Universität Stuttgart

Fachbereich Mathematik

Exact rate of convergence of kernel-based classification rule
Maik Döring, László Györfi, Harro Walk

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

Exact rate of convergence of kernel-based classification rule

Maik Döring, László Györfi *, and Harro Walk
Institut für Angewandte Mathematik und Statistik
Universität Hohenheim
Schloss Hohenheim, 70599 Stuttgart, Germany
maik.doering@uni-hohenheim.de
Department of Computer Science and Information Theory
Budapest University of Technology and Economics
Magyar Tudósok körútja 2., H-1117 Budapest, Hungary
gyorfi@cs.bme.hu
Department of Mathematics
University of Stuttgart
Pfaffenwaldring 57, 70569 Stuttgart, Germany
walk@mathematik.uni-stuttgart.de

Abstract

A binary classification problem is considered, where the posteriori probability is estimated by the nonparametric kernel regression estimate with naive kernel. The excess error probability of the corresponding plug-in decision classification rule according to the error probability of the Bayes decision is studied such that the excess error probability is decomposed into approximation and estimation error. A general formula is derived for the approximation error. Under a weak margin condition and various smoothness conditions, tight upper bounds are presented on the approximation error. By a Berry-Esseen type central limit theorem a general expression for the estimation error is shown.

AMS Classification: 62G10.
KEY words and phrases: lower bound, upper bound, classification error probability, kernel rule, margin condition

1 Introduction

We consider a binary classification problem. Using a kernel estimator for the posteriori probability, the asymptotics of the error probability is examined of the corresponding plug-in classification rule. In this paper lower and upper bounds are presented on the rate of convergence of the classification error probability.

[^0]Let the feature vector X take values in \mathbb{R}^{d} such that its distribution is denoted by μ and let the label Y be binary valued. If g is an arbitrary decision function, then its error probability is denoted by

$$
L(g)=\mathbb{P}\{g(X) \neq Y\}
$$

The Bayes decision g^{*} minimizes the error probability. It follows that

$$
g^{*}(x)=\left\{\begin{array}{l}
1 \text { if } \eta(x)>1 / 2 \\
0 \text { otherwise }
\end{array}\right.
$$

where the posteriori probability η is given by

$$
\eta(x)=\mathbb{P}\{Y=1 \mid X=x\}
$$

Let the corresponding error probability be

$$
L^{*}=\mathbb{P}\left\{g^{*}(X) \neq Y\right\}
$$

Put

$$
D(x)=2 \eta(x)-1
$$

then the Bayes decision has the following equivalent form:

$$
g^{*}(x)=\left\{\begin{array}{l}
1 \text { if } D(x)>0 \\
0 \text { otherwise }
\end{array}\right.
$$

In the standard model of pattern recognition, we are given training labeled samples, which are independent and identically copies of $(X, Y):\left(X_{1}, Y_{1}\right), \ldots$, $\left(X_{n}, Y_{n}\right)$. Based on these labeled samples, one can estimate the regression function D by D_{n}, and the corresponding plug-in classification rule g_{n} derived from D_{n} is defined by

$$
g_{n}(x)=\left\{\begin{array}{l}
1 \text { if } D_{n}(x)>0 \\
0 \text { otherwise }
\end{array}\right.
$$

In the following our focus lies on the rate of convergence of the excess error probability $\mathbb{E}\left\{L\left(g_{n}\right)\right\}-L^{*}$. In Section 2 margin conditions are discussed, which measure how fast the regression function D crosses the decision boundary. A nonparametric kernel regression estimate of D is introduced and a decomposition of the excess error probability into approximation and estimation error is considered in Section 3. Tight upper bounds on the approximation error are shown in Section 4 depending on margin and smoothness conditions on D. By a Berry-Esseen type central limit theorem a general expression for the estimation error is derived in Section 5. Finally, some conclusions are given.

2 Margin conditions

Given the plug-in classification rule g_{n} derived from D_{n} it follows

$$
\mathbb{E}\left\{L\left(g_{n}\right)\right\}-L^{*} \leq \mathbb{E}\left\{\left|D(X)-D_{n}(X)\right|\right\}
$$

(cf. Theorem 2.2 in Devroye, Györfi, Lugosi [3]). Therefore we may get an upper bound on the rate of convergence of the excess error probability $\mathbb{E}\left\{L\left(g_{n}\right)\right\}-L^{*}$ via the L_{1} rate of convergence of the corresponding regression estimation.

However, according to Section 6.7 in Devroye, Györfi, Lugosi [3], the classification is easier than L_{1} regression function estimation, since the rate of convergence of the error probability depends on the behavior of the function D in the neighborhood of the decision boundary

$$
\begin{equation*}
B_{0}=\{x ; D(x)=0\} . \tag{1}
\end{equation*}
$$

This phenomenon has been discovered by Mammen and Tsybakov [10], Tsybakov [13], who formulated the (strong) margin condition:

- The strong margin condition. Assume that for all $0<t \leq 1$,

$$
\begin{equation*}
\mathbb{P}\{|D(X)| \leq t\} \leq c t^{\alpha}, \tag{2}
\end{equation*}
$$

where $\alpha>0$ and $c>0$.
Kohler and Krzyżak [7] introduced the weak margin condition:

- The weak margin condition. Assume that for all $0<t \leq 1$,

$$
\begin{equation*}
\mathbb{E}\left\{\mathbb{I}_{\{|D(X)| \leq t\}}|D(X)|\right\} \leq c t^{1+\alpha} \tag{3}
\end{equation*}
$$

where \mathbb{I} denotes the indicator function.
Obviously, the strong margin condition implies the weak margin condition:

$$
\mathbb{E}\left\{\mathbb{I}_{\{|D(X)| \leq t\}}|D(X)|\right\} \leq \mathbb{E}\left\{\mathbb{I}_{\{|D(X)| \leq t\}} t\right\}=t \mathbb{P}\{|D(X)| \leq t\} \leq c t \cdot t^{\alpha}
$$

The difference between the strong and weak margin condition is that, for the strong margin condition, the event

$$
\{D(X)=0\}
$$

counts. One can weaken the strong margin condition (2) such that we require

$$
\begin{equation*}
\mathbb{P}\{0<|D(X)| \leq t\} \leq c t^{\alpha} \tag{4}
\end{equation*}
$$

Obviously, (4) implies (3). Under some mild conditions we have that $\alpha=1$. (Cf. Lemma 2.) The margin conditions measure how fast the probability of a t-neighborhood of the decision boundary increases with t. A large value of α corresponds to a small probability of the neighborhood of the decision boundary, which means that the probability for events far away of the decision boundary is high. Therefore, a classifier can make the right decision more easily, hence one can expect smaller errors for larger values of α.

Recently, Audibert and Tsybakov [1] proved that if the plug-in classifier g has been derived from the regression estimate \tilde{D} and if D satisfies the strong margin condition, then

$$
\begin{equation*}
L(g)-L^{*} \leq\left(\int(\tilde{D}(x)-D(x))^{2} \mu(d x)\right)^{\frac{1+\alpha}{2+\alpha}} \tag{5}
\end{equation*}
$$

It is easy to see that (5) holds even under weak margin condition: we have that

$$
\begin{equation*}
L(g)-L^{*}=\mathbb{E}\left\{\mathbb{I}_{\left\{g(X) \neq g^{*}(X)\right\}}|D(X)|\right\} \tag{6}
\end{equation*}
$$

(cf. Theorem 2.2 in Devroye, Györfi, Lugosi [3]). Let $\operatorname{sign}(x)=1$ for $x>0$ and $\operatorname{sign}(x)=-1$ for $x \leq 0$. For fixed $t_{n}>0$,

$$
\begin{aligned}
L(g)-L^{*}= & \mathbb{E}\left\{\mathbb{I}_{\left\{\operatorname{sign} \tilde{D}(X) \neq \operatorname{sign} D(X),|D(X)| \leq t_{n}\right\}}|D(X)|\right\} \\
& +\mathbb{E}\left\{\mathbb{I}_{\left\{\operatorname{sign} \tilde{D}(X) \neq \operatorname{sign} D(X),|D(X)|>t_{n}\right\}}|D(X)|\right\} \\
\leq & \mathbb{E}\left\{\mathbb{I}_{\left\{|D(X)| \leq t_{n}\right\}}|D(X)|\right\} \\
& +\mathbb{E}\left\{\mathbb{I}_{\left\{\operatorname{sign} \tilde{D}(X) \neq \operatorname{sign} D(X),|\tilde{D}(X)-D(X)|>t_{n}\right\}}|\tilde{D}(X)-D(X)|\right\},
\end{aligned}
$$

therefore the weak margin condition implies that

$$
\begin{aligned}
L(g)-L^{*} & \leq c t_{n}^{1+\alpha}+t_{n} \mathbb{E}\left\{\mathbb{I}_{\left\{|\tilde{D}(X)-D(X)|>t_{n}\right\}} \frac{|\tilde{D}(X)-D(X)|}{t_{n}}\right\} \\
& \leq c t_{n}^{1+\alpha}+t_{n} \mathbb{E}\left\{\frac{|\tilde{D}(X)-D(X)|^{2}}{t_{n}^{2}}\right\}
\end{aligned}
$$

For the choice

$$
t_{n}=\left(\mathbb{E}\left\{|\tilde{D}(X)-D(X)|^{2}\right\}\right)^{\frac{1}{2+\alpha}}
$$

we get (5).
For bounding the error probability, assume, for example, that D satisfies the Lipschitz condition: for any $x, z \in \mathbb{R}^{d}$

$$
|D(x)-D(z)| \leq C\|x-z\| .
$$

If D is Lipschitz continuous and X is bounded then there are regression estimates such that

$$
\int\left(D_{n}(x)-D(x)\right)^{2} \mu(d x) \leq c_{1}^{2} n^{-\frac{2}{d+2}}
$$

therefore (5) means that

$$
L(g)-L^{*} \leq\left(c_{1}^{2} n^{-\frac{2}{d+2}}\right)^{\frac{1+\alpha}{2+\alpha}}=\left(c_{1}^{1+\alpha} n^{-\frac{1+\alpha}{d+2}}\right)^{\frac{2}{2+\alpha}}
$$

Kohler and Krzyżak [7] proved that for the standard plug-in classification rules (partitioning, kernel, nearest neighbor) and for weak margin condition we get that the order of the upper bound can be smaller:

$$
n^{-\frac{1+\alpha}{d+2}} .
$$

The main aim of this paper is to show tight upper bounds on the excess error probability $\mathbb{E}\left\{L\left(g_{n}\right)\right\}-L^{*}$ of the kernel classification rule g_{n}.

3 Kernel classification

We fix $x \in \mathbb{R}^{d}$, and, for an $h>0$, let the (naive) kernel estimate of $D(x)$ be

$$
D_{n, h}(x)=\frac{1}{n} \sum_{i=1}^{n}\left(2 Y_{i}-1\right) \mathbb{I}_{\left\{X_{i} \in S_{x, h}\right\}} / \mu\left(S_{x, h}\right),
$$

where $S_{x, h}$ denotes the sphere centered at x with radius h. Notice that $D_{n, h}$ is not a true estimate, because its denominator contains the unknown distribution μ. However, the corresponding plug-in classification rule defined below depends only on the sign of $D_{n, h}(x)$, and so μ doesn't count. The (naive) kernel classification rule is

$$
g_{n, h}(x)=\left\{\begin{array}{l}
1 \text { if } D_{n, h}(x)>0 \\
0 \text { otherwise }
\end{array}\right.
$$

(cf. Devroye [2], Devroye and Wagner [4], Krzyżak [8], Krzyżak and Pawlak [9]).
If D is Lipschitz continuous and X is bounded then, for the L_{1} error, one has that

$$
\mathbb{E}\left\{\left|D(X)-D_{n, h}(X)\right|\right\} \leq c_{2} h+\frac{c_{3}}{\sqrt{n h^{d}}}
$$

(cf. Györfi et al. [5]), so for the choice

$$
\begin{equation*}
h=n^{-\frac{1}{d+2}}, \tag{7}
\end{equation*}
$$

the L_{1} upper bound implies that

$$
\mathbb{E}\left\{L\left(g_{n, h}\right)\right\}-L^{*} \leq c_{4} n^{-\frac{1}{d+2}}
$$

Because of (6), we have that the excess error probability of any plug-in classification rule has the following decomposition:

$$
\mathbb{E}\left\{L\left(g_{n, h}\right)\right\}-L^{*}=\mathbb{E}\left\{\int_{\left\{\operatorname{sign} D_{n, h}(x) \neq \operatorname{sign} D(x)\right\}}|D(x)| \mu(d x)\right\}=I_{n, h}+J_{n, h}
$$

where

$$
I_{n, h}=\mathbb{E}\left\{\int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D_{n, h}(x) \neq \operatorname{sign} D(x)\right\}}|D(x)| \mu(d x)\right\}
$$

and

$$
J_{n, h}=\mathbb{E}\left\{\int_{\left\{\operatorname{sign} D_{n, h}(x) \neq \operatorname{sign} D(x)=\operatorname{sign} \bar{D}_{h}(x)\right\}}|D(x)| \mu(d x)\right\}
$$

with $\bar{D}_{h}(x)=\mathbb{E}\left\{D_{n, h}(x)\right\} . I_{n, h}$ is called approximation error, while $J_{n, h}$ is the estimation error.

4 Approximation error

First we consider the approximation error. The following proposition means that the lower bound of the approximation error is approximately the half of the upper bound. Further, it shows that the bounds of the approximation error are mainly determined by the bandwidth h.

Proposition 1.

$$
\left(\frac{1}{2}+o(1)\right) \bar{I}_{h} \leq I_{n, h} \leq \bar{I}_{h}
$$

where

$$
\bar{I}_{h}=\int_{\left\{\operatorname{sign} \bar{D}_{h}(x) \neq \operatorname{sign} D(x)\right\}}|D(x)| \mu(d x) .
$$

Proof. The upper bound is obvious. The lower bound follows from the central limit theorem, since

$$
\begin{aligned}
& \mathbb{E}\left\{\int_{\left\{0 \geq \bar{D}_{h}(x), D_{n, h}(x) \leq 0<D(x)\right\}}|D(x)| \mu(d x)\right\} \\
& =\int_{\left\{\bar{D}_{h}(x) \leq 0<D(x)\right\}}|D(x)| \mathbb{P}\left\{D_{n, h}(x) \leq 0\right\} \mu(d x) \\
& =\int_{\left\{\bar{D}_{h}(x) \leq 0<D(x)\right\}}|D(x)| \mathbb{P}\left\{D_{n, h}(x)-\bar{D}_{h}(x) \leq-\bar{D}_{h}(x)\right\} \mu(d x) \\
& \geq \int_{\left\{\bar{D}_{h}(x) \leq 0<D(x)\right\}}|D(x)| \mathbb{P}\left\{D_{n, h}(x)-\bar{D}_{h}(x) \leq 0\right\} \mu(d x) \\
& \geq \int_{\left\{\bar{D}_{h}(x) \leq 0<D(x)\right\}}|D(x)|\left(\frac{1}{2}+o(1)\right) \mu(d x),
\end{aligned}
$$

where $o(1)$ is uniform in x. This can be seen, for example, using the Berry-Esseen inequality as in the proof of Proposition 2 below. The handling of remaining integral is analogous.

Kohler and Krzyżak [7] bounded the rate of convergence of the excess error probability assuming that D satisfies the weak margin condition and the Lipschitz condition. Further they assume that X has a density which is bounded away from zero:

$$
\begin{equation*}
f(x) \geq c^{\prime}>0 \tag{8}
\end{equation*}
$$

They proved that

$$
\begin{equation*}
\mathbb{E}\left\{L\left(g_{n, h}\right)\right\}-L^{*} \leq c_{5} h^{1+\alpha}+\frac{c_{6}}{n h^{d}} \tag{9}
\end{equation*}
$$

such that, for the choice (7),

$$
\mathbb{E}\left\{L\left(g_{n, h}\right)\right\}-L^{*} \leq c_{7} n^{-\frac{1+\alpha}{d+2}}
$$

In (9) the approximation error is upper bounded by $c_{5} h^{1+\alpha}$. Next we show how it follows from Proposition 1. Denote by

$$
B_{0, h}=\left\{x ; \min _{z \in B_{0}}\|x-z\| \leq h\right\}
$$

the h-neighborhood of the decision boundary B_{0} defined by (1). Let λ be the Lebesgue measure and let $M^{*}\left(B_{0}\right)$ be the outer surface (Minkowski content) of the decision boundary B_{0} defined by

$$
M^{*}\left(B_{0}\right)=\lim _{h \downarrow 0} \frac{\lambda\left(B_{0, h} \backslash B_{0}\right)}{h} .
$$

Lemma 1. If D satisfies the weak margin condition and the Lipschitz condition, then

$$
\bar{I}_{h} \leq c_{8} h^{1+\alpha}
$$

If D satisfies the Lipschitz condition, the density f of X exists, it is bounded by $f_{\max }$ and $M^{*}\left(B_{0}\right)$ is finite, then

$$
\bar{I}_{h} \leq c_{9} h^{2} .
$$

Proof. If $x \notin B_{0, h}$ then

$$
\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x) .
$$

Therefore

$$
\begin{aligned}
\bar{I}_{h} & =\int_{\left\{\operatorname{sign} \bar{D}_{h}(x) \neq \operatorname{sign} D(x)\right\}}|D(x)| \mu(d x) \\
& =\int_{\left\{\operatorname{sign} \bar{D}_{h}(x) \neq \operatorname{sign} D(x), x \in B_{0, h}\right\}}|D(x)| \mu(d x) .
\end{aligned}
$$

For any fixed $x \in B_{0, h}$, there is a $z_{x} \in B_{0}$ such that $\left\|x-z_{x}\right\| \leq h$, which together with the Lipschitz condition implies that

$$
|D(x)|=\left|D(x)-D\left(z_{x}\right)\right| \leq C h
$$

Thus, by the weak margin condition

$$
\begin{aligned}
\bar{I}_{h} & \leq \int_{\left\{|D(x)| \leq C h, x \in B_{0, h}\right\}}|D(x)| \mu(d x) \\
& \leq \int_{\{|D(x)| \leq C h\}}|D(x)| \mu(d x) \\
& \leq c(C h)^{1+\alpha} .
\end{aligned}
$$

Concerning the second half of the lemma, we have that

$$
\begin{aligned}
\bar{I}_{h} & \leq \int_{\left\{|D(x)| \leq C h, x \in B_{0, h}\right\}}|D(x)| \mu(d x) \\
& \leq C h \int_{\left\{0<|D(x)|, x \in B_{0, h}\right\}} 1 \mu(d x) \\
& =C h \mu\left\{B_{0, h} \backslash B_{0}\right\} \\
& \leq C h f_{\max } \lambda\left\{B_{0, h} \backslash B_{0}\right\} \\
& \leq C c_{10} h^{2} .
\end{aligned}
$$

The technique of the second half of the previous proof implies that $\alpha=1$.
Lemma 2. Let D satisfies the lower Lipschitz inequality at B_{0}, which means a $c^{*}>0$ exists, such that for all $t \in[0,1]$ and

$$
x \notin B_{0, c^{*} t}
$$

it follows

$$
|D(x)|>t .
$$

If the density f of X exists, it is bounded by $f_{\max }$, and the outer surface $M^{*}\left(B_{0}\right)$ is finite, then the weak margin condition holds with $\alpha=1$.

Proof. We verify (4) with $\alpha=1$.

$$
\begin{aligned}
& \mathbb{P}\{0<|D(X)| \leq t\} \\
& =\mathbb{P}\left\{0<|D(X)| \leq t, X \in B_{0, c^{*} t} \backslash B_{0}\right\}+\mathbb{P}\left\{0<|D(X)| \leq t, X \notin B_{0, c^{*} t}\right\} \\
& \leq \mathbb{P}\left\{X \in B_{0, c^{*} t} \backslash B_{0}\right\}+\mathbb{P}\{0<|D(X)| \leq t, t<|D(X)|\} \\
& \leq c_{10} c^{*} t .
\end{aligned}
$$

Hall and Kang [6] investigated the bandwidth choice. They assumed that conditional densities exist, which are bounded away from zero. Under twice differentiable conditional densities, they proved that

$$
\begin{equation*}
\mathbb{E}\left\{L\left(g_{n, h}\right)\right\}-L^{*} \leq c_{11} h^{4}+o\left(\frac{1}{n h^{d}}\right) . \tag{10}
\end{equation*}
$$

In (10) the approximation error is upper bounded by $c_{11} h^{4}$. Next we show how it follows from Proposition 1.

Let us introduce some notations:

$$
p_{+}:=\mathbb{P}\{Y=1\}, p_{-}:=\mathbb{P}\{Y=0\}
$$

Assume that the density f of X exists. Let f_{+}and f_{-}the conditional densities defined by

$$
\mathbb{P}\{X \in A \mid Y=1\}=\int_{A} f_{+}(x) d x
$$

and

$$
\mathbb{P}\{X \in A \mid Y=0\}=\int_{A} f_{-}(x) d x
$$

Then

$$
f(x)=p_{+} \cdot f_{+}(x)+p_{-} \cdot f_{-}(x)
$$

and

$$
D(x)=\frac{\tilde{f}(x)}{f(x)}
$$

where

$$
\tilde{f}(x):=p_{+} \cdot f_{+}(x)-p_{-} \cdot f_{-}(x) .
$$

Moreover,

$$
f_{+}(x)=\frac{f(x) \cdot(1+D(x))}{2 p_{+}}, f_{-}(x)=\frac{f(x) \cdot(1-D(x))}{2 p_{-}} .
$$

Lemma 3. Assume that \tilde{f} is two-times differentiable with bounded second order partial derivatives. If D satisfies the weak margin condition and the density f is bounded below by $f_{\text {min }}$, then

$$
\bar{I}_{h} \leq c_{12} h^{2(1+\alpha)}
$$

Proof. Let $H_{\tilde{f}}$ be the Hessian-matrix of \tilde{f}. Then the conditions of the lemma imply that

$$
\begin{equation*}
\sup _{0 \leq t \leq 1}\left|(x-z)^{T} H_{\tilde{f}}(x+t(z-x))(x-z)\right| \leq c_{13}\|x-z\|^{2} \tag{11}
\end{equation*}
$$

with $0<c_{13}<\infty$. We have the decomposition

$$
\begin{aligned}
\bar{D}_{h}(x) & =\frac{\int_{S_{x, h}} D(z) \mu(d z)}{\mu\left(S_{x, h}\right)} \\
& =\frac{\int_{S_{x, h}} \frac{\tilde{f}(z)}{f(z)} f(z) d z}{\mu\left(S_{x, h}\right)} \\
& =\frac{\int_{S_{x, h}}(\tilde{f}(z)-\tilde{f}(x)) d z}{\mu\left(S_{x, h}\right)}+\frac{\tilde{f}(x) \lambda\left(S_{x, h}\right)}{\mu\left(S_{x, h}\right)} \\
& =\frac{\int_{S_{x, h}}(\tilde{f}(z)-\tilde{f}(x)) d z}{\mu\left(S_{x, h}\right)}+D(x) \frac{f(x) \lambda\left(S_{x, h}\right)}{\mu\left(S_{x, h}\right)} .
\end{aligned}
$$

The second order Taylor expansion

$$
\tilde{f}(z)-\tilde{f}(x)=(z-x)^{T} \nabla \tilde{f}(x)+(z-x)^{T} H_{\tilde{f}}\left(\tilde{x}_{z}\right)(z-x) / 2
$$

with $\tilde{x}_{z} \in S_{x, h}$ implies that

$$
\begin{aligned}
& \bar{D}_{h}(x) \\
& =\frac{\int_{S_{x, h}}\left((z-x)^{T} \nabla \tilde{f}(x)+(z-x)^{T} H_{\tilde{f}}\left(\tilde{x}_{z}\right)(z-x) / 2\right) d z}{\mu\left(S_{x, h}\right)}+D(x) \frac{f(x) \lambda\left(S_{x, h}\right)}{\mu\left(S_{x, h}\right)} \\
& =\frac{\int_{S_{x, h}}(z-x)^{T} H_{\tilde{f}}\left(\tilde{x}_{z}\right)(z-x) / 2 d z}{\mu\left(S_{x, h}\right)}+D(x) \frac{f(x) \lambda\left(S_{x, h}\right)}{\mu\left(S_{x, h}\right)} .
\end{aligned}
$$

Therefore, from (11) we get that

$$
\bar{D}_{h}(x) \geq-\frac{c_{13} h^{2} \lambda\left(S_{x, h}\right) / 2}{\mu\left(S_{x, h}\right)}+D(x) \frac{f(x) \lambda\left(S_{x, h}\right)}{\mu\left(S_{x, h}\right)}
$$

Thus, for $D(x) \geq 0>\bar{D}_{h}(x)$, we have

$$
|D(x)| \leq \frac{c_{13} h^{2}}{2 f(x)} \leq \frac{c_{13} h^{2}}{2 f_{\min }}
$$

The same inequality holds for $D(x)<0 \leq \bar{D}_{h}(x)$. From the weak margin condition we get

$$
\begin{aligned}
\bar{I}_{h} & \left.=\int\left\{\operatorname{sign}\left(\bar{D}_{h}(x)\right) \neq \operatorname{sign}(D(x)), x \in B_{0, h}\right\}\right\}^{|D(x)| \mu(d x)} \\
& \leq \int_{\left\{|D(x)| \leq \frac{c_{13} h^{2}}{2 f_{\text {min }}}\right\}}|D(x)| \mu(d x) \\
& \leq c_{12} h^{2(1+\alpha)} .
\end{aligned}
$$

Under the assumption of Lemma 2 we have that the weak margin condition holds with $\alpha=1$. Hence by Lemma 3 and Proposition 1 we get that the approximation error $I_{n, h}$ is upper bounded by a multiple of h^{4}.

The question left is that whether the upper bounds in Lemmas 1 and 3 are tight. Consider some examples, where $\alpha=1$ and \bar{I}_{h} can be calculated showing that the order of the lower bounds have the order of the upper bounds.

Example 1. Assume that f is the uniform density on $[-1,1]^{d}$. Let $h<1, \beta \geq 1$, $a>0, b>0, a+b<1$. Choose

$$
p_{+}=\frac{1}{2}+\frac{b}{4(\beta+1)}
$$

and

$$
D(x)=a x_{1}+b x_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(x_{1}\right)
$$

where $x=\left(x_{1}, \ldots, x_{d}\right)$. Then

$$
\begin{aligned}
\tilde{f}(x) & =\frac{a x_{1}+b x_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(x_{1}\right)}{2^{d}} \cdot \mathbb{I}_{[-1,1]^{d}}(x) \\
f_{+}(x) & =\frac{1+a x_{1}+b x_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(x_{1}\right)}{2^{d+1} p_{+}} \cdot \mathbb{I}_{[-1,1]^{d}}(x) \\
f_{-}(x) & =\frac{1-a x_{1}-b x_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(x_{1}\right)}{2^{d+1} p_{-}} \cdot \mathbb{I}_{[-1,1]^{d}}(x) .
\end{aligned}
$$

One can check that D satisfies the weak margin condition with $\alpha=1$. If $x_{1}>0$ then $\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)$. Let V_{d} be the volume of the d-dimensional unit sphere, i.e. $V_{d}=\pi^{d / 2} / \Gamma(d / 2+1)$. For $-h<x_{1} \leq 0$

$$
\begin{aligned}
& \int_{S_{x, h}} D(x) \mu(d x)=\int_{S_{x, h}} \frac{a x_{1}+a\left(z_{1}-x_{1}\right)+b z_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(z_{1}\right)}{2^{d}} \cdot \mathbb{I}_{[-1,1]^{d}}(z) d z \\
& =\frac{a V_{d}}{2^{d}} h^{d} x_{1}+\int_{x_{1}-h}^{x_{1}+h} \frac{a\left(z_{1}-x_{1}\right)+b z_{1}^{\beta} \cdot \mathbb{I}_{(0,1]}\left(z_{1}\right)}{2^{d}} V_{d-1}\left(h^{2}-\left(z_{1}-x_{1}\right)^{2}\right)^{(d-1) / 2} d z_{1} \\
& =\frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} \int_{0}^{x_{1}+h} z_{1}^{\beta}\left(h^{2}-\left(z_{1}-x_{1}\right)^{2}\right)^{(d-1) / 2} d z_{1} \\
& \leq \frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} h^{d-1} \int_{0}^{x_{1}+h} z_{1}^{\beta} d z_{1} \\
& \leq \frac{h^{d-1}}{2^{d}}\left(a V_{d} h x_{1}+\frac{b V_{d-1}}{\beta+1} h^{\beta+1}\right) .
\end{aligned}
$$

And we have a lower bound by

$$
\begin{aligned}
& \int_{S_{x, h}} D(x) \mu(d x)=\frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} \int_{0}^{x_{1}+h} z_{1}^{\beta}\left(h^{2}-\left(z_{1}-x_{1}\right)^{2}\right)^{(d-1) / 2} d z_{1} \\
& =\frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} \int_{0}^{h} \mathbb{I}_{\left(-x_{1}, \infty\right)}\left(\tilde{z}_{1}\right)\left(\tilde{z}_{1}+x_{1}\right)^{\beta}\left(h^{2}-\tilde{z}_{1}^{2}\right)^{(d-1) / 2} d \tilde{z}_{1} \\
& =\frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} \int_{0}^{h}\left(\mathbb{I}_{(0, \infty)}\left(\tilde{z}_{1}\right) \tilde{z}_{1}^{\beta}\left(h^{2}-\tilde{z}_{1}^{2}\right)^{(d-1) / 2}\right. \\
& \left.\quad+x_{1} \mathbb{I}_{\left(-\tilde{x}_{1}, \infty\right)}\left(\tilde{z}_{1}\right) \beta\left(\tilde{z}_{1}+\tilde{x}_{1}\right)^{\beta-1}\left(h^{2}-\tilde{z}_{1}^{2}\right)^{(d-1) / 2}\right) d \tilde{z}_{1} \\
& \geq \frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}}{2^{d}} \int_{0}^{h}\left(\tilde{z}_{1}^{\beta}\left(h^{2}-\tilde{z}_{1}^{2}\right)^{(d-1) / 2}+x_{1} \beta \tilde{z}_{1}^{\beta-1} h^{d-1}\right) d \tilde{z}_{1} \\
& \geq \frac{a V_{d}}{2^{d}} h^{d} x_{1}+\frac{b V_{d-1}^{2}}{2^{d}}\left(\int_{0}^{h / 2} \tilde{z}_{1}^{\beta}\left(h^{2}-(h / 2)^{2}\right)^{(d-1) / 2} d \tilde{z}_{1}\right. \\
& \left.\quad+\int_{h / 2}^{h}(h / 2)^{\beta-1} \tilde{z}_{1}\left(h^{2}-\tilde{z}_{1}^{2}\right)^{(d-1) / 2} d \tilde{z}_{1}+x_{1} h^{d}\right)
\end{aligned}
$$

$$
\begin{aligned}
=\frac{a V_{d}}{2^{d}} h^{d} x_{1}+ & \frac{b V_{d-1}}{2^{d}}\left(\frac{1}{\beta+1}(h / 2)^{\beta+1}\left(h^{2}-(h / 2)^{2}\right)^{(d-1) / 2}\right. \\
& \left.+(h / 2)^{\beta-1}\left(h^{2}-(h / 2)^{2}\right)^{(d+1) / 2} \frac{1}{d+1}+x_{1} h^{d}\right) \\
= & \frac{h^{d-1}}{2^{d}}\left(\left(a V_{d}+b V_{d-1}\right) h x_{1}+b V_{d-1}\left(\frac{(3 / 4)^{(d-1) / 2}}{(\beta+1) 2^{\beta+1}}+\frac{(3 / 4)^{(d+1) / 2}}{(d+1) 2^{\beta-1}}\right) h^{\beta+1}\right)
\end{aligned}
$$

For the notations

$$
\begin{aligned}
c_{14} & =\frac{b V_{d-1}}{a V_{d}+b V_{d-1}}\left(\frac{(3 / 4)^{(d-1) / 2}}{(\beta+1) 2^{\beta+1}}+\frac{(3 / 4)^{(d+1) / 2}}{(d+1) 2^{\beta-1}}\right) \\
c_{15} & =\frac{b V_{d-1}}{a V_{d} \cdot(\beta+1)}
\end{aligned}
$$

we get that

$$
-c_{14} h^{\beta}<x_{1} \quad \Longrightarrow \quad \bar{D}_{h}(x)>0 \quad \Longrightarrow \quad-c_{15} \cdot h^{\beta}<x_{1}
$$

Therefore

$$
\begin{aligned}
\bar{I}_{h} & =\int_{\left\{\operatorname{sign} \bar{D}_{h}(x) \neq \operatorname{sign} D(x)\right\}}|D(x)| \mu(d x) \\
& \geq \int_{-c_{14} \cdot h^{\beta}}^{0} \int_{[-1,1]^{d-1}}-\frac{a}{2^{d}} x_{1} d\left(x_{2}, \ldots x_{d}\right) d x_{1}=\frac{a c_{14}^{2}}{4} \cdot h^{2 \beta}
\end{aligned}
$$

Analogously

$$
\frac{a c_{14}^{2}}{4} \cdot h^{2 \beta} \leq \bar{I}_{h} \leq \frac{a c_{15}^{2}}{4} \cdot h^{2 \beta}
$$

- If $\beta=1$, then D, \tilde{f}, f_{+}and f_{-}are Lipschitz continuous and

$$
\bar{I}_{h} \geq c_{16} h^{2}
$$

- If $\beta=1+\epsilon / 2$ for $\epsilon>0$, then D, \tilde{f}, f_{+}and f_{-}are continuously differentiable and

$$
\bar{I}_{h} \geq c_{17} h^{2+\epsilon}
$$

- If $\beta=2+\epsilon / 2$ for $\epsilon>0$, then D, \tilde{f}, f_{+}and f_{-}are two times continuously differentiable and

$$
\bar{I}_{h} \geq c_{18} h^{4+\epsilon}
$$

5 Estimation error

Next we consider the estimation error. Introduce the notations

$$
N_{x, h}=\frac{\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}}{1-\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}}
$$

and

$$
R_{x, h}=\frac{c_{19}}{\sqrt{\mu\left(S_{x, h}\right)\left(1-\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}\right)^{3}}}
$$

with a universal constant $c_{19}>0$. Put

$$
\bar{J}_{n, h}=\int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{n \cdot N_{x, h}}\right) \mu(d x),
$$

where Φ stands for the standard Gaussian distribution function.
Proposition 2. We have that

$$
\left|J_{n, h}-\bar{J}_{n, h}\right| \leq \int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}} \frac{R_{x, h} \cdot|D(x)|}{\sqrt{n}+n^{2} N_{x, h}^{3 / 2}} \mu(d x) .
$$

Put $\varepsilon>0$. If the density of X exists then, for h small enough,

$$
\begin{aligned}
& \int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{(1+\varepsilon) n \cdot \mu\left(S_{x, h}\right)}\left|\bar{D}_{h}(x)\right|\right) \mu(d x) \\
& \leq \bar{J}_{n, h} \\
& =\int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{n \cdot \mu\left(S_{x, h}\right)}\left|\bar{D}_{h}(x)\right|\right) \mu(d x),
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}} \frac{R_{x, h} \cdot|D(x)|}{\sqrt{n}+n^{2} N_{x, h}^{3 / 2}} \mu(d x) \\
& \leq \int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}} \frac{2 c_{19} \cdot|D(x)|}{\sqrt{n \mu\left(S_{x, h}\right)}\left(1+\left(\sqrt{n \cdot \mu\left(S_{x, h}\right) \mid} \bar{D}_{h}(x) \mid\right)^{3}\right)} \mu(d x)
\end{aligned}
$$

with a universal constant $c_{19}>0$.
Proof. First we show the following: For fixed x and h, under $0<\bar{D}_{h}(x)$ we have that

$$
\left|\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}-\Phi\left(-\sqrt{n \cdot N_{x, h}}\right)\right| \leq \frac{R_{x, h}}{\sqrt{n}+n^{2} N_{x, h}^{3 / 2}},
$$

which implies the first half of the proposition. (The case $\bar{D}_{h}(x) \leq 0$ and $D_{n, h}(x)>0$ is completely analogous.) Introduce the notation

$$
Z_{i}=-\left(2 Y_{i}-1\right) \mathbb{I}_{\left\{X_{i} \in S_{x, h}\right\}} .
$$

Then
$\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}=\mathbb{P}\left\{\sum_{i=1}^{n} Z_{i} \geq 0\right\}=\mathbb{P}\left\{\frac{\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left\{Z_{i}\right\}\right)}{\sqrt{n \operatorname{Var}\left(Z_{1}\right)}} \geq-\frac{\sqrt{n \mathbb{E}}\left\{Z_{1}\right\}}{\sqrt{\operatorname{Var}\left(Z_{1}\right)}}\right\}$.

Because of

$$
\mathbb{V} \operatorname{ar}\left(Z_{1}\right)=\mathbb{E}\left\{\left|Z_{1}\right|^{2}\right\}-\left(\mathbb{E}\left\{Z_{1}\right\}\right)^{2}=\mu\left(S_{x, h}\right)-\mu\left(S_{x, h}\right)^{2} \bar{D}_{h}(x)^{2}
$$

and by $0<\bar{D}_{h}(x)$ we have that

$$
\frac{\mathbb{E}\left\{Z_{1}\right\}}{\sqrt{\operatorname{Var}\left(Z_{1}\right)}}=-\frac{\sqrt{\mu\left(S_{x, h}\right)} \bar{D}_{h}(x)}{\sqrt{1-\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}}}=-\sqrt{N_{x, h}}
$$

Therefore the central limit theorem for the probability $\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}$ implies that

$$
\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}=\mathbb{P}\left\{-\frac{\sum_{i=1}^{n}\left(Z_{i}-\mathbb{E}\left\{Z_{i}\right\}\right)}{\sqrt{n \mathbb{V} \operatorname{ar}\left(Z_{1}\right)}} \leq-\sqrt{n N_{x, h}}\right\} \approx \Phi\left(-\sqrt{n N_{x, h}}\right)
$$

Notice that it is only an approximation. In order to make bounds out of the normal approximation, we refer to Berry-Esseen type central limit theorem (see Theorem 14 in Petrov [12]). Thus,

$$
\left|\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}-\Phi\left(-\sqrt{n N_{x, h}}\right)\right| \leq \frac{c_{19} \frac{\mathbb{E}\left\{\left|Z_{1}\right|^{3}\right\}}{\operatorname{Var}\left(Z_{1}\right)^{3 / 2}}}{\sqrt{n}\left(1+\left(\sqrt{n N_{x, h}}\right)^{3}\right)}
$$

with the universal constant $30.84 \geq c_{19}>0$ (cf. Michel [11]). Because of $\mathbb{E}\left\{\left|Z_{1}\right|^{3}\right\}=\mu\left(S_{x, h}\right)$ we get that

$$
c_{19} \frac{\mathbb{E}\left\{\left|Z_{1}\right|^{3}\right\}}{\operatorname{Var}\left(Z_{1}\right)^{3 / 2}}=\frac{c_{19}}{\mu\left(S_{x, h}\right)^{1 / 2}\left(1-\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}\right)^{3 / 2}}=R_{x, h},
$$

hence

$$
\left|\mathbb{P}\left\{D_{n, h}(x) \leq 0\right\}-\Phi\left(-\sqrt{n N_{x, h}}\right)\right| \leq \frac{R_{x, h}}{\sqrt{n}\left(1+\left(n \cdot N_{x, h}\right)^{3 / 2}\right)}
$$

Concerning the second half of the proposition notice that if the density of X exists then

$$
R_{x, h} \leq \frac{2 c_{19}}{\sqrt{\mu\left(S_{x, h}\right)}}
$$

and, for any $\varepsilon>0$,

$$
\mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2} \leq N_{x, h} \leq(1+\varepsilon) \mu\left(S_{x, h}\right) \bar{D}_{h}(x)^{2}
$$

if h is small enough.
Next we show that the upper bound of the error term in the second half in Proposition 2 is of order $o\left(\frac{1}{n h_{n}^{d}}\right)$.

Lemma 4. Assume that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} h_{n}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} n h_{n}^{d}=\infty \tag{12}
\end{equation*}
$$

and that there is a $\tilde{c}>0$ such that sign $\bar{D}_{h}(x)=\operatorname{sign} D(x)$ implies $\left|\bar{D}_{h}(x)\right| \geq$ $\tilde{c}|D(x)|$. If X has a density f with bounded support then

$$
\begin{align*}
A_{n} & :=\int_{\left\{\operatorname{sign} \bar{D}_{h_{n}}(x)=\operatorname{sign} D(x)\right\}} \frac{|D(x)|}{\sqrt{n \mu\left(S_{x, h_{n}}\right)\left(1+\left(\sqrt{n \mu\left(S_{\left.x, h_{n}\right)}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right)^{3}\right)} \mu(d x)} \\
& =o\left(\frac{1}{n h_{n}^{d}}\right) . \tag{13}
\end{align*}
$$

Proof. Let B be the bounded support of f. Then $f(x)>0$ on B and $f(x)=0$ on B^{c}. Introduce the notation

$$
f_{n}(x)=\frac{\mu\left(S_{x, h_{n}}\right)}{\lambda\left(S_{x, h_{n}}\right)}
$$

where λ stands for the Lebesgue measure. Under the conditions of the lemma we have that

$$
\begin{aligned}
A_{n} & \leq \int \frac{|D(x)|}{\sqrt{n \mu\left(S_{x, h_{n}}\right)}\left(1+\left(\sqrt{n \mu\left(S_{x, h_{n}}\right)} \tilde{c}|D(x)|\right)^{3}\right)} \mu(d x) \\
& =\int \frac{|D(x)|}{\sqrt{n \lambda\left(S_{x, h_{n}}\right) f_{n}(x)}\left(1+\left(\sqrt{n \lambda\left(S_{x, h_{n}}\right) f_{n}(x)} \tilde{c}|D(x)|\right)^{3}\right)} \mu(d x) \\
& =\int \frac{1}{f_{n}(x)} \frac{1}{\tilde{c} n \lambda\left(S_{\left.x, h_{n}\right)}\right.} \frac{\sqrt{n \lambda\left(S_{\left.x, h_{n}\right) f_{n}(x)}\right)}|D(x)|}{1+\left(\sqrt{n \lambda\left(S_{x, h_{n}}\right) f_{n}(x)} \tilde{c}|D(x)|\right)^{3}} \mu(d x) \\
& =\frac{1}{\tilde{c} n h_{n}^{d} V_{d}} \int_{B} \frac{f(x)}{f_{n}(x)} r_{n}(x) d x
\end{aligned}
$$

with

$$
r_{n}(x)=\frac{\sqrt{n \lambda\left(S_{x, h_{n}}\right) f_{n}(x)} \tilde{c}|D(x)|}{1+\left(\sqrt{n \lambda\left(S_{x, h_{n}}\right) f_{n}(x)} \tilde{c}|D(x)|\right)^{3}} .
$$

Thus, we have to show that

$$
\int_{B} \frac{f(x)}{f_{n}(x)} r_{n}(x) d x \rightarrow 0
$$

By the Lebesgue density theorem $f_{n}(x) \rightarrow f(x)$ and therefore $f_{n}(x) / f(x) \rightarrow 1$ λ - a.e. on B, and so $r_{n}(x) \rightarrow 0$ - a.e. on B. Moreover, this convergence is dominated:

$$
r_{n}(x) \leq \max _{0 \leq u} \frac{u}{1+u^{3}}=: r_{\max }
$$

Thus,

$$
\int_{B} r_{n}(x) d x \rightarrow 0 .
$$

Apply the decomposition

$$
\begin{aligned}
\int_{B} \frac{f(x)}{f_{n}(x)} r_{n}(x) d x & \leq \int_{B}\left|\frac{f(x)}{f_{n}(x)}-1\right| r_{n}(x) d x+\int_{B} r_{n}(x) d x \\
& \leq r_{\max } \int_{B}\left|\frac{f(x)}{f_{n}(x)}-1\right| d x+o(1)
\end{aligned}
$$

In order to prove

$$
\begin{equation*}
\int_{B}\left|\frac{f(x)}{f_{n}(x)}-1\right| d x \rightarrow 0 \tag{14}
\end{equation*}
$$

we refer to the Riesz-Vitali-Scheffé theorem, according to which (14) is satisfied if

$$
\begin{gathered}
\frac{f}{f_{n}} \geq 0 \\
\frac{f}{f_{n}} \rightarrow 1 \quad \lambda \text { - a.e. on } B,
\end{gathered}
$$

and

$$
\begin{equation*}
\int_{B} \frac{f(x)}{f_{n}(x)} d x \rightarrow \int_{B} 1 d x=\lambda(B) \tag{15}
\end{equation*}
$$

Thus, it remains to show (15). By the generalized Lebesgue density theorem (cf. Lemma 24.5 in Györfi et al. [5]), for each μ-integrable function m

$$
\int_{B}\left|\frac{\int_{S_{x, h_{n}}} m(z) \mu(d z)}{\mu\left(S_{x, h_{n}}\right)}-m(x)\right| \mu(d x) \rightarrow 0
$$

Therefore

$$
\int_{B} \frac{\int_{S_{x, h_{n}}} m(z) \mu(d z)}{\mu\left(S_{x, h_{n}}\right)} \mu(d x) \rightarrow \int_{B} m(x) \mu(d x)
$$

Choose

$$
m(x)=\frac{1}{f(x)}, x \in B
$$

Then

$$
\int_{B} \frac{f(x)}{f_{n}(x)} d x=\int_{B} \frac{\int_{S_{x, h_{n}}} m(z) \mu(d z)}{\mu\left(S_{x, h_{n}}\right)} \mu(d x) \rightarrow \int_{B} m(x) \mu(d x)=\int_{B} 1 d x=\lambda(B),
$$

and the lemma is proved.
As we already mentioned, using Hoeffding and Bernstein inequalities Kohler and Krzyżak [7] proved that under the condition (8) we have

$$
\begin{equation*}
J_{n, h_{n}} \leq \frac{c_{6}}{n h_{n}^{d}} \tag{16}
\end{equation*}
$$

with $c_{6}<\infty$.
We believe that applying Proposition 2 the condition (8) can be weakened such that the following conjecture holds: If X is bounded and it has a density then we have (16).

Because of Lemma 4, this conjecture means that

$$
\begin{equation*}
\int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{n \mu\left(S_{x, h_{n}}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \leq \frac{c_{6}}{n h_{n}^{d}} . \tag{17}
\end{equation*}
$$

Concerning a possible way to prove (17) we may apply the covering argument of (5.1) in Györfi et al. [5], which says that for bounded X,

$$
\int \frac{1}{\mu\left(S_{x, h_{n}}\right)} \mu(d x) \leq \frac{c_{20}}{h_{n}^{d}}
$$

The bounded support of X can be covered by spheres $S_{x_{j}, h_{n} / 2}, j=1, \ldots, M_{n}$ such that $M_{n} \leq c_{21} / h_{n}^{d}$. Let $S_{x, h_{n}}^{\prime}=S_{x, h_{n}} \cap\left\{y: \operatorname{sign} \bar{D}_{h_{n}}(y)=\operatorname{sign} D(y)\right\}$. If $x \in S_{x_{j}, h_{n} / 2}^{\prime}$ then $S_{x_{j}, h_{n} / 2}^{\prime} \subseteq S_{x, h_{n}}^{\prime}$. For (17),

$$
\begin{aligned}
& \int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{n \mu\left(S_{x, h_{n}}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \\
& \leq \sum_{j=1}^{M_{n}} \int_{S_{x_{j}, h_{n} / 2}^{\prime}}|D(x)| \Phi\left(-\sqrt{n \mu\left(S_{x, h_{n}}\right)} \bar{D}_{h_{n}}(x) \mid\right) \mu(d x) \\
& \leq \sum_{j=1}^{M_{n}} \int_{S_{x_{j}, h_{n} / 2}^{\prime}}|D(x)| \Phi\left(-\sqrt{n \mu\left(S_{x_{j}, h_{n} / 2}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \\
& \leq \frac{1}{n} \sum_{j=1}^{M_{n}} \int_{S_{x_{j}, h_{n} / 2}^{\prime}} n|D(x)| e^{-n \mu\left(S_{x_{j}, h_{n} / 2}\right)\left|\bar{D}_{h_{n}}(x)\right|^{2} / 2} \mu(d x) \\
& \leq \frac{1}{n} \sum_{j=1}^{M_{n}} \int_{S_{x_{j}, h_{n} / 2}^{\prime}} n|D(x)| e^{-n \mu\left(S_{x_{j}, h_{n} / 2}\right) \tilde{c}^{2}|D(x)|^{2} / 2} \mu(d x),
\end{aligned}
$$

where the last inequality follows by the assumptions of Lemma 4. If

$$
\sup _{j} \int_{S_{x_{j}, h_{n} / 2}^{\prime}} n|D(x)| e^{-n \mu\left(S_{x_{j}, h_{n} / 2}\right) \tilde{c}^{2}|D(x)|^{2} / 2} \mu(d x)<\infty
$$

then
$\int_{\left\{\operatorname{sign} \bar{D}_{h}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{n \mu\left(S_{x, h_{n}}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \leq c_{22} \frac{M_{n}}{n} \leq \frac{c_{6}}{n h_{n}^{d}}$.

Example 2. Notice that the upper bound in (16) is tight. As in the Example 1, if μ is the uniform distribution and

$$
D(x)=x_{1}
$$

then $\operatorname{sign} \bar{D}_{h_{n}}(x)=\operatorname{sign} D(x)$ and $\left|\bar{D}_{h_{n}}(x)\right|=|D(x)|$ for $h_{n}<1 / 2$ and $\left|x_{1}\right|<$ $1 / 2$. Thus

$$
\begin{aligned}
& J_{n, h_{n}} \\
& \geq \int_{\left\{\operatorname{sign} \bar{D}_{h_{n}}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{(1+\varepsilon) n \mu\left(S_{x, h_{n}}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \\
& \geq \int_{0}^{1 / 2} z \Phi\left(-\sqrt{(1+\varepsilon) V_{d} n h_{n}^{d} 2^{-d}} z\right) d z \\
& =\frac{1}{(1+\varepsilon) V_{d} n h_{n}^{d} 2^{-d}} \int_{0}^{\sqrt{(1+\varepsilon) V_{d} n h_{n}^{d} 2^{-d}} / 2} u \Phi(-u) d u \\
& =\frac{1}{(1+\varepsilon) V_{d} n h_{n}^{d} 2^{-d}}\left(\int_{0}^{\infty} u \Phi(-u) d u+o(1)\right) \\
& \geq \frac{c_{23}}{n h_{n}^{d}},
\end{aligned}
$$

with $0<c_{23}$. Hall and Kang [6] proved that if X has a density, bounded from above and from below then

$$
J_{n, h_{n}}=o\left(\frac{1}{n h_{n}^{d}}\right)
$$

which contradicts the lower bound $\frac{c_{23}}{n h_{n}^{d}}$.
In general, we conjecture the following: If X has a density, which is bounded by $f_{\text {max }}$, then

$$
\frac{c_{24}}{n h_{n}^{d}} \leq J_{n, h_{n}}
$$

with $0<c_{24}$. This conjecture is supported by the fact that

$$
\mu\left(S_{x, h_{n}}\right) \leq f_{\max } V_{d} h_{n}^{d}
$$

Therefore

$$
\begin{aligned}
& \int_{\left\{\operatorname{sign} \bar{D}_{h_{n}}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{(1+\varepsilon) n \mu\left(S_{x, h_{n}}\right)}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) \\
& \geq \int_{\left\{\operatorname{sign} \bar{D}_{h_{n}}(x)=\operatorname{sign} D(x)\right\}}|D(x)| \Phi\left(-\sqrt{(1+\varepsilon) n f_{\max } V_{d} h_{n}^{d}}\left|\bar{D}_{h_{n}}(x)\right|\right) \mu(d x) .
\end{aligned}
$$

6 Conclusion

We presented tight upper bounds for the rate of convergence of the error probability of kernel classification rule. Decomposing the excess error probability into the sum of approximation and estimation error, we derived approximate formulas both for approximation error and estimation error.

Under weak margin condition with α and Lipschitz condition on the regression function D, Kohler and Krzyżak [7] showed that the approximation error $I_{n, h}$ is upper bounded by $c_{5} h^{\alpha+1}$. If, in addition, the conditional densities are twice continuously differentiable, then we proved that $I_{n, h} \leq c_{12} h^{2(\alpha+1)}$. Furthermore, we present an example, according to which these upper bounds are tight. Under the assumption that the Minkowski content of the decision boundary is finite and the lower Lipschitz inequality holds, the weak margin condition holds with $\alpha=1$. Hence we get the upper bound $I_{n, h} \leq c_{11} h^{4}$ as in Hall and Kang [6] as a special case.

If X has a lower bounded density, then Kohler and Krzyżak proved the upper bound on the estimation error: $J_{n, h} \leq c_{6} /\left(n h^{d}\right)$. We show that this upper bound is tight, too.

References

1. J-Y. Audibert and A. B. Tsybakov Fast learning rates for plug-in classifiers, Annals of Statistics, 35:608-633, 2007.
2. L. Devroye On the almost everywhere convergence of nonparametric regression function estimates, Annals of Statistics, 9:1310-1319, 1981.
3. L. Devroye, L. Györfi and G. Lugosi, A Probabilistic Theory of Pattern Recognition, Springer-Verlag, New York, 1996.
4. L. Devroye and T. J. Wagner, Distribution-free consistency results in nonparametric discrimination and regression function estimation, Annals of Statistics, 8:231239, 1980.
5. L. Györfi, M. Kohler, A. Krzyżak and H. Walk, A Distribution-Free Theory of Nonparametric Regression, Springer-Verlag, New York, 2002.
6. P. Hall and K. Kang, Bandwidth choice for nonparametric classification, Annals of Statistics, 33:284-306, 2005.
7. M. Kohler and A. Krzyżak, On the rate of convergence of local averaging plug-in classification rules under a margin condition. IEEE Transactions on Information Theory 53:1735-1742, 2007.
8. A. Krzyżak, The rates of convergence of kernel regression estimates and classification rules, IEEE Transactions on Information Theory, IT-32:668-679, 1986.
9. A. Krzyżak and M. Pawlak, Distribution-free consistency of a nonparametric kernel regression estimate and classification, IEEE Transactions on Information Theory, IT-30:78-81, 1984.
10. E. Mammen and A. B. Tsybakov, Smooth discrimination analysis, Annals of Statistics, 27:1808-1829, 1999.
11. R. Michel, On the constant in the non-uniform version of the Berry-Esseen theorem, Z. Wahrsch. Verw. Gebiete, 55:109-117, 1981.
12. V. V. Petrov, Sums of Independent Random Variables, Springer-Verlag, Berlin, 1975.
13. A. B. Tsybakov, Optimal aggregation of classifiers in statistical learning, Annals of Statistics, 32:135-166, 2004.

Maik Döring
Institut für Angewandte Mathematik und Statistik, Universität Hohenheim, Schloss Hohenheim, 70599 Stuttgart, Germany
E-Mail: maik.doering@uni-hohenheim.de
László Györfi
Department of Computer Science and Information Theory Budapest University of Technology and Economics Magyar Tudósok k"orútja 2., H-1117 Budapest, Hungary
E-Mail:
gyorfi@cs.bme.hu
Harro Walk
Fachbereich Mathematik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
E-Mail: walk@mathematik.uni-stuttgart.de
WWW: http://www.isa.uni-stuttgart.de/LstStoch/Walk/

Erschienene Preprints ab Nummer 2012-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2015-002 Döring, M.; Györfi, L.; Walk, H.: Exact rate of convergence of kernel-based classification rule
2015-001 Kohler, M.; Müller, F.; Walk, H.: Estimation of a regression function corresponding to latent variables
2014-021 Neusser, J.; Rohde, C.; Schleper, V.: Relaxed Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition
2014-020 Kabil, B.; Rohde, C.: Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension
2014-019 Bilyk, D.; Markhasin, L.: BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension
2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for generators whose commutators are scalar
2014-017 Margolis, L.: A Sylow theorem for the integral group ring of $\operatorname{PSL}(2, q)$
2014-016 Rybak, I.; Magiera, J.; Helmig, R.; Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems
2014-015 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: Optimal Grading of the Newest Vertex Bisection and H^{1}-Stability of the L_{2}-Projection
2014-014 Kohler, M.; Krzyżak, A.; Walk, H.: Nonparametric recursive quantile estimation
2014-013 Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation using importance sampling
2014-012 Györfi, L.; Ottucsák, G.; Walk, H.: The growth optimal investment strategy is secure, too.
2014-011 Györfi, L.; Walk, H.: Strongly consistent detection for nonparametric hypotheses
2014-010 Köster, I.: Finite Groups with Sylow numbers $\left\{q^{x}, a, b\right\}$
2014-009 Kahnert, D.: Hausdorff Dimension of Rings
2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM
2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties
2014-006 Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of Properties
2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution Equations
2014-004 Markhasin, L.: $\quad L_{2}$ - and $S_{p, q}^{r} B$-discrepancy of (order 2) digital nets
2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness
2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs
2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods
2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension

2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killing spinors on Einstein manifolds
2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems
2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations
2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups
2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure
2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces
2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate of the minimum mean squared error
2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints
2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex hyperbolic spaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

[^0]: * This work was supported in part by the National Development Agency (NFÜ, Hungary) as part of the project Introduction of Cognitive Methods for UAV Collision Avoidance Using Millimeter Wave Radar, (grant no.: KMR-12-1-2012-0008)

