-posedness results for the case (1.2) or (1.3). And in a certain special case involving
quasicontraction group generators with time-independent domains in a uniformly convex

2



space, these other results can also be obtained by applying the improved well-posedness
result for group generators.
In Section 2 we state and prove our abstract well-posedness results, Section 2.1 and

Section 2.2 being devoted to the case (1.2) and (1.3) respectively and Section 2.3 being
devoted to the improved well-posedness result for group generators. Section 2.4 discusses,
among other things, the relation of our well-posedness results from Section 2.1 and 2.2
to the results from [12], [13], [16] and to the result from Section 2.3. In Section 3 we give
some applications, namely to Segal �eld operators Φ(ft) as well as to the related operators
Hω + Φ(ft) describing a classical particle coupled to a time-dependent quantized �eld of
bosons (Section 3.1) and �nally to Schrödinger operators describing a quantum particle
coupled to a time-dependent spatially constant electric �eld (Section 3.2).

2 Abstract well-posedness results

We will use the notion of well-posedness and evolution systems from [7]. So, if A(t) :
D(A(t)) ⊂ X → X for every t ∈ I := [0, 1] is a linear operator and Y is a dense subspace
of ∩τ∈ID(A(τ)), then the initial value problems (1.1) for A are well-posed on Y if and
only if there exists an evolution system U solving (1.1) on Y or, for short, an evolution

system U for A on Y . Such an evolution system is necessarily unique (which follows by
Corollary 2.1.2 of [25]). At some places we will also use the notion of evolution systems
from [23], which is slightly weaker in that it does not require that U(t, s)Y ⊂ Y for s ≤ t.
We will then speak of evolution systems in the wide sense for A on Y . Commutators of
possibly unbounded operators are taken in the operator-theoretic sense,

D([A,B]) := D(AB −BA) = D(AB) ∩D(BA),

except in some formal heuristic computations (whose formal character will always be
pointed out). As to the standard notions of (M,ω)-stability, of A(t)-admissible subspaces,
and of the part of an operator A in a subspace Y , we refer to [12] or [25]. X will always
stand for a complex Banach space, I = [0, 1] denotes the compact unit interval, and ∆
the triangle {(s, t) ∈ I2 : s ≤ t}.

2.1 Scalar 1-fold commutators

We begin with a well-posedness result where, instead of the formal relation (1.2), the for-
mally equivalent commutation relation (2.1) for the semigroups eA(t) . with the generators
A(s) is imposed. Along with the well-posedness this theorem also yields a representation
formula for the evolution. It is a generalization of a well-posedness result of Goldstein [9]
(Theorem 1.1) and � after the slight modi�cations discussed in (2.27) and (2.28) below
� of Nickel and Schnaubelt [23] (Theorem 2.3 and Proposition 2.5).

Theorem 2.1. Suppose A(t) : D(A(t)) ⊂ X → X for every t ∈ I is the generator of a

strongly continuous semigroup on X such that A is (M,ω)-stable for some M ∈ [1,∞)
and ω ∈ R and such that for some complex numbers µ(s, t) ∈ C

A(s)eA(t)τ ⊃ eA(t)τ
(
A(s) + µ(s, t)τ

)
(2.1)
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for all s, t ∈ I and τ ∈ [0,∞). Suppose further that the maximal continuity subspace

Y ◦ := {y ∈ ∩τ∈ID(A(τ)) : t 7→ A(t)y is continuous}

is dense in X and that (s, t) 7→ µ(s, t) is continuous. Then there exists a unique evolution

system U for A on Y ◦ and it is given by

U(t, s) = e(
∫ t
s A(τ) dτ)◦e1/2

∫ t
s

∫ τ
s µ(τ,σ) dσ dτ ((s, t) ∈ ∆),

where
( ∫ t

s A(τ) dτ
)◦

is the (closable) operator de�ned by y 7→
∫ t
s A(τ)y dτ on Y ◦.

Proof. (i) We �rst show, in three steps, the existence of an evolution system U for A
on Y ◦, which is then necessarily unique by the remark at the beginning of Section 2. In
order to do so we approximate the sought evolution U by the standard approximants Un
from hyperbolic evolution equations theory, that is, we choose partitions

πn = {rn i : i ∈ {0, . . . ,mn}}

of I with mesh(πn) −→ 0 as n → ∞ and, for any such partition, we evolve piecewise
according to the values of t 7→ A(t) at the �nitely many partition points of πn. So,

Un(t, s) := eA(rn(t))(t−s) (2.2)

for (s, t) ∈ ∆ with s, t lying in the same partition subinterval of πn and

Un(t, s) := eA(rn(t))(t−rn(t))eA(r−n (t))(rn(t)−r−n (t)) · · · eA(rn(s))(r+n (s)−s) (2.3)

for (s, t) ∈ ∆ with s, t lying in di�erent partition subintervals of πn. In the equations
above, rn(u) for u ∈ I denotes the largest partition point of πn less than or equal to u
and r−n (u), r+

n (u) is the neighboring partition point below or above rn(u), respectively.

We then obtain, by repeatedly applying the assumed commutation relation, the fol-
lowing important commutation relation which allows us to take A(r) from the left of
Un(t, s) to the right and which is central to the entire proof:

A(r)Un(t, s)y = Un(t, s)
(
A(r) +

∫ t

s
µ(r, rn(σ)) dσ

)
y (2.4)

for all y ∈ D(A(r)). As a �rst step, we observe that

Un(t, s)Un(s, r) = Un(t, r) and ‖Un(t, s)‖ ≤Meω(t−s) (2.5)

for all (s, t), (r, s) ∈ ∆ and that ∆ 3 (s, t) 7→ Un(t, s) is strongly continuous.

As a second step, we show that (Un(t, s)x) for every x ∈ X is a Cauchy sequence in
X uniformly in (s, t) ∈ ∆. Since ∩r′∈ID(A(r′)) is invariant under the semigroups eA(r) .

for all r ∈ I, it follows that [s, t] 3 τ 7→ Um(t, τ)Un(τ, s)y for every y ∈ ∩r′∈ID(A(r′)) is
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piecewise continuously di�erentiable (with the partition points of πm ∪πn as exceptional
points) and therefore

Un(t, s)y − Um(t, s)y = Um(t, τ)Un(τ, s)y
∣∣∣τ=t

τ=s

=

∫ t

s
Um(t, τ)

(
A(rn(τ))−A(rm(τ))

)
Un(τ, s)y dτ =

∫ t

s
Um(t, τ)Un(τ, s)(

A(rn(τ))−A(rm(τ)) +

∫ τ

s
µ(rn(τ), rn(σ))− µ(rm(τ), rn(σ)) dσ

)
y dτ

for every y ∈ ∩r′∈ID(A(r′)) where, for the last equation, (2.4) has been used. So,

sup
(s,t)∈∆

‖Un(t, s)y − Um(t, s)y‖ ≤M2ew(b−a)

(∫ b

a
‖A(rn(τ))y −A(rm(τ))y‖ dτ

+

∫ b

a

∫ b

a

∣∣µ(rn(τ), rn(σ))− µ(rm(τ), rn(σ))
∣∣ ‖y‖ dσ dτ) −→ 0 (m,n→∞)

for every y ∈ Y ◦ by the uniform continuity of τ 7→ A(τ)y and (τ, σ) 7→ µ(τ, σ). And
by (2.5) this uniform Cauchy property extends to all y ∈ X. Consequently,

U(t, s)x := lim
n→∞

Un(t, s)x

for every x ∈ X exists uniformly in (s, t) ∈ ∆ and hence the properties observed in the
�rst step carry over from Un to U .

As a third step, we show that t 7→ U(t, s)y for every y ∈ Y ◦ is a continuously di�eren-
tiable solution to (1.1) with values in Y ◦. Since τ 7→ Un(τ, s)y for y ∈ ∩r′∈ID(A(r′)) is
piecewise continuously di�erentiable, we have

Un(t, s)y = y +

∫ t

s
A(rn(τ))Un(τ, s)y dτ

= y +

∫ t

s
Un(τ, s)

(
A(rn(τ)) +

∫ τ

s
µ(rn(τ), rn(σ)) dσ

)
y dτ

by virtue of (2.4) and therefore

U(t, s)y = y +

∫ t

s
U(τ, s)

(
A(τ) +

∫ τ

s
µ(τ, σ) dσ

)
y dτ

for all y ∈ Y ◦. So, t 7→ U(t, s)y is continuously di�erentiable for every y ∈ Y ◦ with
derivative

t 7→ U(t, s)
(
A(t) +

∫ t

s
µ(t, σ) dσ

)
y = lim

n→∞
A(t)Un(t, s)y = A(t)U(t, s)y,

where the last two equations hold by (2.4) and the closedness of A(t). Also, since for all
y ∈ Y ◦ and r ∈ I

A(r)Un(t, s)y −→ U(t, s)
(
A(r) +

∫ t

s
µ(r, σ) dσ

)
y (n→∞),

5



we see by the closedness of the operators A(r) that U(t, s)y ∈ Y ◦ for y ∈ Y ◦. So, in
summary, we have shown that U is an evolution system for A on Y ◦.

(ii) We now show, in three steps, that
( ∫ t

s A(τ) dτ
)◦

for every �xed (s, t) ∈ ∆ is closable
and that its closure generates a strongly continuous semigroup in X with

e(
∫ t
s A(τ) dτ)◦ = U(t, s)e−1/2

∫ t
s

∫ τ
s µ(τ,σ) dσ dτ .

As a �rst step, we show a discrete version of the above representation formula: more
precisely, we show that Bn :=

∫ t
s A(rn(τ)) dτ is closable and that Bn generates a strongly

continuous semigroup with the following decomposition of Zassenhaus type:

eBnr = U rn(t, s)e−1/2(
∫ t
s

∫ τ
s µ(rn(τ),rn(σ)) dσ dτ)r2 (r ∈ [0,∞)), (2.6)

where the operators U rn(t, s) are de�ned in the same way as the operators Un(t, s) above
with the only di�erence that now the generators A(u) are all multiplied by the number
r. Indeed, by the assumed commutation relations, we obtain the following commutation
relations for semigroups,

eAiσeAjτ = eAjτeAiσeµijστ (σ, τ ∈ [0,∞)), (2.7)

where Ak := A(tk)hk and µkl := µ(tk, tl)hkhl for arbitrary tk, tl ∈ I and hk, hl ∈ [0,∞).
(In fact, if y ∈ D(Ai), then

eAjτeAiσeµijστy − eAiσeAjτy = eAi(σ−r)eAjτeAireµijrτy
∣∣r=σ
r=0

and [0, σ] 3 r 7→ eAi(σ−r)eAjτeAireµijrτy is di�erentiable with derivative 0.) With the
help of (2.7) one veri�es that

[0,∞) 3 r 7→ eAmr · · · eA1re−1/2
∑
i≤j µjir

2

(2.8)

is a strongly continuous semigroup inX. As this semigroup, by the assumed commutation
relation, leaves the subspace D(A1) ∩ · · · ∩D(Am) invariant, its generator contains the
operator A1 + · · ·+ Am, which is therefore closable with closure equal to the generator.
Since Bn is of the form A1 + · · · + Am and since the right-hand side of (2.6) is of the
form (2.8), the assertion of the �rst step follows.

As a second step, we observe that the limit T (r)x := limn→∞ e
Bnrx exists locally

uniformly in r ∈ [0,∞) for every x ∈ X and that T is a strongly continuous semigroup
in X. Indeed, with the same arguments as in (i), it follows that (U rn(t, s)x) is convergent
locally uniformly in r for every x ∈ X and therefore the strongly continuous semigroups
eBn . by (2.6) are strongly convergent locally uniformly in r, so that

T (r)x := lim
n→∞

eBnrx = U r(t, s)e−1/2(
∫ t
s

∫ τ
s µ(τ,σ) dσ dτ)r2x (x ∈ X) (2.9)

de�nes a strongly continuous semigroup T on X.
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As a third step, we show that the generator AT of this semigroup is given by B◦ where
B◦ :=

( ∫ t
s A(τ) dτ

)◦
, from which the desired representation formula for U then follows

by (2.9). Indeed, for all y ∈ Y ◦,

T (h)y − y
h

= lim
n→∞

eBnhy − y
h

= lim
n→∞

1

h

∫ h

0
eBnr Bny dr =

1

h

∫ h

0
T (r)B◦y dr

−→ B◦y (h↘ 0)

by the dominated convergence theorem. So, B◦ is closable with B◦ ⊂ AT . We now want
to show that D(B◦) is a core for AT by verifying the invariance T (r)D(B◦) ⊂ D(B◦) for
all r ∈ [0,∞). If y ∈ Y ◦, then

Bme
Bnry = eBnr

(
Bm + νm,nr

)
y with νm,n :=

∫ t

s

∫ t

s
µ(rm(τ), rn(σ)) dσ dτ

by the product decomposition of eBnr from (2.6) and by the central commutation rela-
tion (2.4). So,

B◦eBnry = eBnr
(
B◦ + lim

m→∞
νm,nr

)
y

for all y ∈ Y ◦, from which it further follows that

T (r)y ∈ D(B◦) and B◦ T (r)y = T (r)
(
B◦ + lim

n→∞
lim
m→∞

νm,nr
)
y = T (r)B◦y

for all y ∈ Y ◦. In the last equation, we used that µ(τ, σ) = −µ(σ, τ) for all σ, τ ∈ I
which can be seen from (2.7). It follows that B◦T (r) ⊃ T (r)B◦ and, in particular,
T (r)D(B◦) ⊂ D(B◦) for all r ∈ [0,∞). So, D(B◦) is a core for AT and hence AT = B◦,
as desired. �

We also note the following variant of the above theorem where the form of the imposed
commutation relation is closer to (1.2). In return, one has to require relatively strong
invariance conditions.

Corollary 2.2. Suppose A(t) : D(A(t)) ⊂ X → X for every t ∈ I is the generator of a

strongly continuous semigroup on X such that A is (M,ω)-stable for some M ∈ [1,∞)
and ω ∈ R. Suppose further that Y is an A(t)-admissible subspace of X for every t ∈ I
such that

Y ⊂
⋂
τ∈I

D(A(τ)) and A(t)Y ⊂
⋂
τ∈I

D(A(τ)),

A(t)|Y is a bounded operator from Y to X, and

[A(s), A(t)]
∣∣
Y
⊂ µ(s, t) ∈ C

for all s, t ∈ I. Suppose �nally that (s, t) 7→ µ(s, t) and t 7→ A(t)y are continuous for all

y ∈ Y . Then the conclusions of the above theorem hold true.
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Proof. We establish the commutation relations

eA1σeA2τ = eA2τeA1σeµ12τσ (σ, τ ∈ [0,∞)), (2.10)

where Ak := A(tk) and µkl := µ(tk, tl) for arbitrary t1, t2 ∈ I. In order to do so, one
shows that

A1e
A2τy = eA2τ

(
A1 + µ12τ

)
y (2.11)

for y ∈ Y by di�erentiating [0, τ ] 3 r 7→ eA2(τ−r)A1e
A2ry for vectors y in the domain

of the part Ã2 of A2 in Y which by the A2-admissibility of Y is the generator of the
strongly continuous semigroup t 7→ eA2t|Y in Y (Proposition 2.3 of [12]). (In addition to
the A2-admissibility, the boundedness of A1|Y from Y to X and the invariance condition
A1Y ⊂ D(A2) come into play here.) Along the same lines as (2.7), the relation (2.10)
then follows. And since (2.10) is equivalent to the commutation relations (2.1) and since
Y ◦ ⊃ Y is dense in X, the assumptions of Theorem 2.1 are satis�ed, as desired. �

2.2 Scalar p-fold commutators

We begin with a well-posedness result where, instead of the formal relation (1.3), the
formally equivalent commutation relations (2.12) for the semigroups eA(t) . with the gen-
erators A(s1) = C(0)(s1) and certain operators C(k)(s1, . . . , sk+1) (which are formally
given by k-fold commutators) are imposed.

Theorem 2.3. Suppose A(t) : D(A(t)) ⊂ X → X for every t ∈ I is the generator of a

strongly continuous semigroup on X such that A is (M,ω)-stable for some M ∈ [1,∞)
and ω ∈ R and such that for some operators C(k)(s1, . . . , sk+1), where k ∈ {0, . . . , p− 1}
and C(0)(s) := A(s), and for some complex numbers µ(t1, . . . , tp+1) ∈ C

C(k)(s)eA(t)τ ⊃ eA(t)τ
(
C(k)(s) + C(k+1)(s, t)τ + · · ·+ C(p−1)(s, t, . . . , t)

τp−1−k

(p− 1− k)!
+

+µ(s, t, . . . , t)
τp−k

(p− k)!

)
(s := (s1, . . . , sk+1)) (2.12)

for all k ∈ {0, . . . , p− 1} and si, t ∈ I and τ ∈ [0,∞). Suppose further that the maximal

continuity subspace

Y ◦ :=

p−1⋂
k=0

{y ∈ Dk : (t1, . . . , tk+1) 7→ C(k)(t1, . . . , tk+1)y is continuous}

Dk := ∩τ1,...,τk+1∈ID(C(k)(τ1, . . . , τk+1))

is dense in X and that (t1, . . . , tp+1) 7→ µ(t1, . . . , tp+1) is continuous. Then there exists

a unique evolution system U for A on Y ◦.
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Proof. We de�ne Un as in (2.2) and (2.3) and, for u ∈ I, we de�ne inu to be the index
i ∈ {0, . . . ,mn} with u ∈ [rn i, rn i+1). We then obtain, by the assumed commutation
relations, the following important commutation relation which allows us to take the
operators A(r) from the left of Un(t, s) to the right:

A(r)Un(t, s)y = Un(t, s)
(
A(r) + S(1)

n (t, s, r) + · · ·+ S(p)
n (t, s, r)

)
y (2.13)

S(k)
n (t, s, r) :=

∫ t

s

∫ τ1

s
· · ·
∫ τk−1

s
C(k)(r, rn in τ1 , . . . , rn in τk )

/
αin τ1 ,...,in τk dτk . . . dτ2 dτ1

for all y ∈ Y ◦, r ∈ I, (s, t) ∈ ∆, where αj1,...,jk for a k-tupel (j1, . . . , jk) of natural
numbers denotes the number of permutations σ leaving the k-tupel invariant, that is,

(jσ(1), . . . , jσ(k)) = (j1, . . . , jk).

(In verifying (2.13), it is best to abbreviate A(r) = A0 and Un(t, s) = eAm · · · eA1 and
to prove by induction over m ∈ N, with the help of the assumed commutation relations,
that

A0e
Am . . . eA1y = eAm . . . eA1

(
A0 + S(1) + · · ·+ S(p)

)
y

S(k) : =
∑

1≤jk≤···≤j1≤m
C

(k)
0,j1,...,jk

/
αj1,...,jk

and �nally to notice that the sums S(k) are nothing but the integrals S
(k)
n (t, s, r) in (2.13).)

With the commutation relation (2.13) at hand, we can now proceed in the same way as
in the proof of Theorem 2.1 because the maps (t1, . . . , tk+1) 7→ C(k)(t1, . . . , tk+1)y are
continuous for y ∈ Y ◦ by assumption and because for every (τ1, . . . , τk) ∈ Ik with
τ1 > · · · > τk one has αin τ1 ,...,in τk −→ k! as n→∞. �

We also note the following variant of the above theorem where the form of the imposed
commutation relation is closer to (1.3). In return, one has to require relatively strong
invariance conditions.

Proposition 2.4. Suppose A(t) : D(A(t)) ⊂ X → X for every t ∈ I is the generator

of a strongly continuous semigroup on X such that A is (M,ω)-stable for some M ∈
[1,∞) and ω ∈ R and recursively de�ne C(0)(t) := A(t) as well as C(k)(t1, . . . , tk+1) :=
[C(k−1)(t1, . . . , tk), A(tk+1)] for k ∈ N. Suppose further that Y is an A(t)-admissible

subspace of X for every t ∈ I, and p ∈ N a natural number such that for all ti ∈ I

Y ⊂
⋂

τ1,...,τp∈I
D(C(p−1)(τ1, . . . , τp)) and C(p−1)(t1, . . . , tp)Y ⊂

⋂
τ∈I

D(C(0)(τ)),

C(k)(t1, . . . , tk+1)|Y is a bounded operator from Y to X for all k ∈ {0, . . . , p− 1}, and

C(p)(t1, . . . , tp+1)
∣∣
D(Ã(tp+1))

⊂ µ(t1, . . . , tp+1) ∈ C,

where Ã(t) is the part of A(t) in Y . Suppose �nally that (t1, . . . , tp+1) 7→ µ(t1, . . . , tp+1)
and (t1, . . . , tk+1) 7→ C(k)(t1, . . . , tk+1)y are continuous for all y ∈ Y and k ∈ {0, . . . , p−
1}. Then there exists a unique evolution system U in the wide sense for A on Y .
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Proof. With the same arguments as for (2.11) one veri�es the commutation relations

C(k)(s)eA(t)τy = eA(t)τ
(
C(k)(s) + C(k+1)(s, t)τ + · · ·+ C(p−1)(s, t, . . . , t)

τp−1−k

(p− 1− k)!
+

+µ(s, t, . . . , t)
τp−k

(p− k)!

)
y (s := (s1, . . . , sk+1))

for all y ∈ Y and k ∈ {0, . . . , p− 1} and from these, in turn, one obtains the existence of
an evolution system U in the wide sense for A on Y in exactly the same way as in the
proof of Theorem 2.3. In order to obtain uniqueness, one has only to observe that for
any evolution system V in the wide sense for A on Y ,

Un(t, s)y − V (t, s)y = V (t, τ)Un(τ, s)y
∣∣τ=t

τ=s
=

∫ t

s
V (t, τ)

(
A(rn(τ))−A(τ)

)
Un(τ, s)y dτ

converges to 0 for every y ∈ Y and (s, t) ∈ ∆ by (2.13). �

2.3 Well-posedness for group generators

After having proved well-posedness results for semigroup generators with (1.2) or (1.3),
we now improve, inspired by [16], the special well-posedness result from [12] (Theorem 5.2
in conjunction with Remark 5.3) for a certain kind of group (instead of semigroup) gen-
erators A(t) and certain uniformly convex subspaces Y of the domains D(A(t)): we
show that this result is still valid if t 7→ A(t)|Y is assumed to be only strongly contin-
uous (instead of norm continuous as in [12]). In [16] the same is done for the general
well-posedness theorem from [12] (Theorem 6.1). We point out that although several
arguments from [16] can be used here as well, it is by no means obvious that the im-
provement made in [16] can be carried over to the special well-posedness result of [12].
In particular, the possibility of such an improvement is not mentioned in the literature
� at least, not in [16], [32], [33], [14], [15], [29], [30].

Theorem 2.5. Suppose A(t) : D(A(t)) ⊂ X → X for every t ∈ I is the generator of a

strongly continuous group on X such that A+ := A( . ) and A− := A(1− . ) are (M,ω)-
stable for some M ∈ [1,∞) and ω ∈ R. Suppose further that Y for every t ∈ I is an

A±(t)-admissible subspace of X contained in ∩τ∈ID(A(τ)) and that A(t)|Y is a bounded

operator from Y to X such that

t 7→ A(t)|Y

is strongly continuous. And �nally, suppose there exists for each t ∈ I a norm ‖ . ‖±t on Y
equivalent to the original norm of Y such that Y ±t := (Y, ‖ . ‖±t ) is uniformly convex and

‖y‖±t ≤ e
c±|t−s| ‖y‖±s (y ∈ Y and s, t ∈ I) (2.14)

for some constant c± ∈ (0,∞) and such that the Y -part Ã±(t) of A±(t) generates a

quasicontraction semigroup in Y ±t , more precisely∥∥∥eA±(t)τy
∥∥∥±
t
≤ eω0τ ‖y‖±t (τ ∈ [0,∞), y ∈ Y, t ∈ I) (2.15)

for some ω0 ∈ R. Then there exists a unique evolution system U for A on Y .
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Proof. We adopt from [16] the shorthand notation U±(t, s, π) for products of the semi-
groups eA

±(t) . associated with �nite or in�nite partitions π in I. Without further spec-
i�cation, convergence or continuity in X, Y will always mean convergence or continuity
in the norm of X, Y . As a �rst step we show that for each y ∈ Y and s ∈ [0, 1)
there exists a sequence (π±n ) = (π±y,s,n) of partitions of I such that (U±(t, s, π±y,s,n)y) is
a Cauchy sequence in X for t ∈ [s, 1]. What we have to show here is that for every
sequence π = (tk), strictly monotonically increasing in I, and arbitrary t′k ∈ [tk, tk+1),
the following assertions are satis�ed (Lemma 1 of [16]):

(i) (U±(t′k, t0, π)x) is a Cauchy sequence in X for every x ∈ X whose limit will be
denoted by U±(t∞, t0, π)x where t∞ := limk→∞ t

′
k,

(ii) (U±(t′k, t0, π)y) is a Cauchy sequence in Y for every y ∈ Y .

With the help of Lemma 2 and 3 of [16], whose proofs carry over without change to
the present situation, the existence of sequences (π±y,s,n) of partitions with the claimed
properties then follows. Assertion (i) is simple and is proven in the same way as in [16],
while assertion (ii) has to be proven in a completely di�erent way because the proof
of [16] essentially rests on the existence of certain isomorphisms S(t) from Y onto X
which are not available here. We show, using ideas from [12] (Section 5), that

U±(t∞, t0, π)y ∈ Y and U±(t′k, t0, π)y −→ U±(t∞, t0, π)y weakly in Y (2.16)

for every y ∈ Y and that

lim sup
k→∞

∥∥U±(t′k, t0, π)y
∥∥∓
t∞
≤
∥∥U±(t∞, t0, π)y

∥∥∓
t∞

(t∞ := 1− t∞) (2.17)

for y ∈ Y , which two things by the uniform convexity of Yt∞ imply the convergence
of (U±(t′k, t0, π)y) to U±(t∞, t0, π)y in Y and in particular assertion (ii). In order to
see (2.16) notice �rst that Ã± is (M̃, ω̃)-stable for some M̃ ∈ [1,∞) and ω̃ ∈ R by (2.14)
and (2.15) (Proposition 3.4 of [12]), so that the sequence (U±(t′k, t0, π)y) is bounded in the
norm of Y . Since Y is re�exive (Milman's theorem), every subsequence of (U±(t′k, t0, π)y)
has in turn a weakly convergent subsequence in Y whose weak limit must be equal to
U±(t∞, t0, π)y by assertion (i), and therefore (2.16) follows. In order to see (2.17) notice
�rst that (U±(t′k, tn, π)x)n∈N is a Cauchy sequence in X for every x ∈ X and k ∈ N,
where

U±(t′k, τ, π) := U±(τ, t′k, π)−1 = e−A
±(tk)(tk+1−t′k) · · · e−A±(rπ(τ))(τ−rπ(τ))

for τ ∈ (t′k, t∞) and where rπ(τ) denotes the largest point of π less than or equal to τ .
Indeed, for every x ∈ Y ,

U±(t′k, tm, π)x− U±(t′k, tn, π)x = −
∫ tn

tm

U±(t′k, τ, π)A±(rπ(τ))x dτ −→ 0 (m,n→∞)

in X and by the (M,ω)-stability of A∓, this convergence extends to all x ∈ X. We
denote the limit by U±(t′k, t∞, π)x and note for later use that

U±(t′k, t∞, π)y ∈ Y and U±(t′k, tn, π)y −→ U±(t′k, t∞, π)y weakly in Y (2.18)
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by the same arguments as those for (2.16). Since U±(t′k, t0, π) = U±(t′k, tn, π)U±(tn, t0, π)
for all n ∈ N, it follows that

U±(t′k, t0, π) = U±(t′k, t∞, π)U±(t∞, t0, π). (2.19)

Also, since

U±(t′k, tn, π) = eA
∓(tk)(tk+1−t′k) · · · eA∓(tn−1)(tn−tn−1) (ti := 1− ti)

for n ≥ k+ 1, it follows by successively passing from ‖ . ‖∓
t∞

to ‖ . ‖∓
tk
to ... to ‖ . ‖∓

tn−1
and

back to ‖ . ‖∓
t∞

with the help of (2.14) and by using (2.15) at each successive step, that∥∥U±(t′k, tn, π)z
∥∥∓
t∞
≤ e2c(t∞−tk) eω0(tn−t′k) ‖z‖∓

t∞

for every z ∈ Y , and therefore∥∥U±(t′k, t∞, π)z
∥∥∓
t∞
≤ e2c(t∞−tk) eω0(t∞−t′k) ‖z‖∓

t∞
(2.20)

for z ∈ Y by virtue of (2.18). Combining now (2.19) and (2.20) we obtain (2.17), which
concludes our �rst step.

As a second step we observe that U±0 (t, s)y := limn→∞ U
±(t, s, π±y,s,n)y for y ∈ Y

and (s, t) ∈ ∆ de�nes a linear operator from Y to X extendable to a bounded operator
U±(t, s) in X, and that U± is an evolution system in X such that t 7→ U±(t, s)y for every
y ∈ Y is right di�erentiable (in the norm of X) at s with right derivative A±(s)y. All
this follows in the same way as in [16] (Lemma 4 and 5). In particular, it follows from the
right di�erentiability and evolution system properties just mentioned that [0, t] 3 s 7→
U±(t, s)y is continuously di�erentiable (from both sides) for every y ∈ Y with derivative
s 7→ −U±(t, s)A±(s)y by Corollary 2.1.2 of [25].

As a third step we show that U±(t, s) leaves the subspace Y invariant for every (s, t) ∈
∆ and that [s, 1] 3 t 7→ U±(t, s)y is right continuous in Y for every y ∈ Y . In order
to see that U±(t, s)y lies in Y for y ∈ Y , notice that the sequence (U±(t, s, π±y,s,n)y) is
bounded in the norm of Y , whence by the same argument as for (2.16)

U±(t, s)y ∈ Y and U±(t, s, π±y,s,n)y −→ U±(t, s)y weakly in Y. (2.21)

In order to see that [s, 1] 3 t 7→ U±(t, s)y is right continuous in Y for every y ∈ Y , we
have only to show, by the invariance property just established, that U±(t+ h, t)y −→ y
in Y as h ↘ 0 for every t ∈ [0, 1). And for this in turn it is su�cient to show, by the
uniform convexity of Yt, that

U±(t+ h, t)y −→ y weakly in Y as h↘ 0 (2.22)

and

lim sup
h↘0

∥∥U±(t+ h, t)y
∥∥±
t
≤ ‖y‖±t (2.23)
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Since this can be achieved in a way similar to the proof of (2.16) and (2.17), we may
omit the details.

We can now show that t 7→ U+(t, s)y is continuous in Y for every y ∈ Y and then
conclude the proof. Indeed, since τ 7→ U∓(1− s, 1− τ)z is di�erentiable for z ∈ Y with
derivative τ 7→ U∓(1− s, 1− τ)A∓(1− τ)z and τ 7→ U±(τ, s)y is right di�erentiable for
y ∈ Y with right derivative τ 7→ A±(τ)U±(τ, s)y by our second and third step, the map
[s, t] 3 τ 7→ U∓(1 − s, 1 − τ)U±(τ, s)y is right di�erentiable for every y ∈ Y with right
derivative 0. So,

U∓(1− s, 1− t)U±(t, s)y − y = U∓(1− s, 1− τ)U±(τ, s)y
∣∣τ=t

τ=s
= 0

for every y ∈ Y by Corollary 2.1.2 of [25] and therefore

U∓(1− s, 1− t)U±(t, s) = 1 = U∓(1− t, 1− s)U±(s, t) = U∓(t, s)U±(1− s, 1− t)

for all (s, t) ∈ ∆. It follows that

U+(t− h, s)y = U+(t, t− h)−1U+(t, s)y = U−(1− t+ h, 1− t)U+(t, s)y −→ U+(t, s)y

in Y as h ↘ 0 by our third step, whence t 7→ U+(t, s)y right and left continuous and
hence continuous in Y . Combining this with the previous steps, we see with the help of
Corollary 2.1.2 of [25] that t 7→ U+(t, s)y is continuously di�erentiable in X for every
y ∈ Y with derivative t 7→ A+(t)U+(t, s)y and therefore U := U+ is an evolution system
for A = A+ on Y , as desired. �

Incidentally, it is also possible to improve (a version of) the well-posedness theorem
from [13] (Theorem 1) in the spirit of [16]: in this theorem strong continuity of t 7→ A(t)|Y
is su�cient as well, provided that A is (M,ω)-stable (instead of only quasistable) and
that t 7→ ‖B(t)‖ is bounded (instead of only upper integrable). (We make this proviso
in order to make sure that the boundedness condition (2.1) of [16] is still satis�ed for
arbitrary partitions π and that (2.2) of [16] is satis�ed with the modi�ed right hand side

C ‖x‖
∫ t′k
ti
α(τ) dτ , where α is a suitable integrable function. All other arguments from [16]

carry over without formal change, a bit more care being necessary in the justi�cation of
assertion (c) of [16] because of the weaker regularity of t 7→ S(t) � see [6].)

2.4 Some remarks

We close this section about abstract well-posedness results with some remarks concerning,
in particular, the relation of the results from Section 2.1 and 2.2 with the results from [12],
[13], [16], [23] and the result from Section 2.3.

1. Clearly, the strong continuity conditions of the theorems from Section 2.1 and 2.2
are weaker than the regularity conditions of the general well-posedness results from [12]
(Theorem 6.1), [16], and [13] (Theorem 1) for general semigroup generators A(t) with-
out commutator restrictions of the kind (1.2) or (1.3). Indeed, in these results a strong
continuous di�erentiability condition or more generally a strong W 1,1-condition is im-
posed on t 7→ A(t) in the case of time-independent domains D(A(t)) = Y or on some
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related operator function t 7→ S(t) in the case of time-dependent domains D(A(t)) ⊃ Y .
In the special well-posedness result (Theorem 5.2 and Remark 5.3) from [12] for group
generators A(t), the imposed regularity condition is quite close to ours, namely a norm
continuity condition on t 7→ A(t)|Y . As has been shown in Section 2.3, strong continuity
of t 7→ A(t)|Y is su�cient as well. And in fact, if in addition to the assumptions of The-
orem 2.3 the following three conditions are satis�ed, then the well-posedness assertion of
this theorem (but no representation formula, of course) also follows from Theorem 2.5:

• A(t) for every t ∈ I is a quasicontraction group generator with time-independent
domain D(A(t)) = Y in the uniformly convex space X such that∥∥∥e±A(t)τ

∥∥∥ ≤ eωτ (τ ∈ [0,∞)) (2.24)

for some t-independent growth exponent ω ∈ R,

• C(k)(t1, . . . , tk+1) is a bounded operator on X for every (t1, . . . , tk+1) ∈ Ik+1 and

sup
(t1,...,tk+1)∈Ik+1

∥∥∥C(k)(t1, . . . , tk+1)
∥∥∥ <∞ (2.25)

for every k ∈ {1, . . . , p− 1} (an empty condition for p = 1!),

• t 7→ A(t)y is continuous for every y ∈ Y .

Indeed, under these conditions the norms ‖ . ‖±t appearing in Theorem 2.5 can be chosen
to be ‖ . ‖∗ := ‖(A(0)− ω − 1) . ‖ for every t ∈ I (t-independent!): with this norm,
Y becomes a uniformly convex subspace admissible for the group generators ±A(t) and∥∥∥e±A(t)τy

∥∥∥
∗
≤ eω0τ ‖y‖∗ (y ∈ Y and τ ∈ [0,∞)) (2.26)

for a suitable ω0 ∈ R, and �nally Y ◦ = Y . (In order to see (2.26) and the ±A(t)-
admissibility of Y one checks that (2.12) holds true for τ ∈ (−∞, 0) as well, so that in
particular

A(0)e±A(t)τy = e±A(t)τ
(
A(0) + C(1)(0, t)(±τ) + · · ·+ C(p−1)(0, t, . . . , t)(±τ)p−1/(p− 1)!

+ µ(0, t, . . . , t)(±τ)p/p!
)
y

for all y ∈ Y and τ ∈ [0,∞). With the help of (2.24) and (2.25) the desired ±A(t)-
admissibility and the quasicontraction group property (2.26) then readily follow.)

2. In the well-posedness theorems from [10] and [20] weaker notions of well-posedness
are used than here [21], which in return allows for weaker regularity assumptions than
those of [13] and [16]. In the second product representation theorem from [24] (Proposi-
tion 4.9) which also asserts well-posedness, there seems to be missing, in the hyperbolic
case, an additional regularity assumption of the kind of condition (ii�) from [12]. At
least, it is not clear [19] how the asserted well-posedness should be established and how
the range condition from Cherno�'s theorem (invoked in [24]) should be veri�ed without
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such an additional assumption. (In this respect, see in particular Theorem 4.19 of [22]
and the remarks preceding it, which state that Y is a core for G only under the additional
condition (ii�) from [12].) As far as [5] is concerned, it should be remarked that the ab-
stract well-posedness theorem of this paper is actually a corollary of the well-posedness
theorem of [13]. (Indeed, if for every y ∈ Y the map t 7→ S(t)y is di�erentiable at
all except countably many points with an exceptional set N not depending on y and if
supt∈I\N ‖S′(t)y‖ <∞, then t 7→ S(t)y is already absolutely continuous (Theorem 6.3.11
of [4]) and

S(t)y = S(0)y +

∫ t

0
S′(τ)y dτ

(Proposition 1.2.3 of [1]) for every y ∈ Y , so that the strong W 1,1-regularity condition
for t 7→ S(t) from [13] is satis�ed.)

3. It is clear from the proofs of Theorem 2.1 and Theorem 2.3 that the well-posedness
statements remain valid if the (M,ω)-stability condition of these theorems is replaced
by the condition from [23] that there exist a sequence (πn) of partitions of I such that
mesh(πn) −→ 0 and∥∥∥eA(rn(t))(t−rn(t)) · · · eA(rn(s))(r+n (s)−s)

∥∥∥ ≤Meω(t−s) ((s, t) ∈ ∆). (2.27)

In [23] it is shown that this stability condition is strictly weaker than (M,ω)-stability.
Also, it is clear from the proof of Theorem 2.1 that the representation formula for the
evolution is still valid if (2.27) is sharpened to∥∥∥eA(rn(t))r(t−rn(t)) · · · eA(rn(s))r(r+n (s)−s)

∥∥∥ ≤Meωr(t−s) ((s, t) ∈ ∆, r ∈ [0,∞)). (2.28)

In particular, the method of proof of Theorem 2.1 yields an alternative and more elemen-
tary proof (without reference to the Trotter�Kato theorem) of Proposition 2.5 from [23]
(or, rather, of a slightly corrected version of it: in order for the proof of [23] to work
one has to choose as the domain of

∫ t
s A(τ) dτ the maximal continuity subspace Y ◦ of A

instead of the quite arbitrary subspace denoted by Y in [23] because such a subspace, in
contrast to Y ◦, is not left invariant by (Bn − λ)−1 in general).

4. In the case (1.2), one might think that it should be possible to (more e�ciently)
obtain the well-posedness of the initial value problems (1.1) on Y ◦ by �rst de�ning a
candidate U for the sought evolution system through the representation formula

U(t, s) := e(
∫ t
s A(τ) dτ)◦e1/2

∫ t
s

∫ τ
s µ(τ,σ) dσ dτ ,

and by then verifying that this candidate is indeed an evolution system for A on Y ◦.
In order to prove that the closure of (

∫ t
s A(τ) dτ)◦ exists and is a semigroup generator,

one might want to employ the theorem of Trotter and Kato as in [23] � instead of
exploiting the locally uniform convergence of the sequences (U rn(t, s)x) as we did. And in
order to verify the evolution system properties for U , one might want to make rigorous
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the following formal di�erentiation rule for exponential operators (appearing in [31], for
instance):

eB(t+h) − eB(t)

h
=
eB(t+h)τeB(t)(1−τ)

h

∣∣∣τ=1

τ=0
=

∫ 1

0
eB(t+h)τ B(t+ h)−B(t)

h
eB(t)(1−τ) dτ

−→
∫ 1

0
eB(t+h)τB′(t) eB(t)(1−τ) dτ (h→ 0) (2.29)

with B(t) := (
∫ t
s A(τ) dτ)◦. Yet, this is possible only if Reµ(τ, σ) ≥ 0 for all σ ≤ τ

because only then can the right hand side of (2.6) be dominated by a bound M ′eω
′r for

all r ∈ [0,∞) uniformly in n ∈ N (a �rst crucial assumption of the Trotter�Kato theorem).
And moreover, the veri�cation of the density of ran ((

∫ t
s A(τ) dτ)◦ − λ) in X for λ > ω′

(a second crucial assumption of the Trotter�Kato theorem) and the veri�cations of the
evolution system properties for U with the help of (2.29) are more involved than the
arguments in our approach.

3 Some applications of the abstract results

3.1 Segal �eld operators

In this subsection we apply the well-posedness result of Section 2.1 to Segal �eld operators
Φ(ft) in F+(h) (symmetric Fock space over a Hilbert space h) with ft ∈ h. As for
standard facts about such operators we refer to [2]. It is well-known by the Weyl form
of the canonical commutation relations that

iΦ(fs)e
iΦ(ft)τ = eiΦ(ft)τ

(
iΦ(fs)− i Im 〈fs, ft〉 τ

)
(3.1)

for all s, t ∈ I and τ ∈ R, and therefore we obtain the following well-posedness result by
means of Theorem 2.1.

Corollary 3.1. Suppose A(t) = iΦ(ft) in X := F+(h) and t 7→ ft ∈ h is continuous.

Then there exists a unique evolution system U for A on the maximal continuity subspace

Y ◦ for A and it is given by

U(t, s) = e(
∫ t
s iΦ(fτ ) dτ)◦e−i/2

∫ t
s

∫ τ
s Im〈fτ ,fσ〉 dσ dτ = W

(∫ t

s
fτ dτ

)
e−i/2

∫ t
s

∫ τ
s Im〈fτ ,fσ〉 dσ dτ

where W (h) := eiΦ(h) denotes the Weyl operator for h ∈ h.

Proof. Since t 7→ ft is continuous and since for all f ∈ h and ψ ∈ D(N1/2) (N the
number operator in F+(h))

‖Φ(f)ψ‖ ≤ 21/2 ‖f‖ ‖(N + 1)1/2ψ‖,

the maximal continuity subspace Y ◦ for A contains the dense subspace D(N1/2) of X.
So, by (3.1) the desired well-posedness statement and the �rst of the asserted rep-
resentation formulas for U follow from Theorem 2.1. (Alternatively, one could also
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apply Corollary 2.2 with Y := D(N) endowed with the graph norm of N because
A(t)D(N) ⊂ D(N1/2) ⊂ ∩τ∈ID(A(τ)) and [A(s), A(t)]|D(N) ⊂ −i Im 〈fs, ft〉,

NeiΦ(f) = eiΦ(f)
(
N + Φ(if) + ‖f‖2

)
for all f ∈ h.) In order to see the second representation formula for U , repeatedly apply
the identity W (f)W (g) = W (f + g)e−i/2 Im〈f,g〉 to the approximants Un for U from the
proof of Theorem 2.1 and use the strong continuity of h 3 h 7→W (h). �

We point out that alternatively the above result could also be obtained by the strategy
sketched in the fourth remark of Section 2.4 (because here Reµ(τ, σ) = 0 for all σ, τ ∈ I).
Also, a slightly weaker result, namely the well-posedness in the wide sense on Y =

D(H
1/2
ω ), could be obtained in yet another way under the slightly stronger condition

that both t 7→ ft and t 7→ ft/
√
ω ∈ h = L2(R3) are continuous (where ω ∈ C(R3, [0,∞))

with ω(−k) = ω(k) for k ∈ R3 and where Hω is the second quantization of ω). Indeed,
by exploiting the exponential series expansion for Weyl operators on vectors ψ in the
�nite particle subspace F0+(h), one can show that

t 7→ U(t, s)ψ := W
(∫ t

s
fτ dτ

)
ψ e−i/2

∫ t
s

∫ τ
s Im〈fτ ,fσ〉 dσ dτ

is di�erentiable for ψ ∈ F0+(h) with the desired derivative. Using the fact that F0+(h)
is a core for Φ(ft)|D(H

1/2
ω )

uniformly in t ∈ I (see (3.3) below) and the commutation

relation (3.1), one then concludes that t 7→ U(t, s)ψ is continuously di�erentiable for all

ψ ∈ D(H
1/2
ω ) with the desired derivative. (Uniqueness of the thus constructed evolution

system U for A on Y in the wide sense follows from [11].)

With the help of the above well-posedness result for Segal �eld operators one can also
show the well-posedness of the initial value problems for A on D(Hω) with the operators
A(t) := −i(Hω + Φ(ft)) which describe a classical particle coupled to a time-dependent
quantized �eld of bosons.

Corollary 3.2. Suppose A(t) = −i(Hω + Φ(ft)) in X := F+(h), where h := L2(R3) and
ω ∈ C(R3, [0,∞)) with ω(−k) = ω(k) for k ∈ R3, and suppose t 7→ ft, ft/

√
ω ∈ h are

continuous and t 7→ ft is even Lipschitz. Then there exists a unique evolution system U
for A on D(Hω) and it is given by (3.2) and (3.4).

Proof. It is well-known that A(t) is skew self-adjoint on D(Hω) because ft, ft/
√
ω ∈ h.

We de�ne U as the interaction picture evolution,

U(t, s) := e−iHωtŨ(t, s)eiHωs, (3.2)

where Ũ denotes the evolution system for Ã with Ã(t) = −ieiHωtΦ(ft)e
−iHωt. Since

Ã(t) = −ieiHωtΦ(ft)e
−iHωt = iΦ(f̃t) with f̃t := −eiωtft,
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the maximal continuity subspace Ỹ ◦ for Ã contains the dense subspace D(H
1/2
ω ) by the

standard estimate

‖Φ(f)ψ‖ ≤
(
‖f‖2 +

∥∥f/√ω∥∥2 )1/2‖(Hω + 1)1/2ψ‖ (3.3)

for ψ ∈ D(H
1/2
ω ) and f, f/

√
ω ∈ h. And therefore, by Corollary 3.1, the evolution system

Ũ really exists on Ỹ ◦ and is given by

Ũ(t, s) = W
(∫ t

s
f̃τ dτ

)
e−i/2

∫ t
s

∫ τ
s Im〈f̃τ ,f̃σ〉 dσ dτ . (3.4)

We have to show (i) that Ũ(t, s)D(Hω) ⊂ D(Hω) for all (s, t) ∈ ∆ because only then is
t 7→ U(t, s)ψ di�erentiable for all ψ ∈ D(Hω) with the desired derivative t 7→ −i(Hω +
Φ(ft))U(t, s)ψ and (ii) that this derivative is continuous. Since, as is well-known,

HωW (g) = W (g)
(
Hω + Φ(iωg) + 〈g, ωg〉 /2

)
(3.5)

for every g ∈ D(ω), we are led to showing that

gt :=

∫ t

s
f̃τ dτ ∈ D(ω) and t 7→ ωgt ∈ h is continuous. (3.6)

In order to do so notice that t 7→ ft, being a Lipschitz continuous function with values
in the re�exive space h, belongs to the Sobolev space W 1,∞(I, h) and therefore we can
perform the following integration by parts:

gt =

∫ t

s
eiωτ (iω + 1)−1fτ dτ +

∫ t

s
eiωτ iω (iω + 1)−1fτ dτ

=

∫ t

s
eiωτ (iω + 1)−1fτ dτ + eiωτ (iω + 1)−1fτ

∣∣∣τ=t

τ=s
−
∫ t

s
eiωτ (iω + 1)−1f ′τ dτ.

As a consequence, (3.6) ensues and by (3.5), (3.3), (3.1) the desired assertions (i) and (ii)
readily follow. �

We point out that in order to obtain the above conclusion by the well-posedness theo-
rem from [13], [14] (Section 1), one needs the additional assumption that t 7→ ft/

√
ω ∈ h

is Lipschitz as well.

3.2 Schrödinger operators for external electric �elds

In this subsection we apply the well-posedness result of Section 2.2 to Schrödinger oper-
ators −∆ + b(t) · x in X := L2(Rd) describing a quantum particle in a time-dependent
spatially constant electric �eld b(t) ∈ Rd. Setting A(t) = i∆− ib(t) · x, we obtain by
formal computation

[A(t1), A(t2)] = 2
d∑

κ=1

(bκ(t2)− bκ(t1))∂κ,
[
[A(t1), A(t2)], A(t3)

]
= µ(t1, t2, t3) (3.7)

with µ(t1, t2, t3) := −2i
∑d

κ=1(bκ(t2) − bκ(t1))bκ(t3) ∈ C and we therefore expect to be
able to apply Theorem 2.3 with p = 2. Indeed, we have (see also the remarks below):
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Corollary 3.3. Suppose A(t) = A0 +B(t) in X := L2(Rd), where A0 := i∆ with

D(A0) = W 2,2(Rd) and where B(t) is multiplication by −ib(t) ·x, and suppose t 7→ b(t) ∈
Rd is continuous. Then there exists a unique evolution system U for A on the maximal

continuity subspace Y ◦ for A = C(0) and C(1) de�ned after (3.10). Additionally, U is

given by (3.11) and (3.12).

Proof. (i) We �rst show that A0 + B(t0) for every t0 ∈ I is essentially skew self-adjoint
and that the unitary group generated by A := A0 +B(t0) is given by

eAt = eA0teBte−∂1b1t
2 · · · e−∂dbdt2e2ib2t3/3 (t ∈ R), (3.8)

where B := B(t0) and b = (b1, . . . , bd) := b(t0) ∈ Rd. We do so by showing that the right
hand side of (3.8), which we abbreviate as T (t), de�nes a strongly continuous unitary
group in X with

A0 +B ⊂ AT and T (t)D(A0 +B) ⊂ D(A0 +B) (t ∈ R),

where AT stands for the generator of T . (In order to understand why eA . should decom-
pose as in (3.8), plug the following formal commutators

[B,A0] = −2
d∑

κ=1

bκ∂κ, [[B,A0], B] = 2ib2, [[B,A0], A0] = 0

into the Zassenhaus formula [17], [28], [3] for bounded operators.) With the help of
the explicit formulas for the groups eA0 . (free Schrödinger group), eB . (multiplication
group), e∂κ . (translation group) we �nd the following commutation relations,

eA0te∂κs = e∂κseA0t, eBte∂κs = e∂κseBteibκts,

eA0teBs = eBseA0te2∂1b1ts · · · e2∂dbdtse−ib
2t2s (s, t ∈ R). (3.9)

It follows from (3.9) that T is indeed a strongly continuous unitary group and that

e∂κsD(A0) ⊂ D(A0), e∂κsD(B) ⊂ D(B), eBsD(A0) ⊂ D(A0),

eA0tD(A0 +B) ⊂ D(B) (s, t ∈ R),

so that T (t)D(A0 + B) ⊂ D(A0 + B) for all t ∈ R and A0 + B ⊂ AT . Consequently,
A0 + B is essentially skew self-adjoint and A = A0 +B is equal to AT . After these
preparations we can now verify the assumptions of Theorem 2.3 for p = 2. Indeed, using
the commutation relations (3.9) we �nd that

eC12σeA3τ = eA3τeC12σeµ123τσ, eA1σeA2τ = eA2τeA1σeC12τσeµ122τ
2σ/2eµ121τσ

2/2 (3.10)

for all σ, τ ∈ R, where Aj := A(tj) = C(0)(tj), bj := b(tj), Cjk = C(1)(tj , tk) is

the closure of 2
∑d

κ=1(bk κ − bj κ)∂κ (that is, Cjk generates the translation group t 7→
e2(bk 1−bj 1)∂1t · · · e2(bk d−bj d)∂dt), and µjkl := −2i

∑d
κ=1(bk κ − bj κ)bl κ. And from (3.10),
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in turn, the commutation relations imposed in Theorem 2.3 follow by di�erentiation at
σ = 0. Since, moreover, the maximal continuity subspace for A = C(0) and C(1) con-
tains the dense subspace of Schwartz functions on Rd, the existence of a unique evolution
system U for A on Y ◦ follows by Theorem 2.3.

(ii) We now show the following representation formula for U :

U(t, s) = W (t)Ũ(t, s)W (s)−1 = e(
∫ t
0 B(τ) dτ)◦ e

∫ t
s Ã(τ) dτ e−(

∫ s
0 B(τ) dτ)◦ , (3.11)

where Ũ is the evolution system for Ã on D := W 2,2(Rd) with Ã(t) := −i(−i∇− c(t))2

and c(t) :=
∫ t

0 b(τ) dτ and where the gauge transformation W is the evolution system for
B on Z◦, the maximal continuity subspace for B. Clearly, since B(τ) = −ib(τ) · x and
Ã(τ) = −iF−1(ξ − c(τ))2F ,

e(
∫ t
0 B(τ) dτ)◦ = e−i

∫ t
0 b(τ)·x dτ and e

∫ t
s Ã(τ) dτ = F−1e−i

∫ t
s (ξ−c(τ))2 dτF (3.12)

(which last expression could be cast into a more explicit integral form similar to the
explicit integral representation of the free Schrödinger group). It should be noticed that,
due to the pairwise commutativity of the opertors Ã(t) and of the operators B(t), the
existence of the evolution systems Ũ and W , and the second equality in (3.11) already
follow by [9] and [23]. In order to see the �rst equality in (3.11), one shows by similar
arguments as those of part (i) above that the subspace Y ◦0 := D ∩ Z◦ of Y ◦ is invariant
under W (s)−1, Ũ(t, s), W (t) and that

A0W (t)f = W (t)Ã(t)f

B(r)Ũ(t, s)f = Ũ(t, s)
(
B(r)f − 2

d∑
κ=1

bκ(r) (t− s) ∂κf + 2i
d∑

κ=1

bκ(r)

∫ t

s
cκ(τ) dτ f

)
for f ∈ Y ◦0 . (Show commutation relations for eÃ(r1)σ and eB(r2)τ analogous to (3.9) to

obtain commutation relations for B(r2) with eÃ(r1)σ and then use the standard product
approximants for the evolution systems W and Ũ .) It then follows that U0 de�ned by
U0(t, s) := W (t)Ũ(t, s)W (s)−1 is an evolution system for A on Y ◦0 , which by the standard
uniqueness argument for evolution systems must coincide with U . �

We see from part (ii) of the above proof that the existence of an evolution system U0

for A on the subspace Y ◦0 , after a suitable gauge transformation, already follows by [9],
[23] � but in order to obtain well-posedness on Y ◦, the results from [9], [23] do not su�ce,
because the subspace Y ◦0 is strictly contained in Y ◦ in general. (Indeed, if for instance
b(t) ≡ 1 ∈ Rd with d = 1, then the function ψ with ψ(ξ) := eiξ

3/3/ξ for ξ ∈ [1,∞)
and ψ(ξ) := 0 for ξ ∈ (−∞, 1) does not belong to the range of C − i := i∂ξ + ξ2 − i.
Consequently, −∂2

x + x− i = F−1(C − i)F is not surjective so that Y ◦0 = D(A0 +B) =
D(−∂2

x + x) ( D(−∂2
x + x) = D(A) = Y ◦ by the standard criterion for self-adjointness.)

We �nally remark that the results of [34] do not apply to the situation of this section.
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