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Convergence of a numerical scheme for a mixed

hyperbolic-parabolic system in two space dimensions

Elena Rossi∗ and Veronika Schleper†

Abstract

We prove the convergence of an explicit numerical scheme for the discretization of
a coupled hyperbolic-parabolic system in two space dimensions. The hyperbolic part is
solved by a Lax-Friedrichs method with dimensional and operator splitting, while the
parabolic part is approximated by an explicit finite-difference method. To prove con-
vergence of the scheme, we show strong convergence of the hyperbolic variable, while
convergence of the parabolic part is obtained only weakly* in L∞. The proof relies on the
fact that the hyperbolic flux depends on the parabolic variable through a convolution func-
tion. The paper also includes numerical examples that document the theoretically proved
convergence and display the characteristic behaviour of the Lotka-Volterra equations.

2000 Mathematics Subject Classification: 65M12, 35M30

Keywords: numerical analysis, mixed systems of partial differential equations, coupled
equations, Lax-Friedrichs method, finite difference schemes, nonlocal conservation laws

1 Introduction

We consider the following Cauchy problem in two space dimensions:

∂tu+ div
(
f(u)v(w)

)
= (αw − β)u (1.1a)

∂tw − µ∆w = (γ − δ u)w (1.1b)

u(0, x, y) = uo(x, y) (1.1c)

w(0, x, y) = wo(x, y) (1.1d)

This is a generalization of the predator–prey model presented in [8]. In particular, u =
u(t, x, y) and w = w(t, x, y) represent respectively the predator and the prey densities at time
t ∈ R+ and position (x, y) ∈ R2. The parameters α, β, γ, δ appearing in system (1.1) are all
positive, µ is strictly positive. More precisely, α is the predator birth rate due to feeding on
prey, β is the predator mortality rate, γ is the prey birth rate, δ is the prey mortality rate
due to predators and µ represents the diffusion speed of prey.
Predator-prey models are widely studied in the literature since a long time, starting with the
pioneering works of Lotka [15] and Volterra [17] in the 1920s. The model proposed therein is
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based on ordinary differential equations modeling the interactions of two species’ populations
u (predators) and w (prey), where birth and death rates depend on the interactions, see
equation (1.2).

d

dt
u = (αw − β)u,

d

dt
w = (γ − δu)w (1.2)

This basic model was extended subsequently to obtain more refined predictions of population
sizes [13, 4, 3] or to model the immune system response to infectious diseases [5, 16]. Further
applications of the Lotka–Volterra model (1.2) and variations of it can be found in economy,
see e.g. [12] for a pioneering work.
All these models are based on ordinary differential equations, thus implicitly assuming a ho-
mogeneous distribution of the species in space. Model (1.1) overcomes this deficiency and
allows for spacial variations of predators and prey. More precisely, we assume that prey dif-
fuse in the whole space without preferred direction of motion, while predators are attracted
by prey in a certain radius around them. To model this finite-range non-local behavior, the
velocity vector v of the predators depends on a convolution of the prey density with a kernel
function measuring e.g. the ability of the predators to feel the presence of prey at a certain
distance. This non local term in the flux of (1.1a) causes the predators to move in direction
of the highest prey density, thus chasing the prey. Note that the prey does not try to escape
the predators.
In [8], the well-posedness of (1.1) was shown for f(u) = u and initial data in L1 ∩L∞(Rn;R)
with the additional constraint that uo is of bounded total variation. The topic of the present
work is to study the convergence of a finite difference scheme for the mixed hyperbolic-
parabolic system (1.1). We choose a Lax-Friedrichs type method for the hyperbolic part,
including a modification to deal with the non local term v, and a standard five-point stencil
for the discretization of the parabolic part, see also (2.4) in Section 2.
Since the velocity function v depends only on w, we could view equation (1.1a) as a standard
hyperbolic equation with space and time dependent flux function f̃(t, x, u) := f(u)v(t, x).
Equations of such type have been widely studied in the literature and especially the conver-
gence of finite volume schemes is established in [11, 6, 7, 14] under different assumptions on
v(t, x). Recently, a Lax–Friedrichs type method for a nonlocal hyperbolic conservation law
was studied in [2, 1]. Due to the coupling of (1.1a) and (1.1b) through the velocity function
v and the source terms, the above results do not apply to the present case. The same holds
true for the well known standard convergence results for finite difference discretizations of
(quasi)linear parabolic equations, since these results are usually based on estimates in the
discrete l2 norm. Here, the coupling of the parabolic part to a hyperbolic equation forces us
to study the finite difference scheme in an l1 ∩ l∞ setting.
To prove the convergence of the numerical scheme below, we make the following assumptions
on the functions f and v appearing in (1.1):

(f) f ∈ C2(R;R), f(0) = 0 and ∂uf ∈ L∞loc(R;R);

(v) v :
(
L1 ∩ L∞

)
(R2;R) →

(
C2 ∩W1,∞) (R2;R2) depends on w through a convolution in

space, i.e. v(w) := v(η ∗ w) for a space dependent convolution kernel η ∈ L1(R2;R).
Furthermore, there exist a constant K and an increasing map C ∈ L∞loc(R+;R+) such
that for all w ∈

(
L1 ∩ L∞

)
(R2;R)∥∥∇v(w)

∥∥
L∞(R2;R2×2)

≤ K ‖w‖L∞(R2;R)∥∥∇v(w)
∥∥
L1(R2;R2×2)

≤ K ‖w‖L1(R2;R)
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∥∥∥∇ (∇ · v(w)
)∥∥∥

L∞(R2;R2)
≤ C

(
‖w‖L∞(R2;R)

)
.

With slight abuse of notation, we will also write v(t, x) instead of v(w)(t, x), to improve
readability. Note that the case f(u) = u is the one considered in [8]. An example of a
function v that fulfills all requirements of assumption (v) above can be found in Section 5.
The initial data (uo, wo) are chosen to fulfill the assumption

(0) (uo, wo) ∈ (L1 ∩ L∞ ∩ BV)(R2;R+) × (L1 ∩ L∞ ∩ BV)(R2;R+) are positive–valued
functions, i.e. uo ≥ 0 and wo ≥ 0 for a. e. (x, y) ∈ R2.

Remark 1.1. Under the assumption (f), existence and uniqueness of the solution to (1.1)
follow by a straightforward extension of the results of [8].

The paper is organized as follows. In section 2, we introduce basic notations and describe
the algorithm in details. To prove convergence of the given scheme, we derive bounds on the
variables u and w in various norms in section 3 that are needed to conclude the convergence
of the scheme in section 4. Finally, section 5 is devoted to numerical examples including
experimental convergence studies.

2 The Algorithm

We introduce a uniform mesh of width h along both x and y axes, given by the cartesian grid
whose points are of the form{

(xi, yi) |xi = ih, yj = jh, i, j ∈ Z
}
.

Furthermore, we define the parabolic time step τp =
h2

4µ
and let the time step τ be such that

τ = τp max

{
n ∈ N :

nτp
h
‖∂uf‖L∞‖v‖L∞ <

1

4

}
=: mτp.

In other words, τ is a multiple of τp that satisfies the following CFL condition:

τ

h
‖∂uf‖L∞‖v‖L∞ <

1

4
. (2.1)

We also define λ =
τ

h
. Let

(
u(t, x, y), w(t, x, y)

)
be the unique solution to (1.1) (see [8] for an

existence and uniqueness result in the case of f(u) = u and Remark 1.1 for the general case,
under assumption (f)). To compute the solution numerically we set

uoi,j =
1

h2

∫
Ii,j

uo(x, y) dx dy , woi,j =
1

h2

∫
Ii,j

wo(x, y) dx dy , (2.2)

where

Ii,j =

[(
i− 1

2

)
h,

(
i+

1

2

)
h

]
×

[(
j − 1

2

)
h,

(
j +

1

2

)
h

]
, (2.3)
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so that uoi,j and woi,j are the cell average of uo(x, y) and wo(x, y) respectively over the (i, j)–th
cell. By (2.2) it follows easily that

‖uo‖L∞ ≤ ‖uo‖L∞ ‖wo‖L∞ ≤ ‖wo‖L∞
‖uo‖L1 ≤ ‖uo‖L1 ‖wo‖L1 ≤ ‖wo‖L1

TV (uo) ≤ TV (uo) TV (wo) ≤ TV (wo),

see also [9].
To approximate (1.1), we use a finite-difference scheme for the parabolic part and a

Lax-Friedrichs type finite volume method for the hyperbolic part. Therefore, we set wn :=∑
ij w

n
i,jχIi,j

to be able to use the approximation wn in the discretization of the hyperbolic

equation. For simplicity, we denote v = v ·n(u1, u2), where n(u1, u2) is the normal vector of
the cell boundary pointing from the cell with value u1 to the cell with value u2. The algorithm
is now defined as follows:

Algorithm (A): Mixed Scheme

Wn,0 = wn (2.4a)

Wn,l+1
i,j =

1

4

(
Wn,l
i+1,j +Wn,l

i−1,j +Wn,l
i,j+1 +Wn,l

i,j−1

)
·

[
1 + τp

(
γ − δuni,j

)(
1 +

τp
2

(
γ − δuni,j

))]
(2.4b)

wn+1 = Wn,m (2.4c)

F (u1, u2, t, x) =
1

2

(
f(u1) + f(u2)

)
v(t, x)− 1

8λ
(u1 − u2) (2.4d)

U
n+1/2
i,j = uni,j − λ

[
F (uni+1,j , u

n
i,j , (n+ 1) τ, xi+1/2,j)− F (uni,j , u

n
i−1,j , (n+ 1) τ, xi−1/2,j)

]
(2.4e)

Un+1
i,j = U

n+1/2
i,j − λ

[
F (U

n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2)− F (U

n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j−1/2)

]
(2.4f)

un+1
i,j = Un+1

i,j

[
1 + τ

(
αwn+1

i,j − β
)(

1 +
τ

2

(
αwn+1

i,j − β
))]

(2.4g)

In other words, the start computes an approximation of wn solving the parabolic equation
by an explicit scheme with smaller time step τp, thus having to perform m small time steps
to reach the hyperbolic time step τ defined in (2.1). The balance law is now integrated by
means of a finite volume scheme with dimensional splitting, while its source term is solved
using a second order Runge–Kutta method. Note that the second order discretization of the
source terms guarantees the positivity of the approximate solution, as shown in section 3.1.

Remark 2.1. All estimates of Section 3 as well as the convergence result of Section 4 can be
shown analogously when (2.4e)–(2.4f) are replaced by

Un+1
i,j = uni,j − λ

[
F (uni+1,j , u

n
i,j , (n+ 1) τ, xi+1/2,j)− F (uni,j , u

n
i−1,j , (n+ 1) τ, xi−1/2,j)

F (uni,j+1, u
n
i,j , (n+ 1) τ, xi,j+1/2)− F (uni,j , u

n
i,j−1, (n+ 1) τ, xi,j−1/2)

]
.

Remark 2.2. The main reason for the choice of a non standard CFL condition as (2.1) is the
space-time dependent velocity field v. To prove the positivity of u in Lemma 3.1 we observe
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that the space-time dependence of v introduces and additional constraint on λ. The choice of
1/4 in the CFL condition and of 1/8 in the definition of the Lax-Friedrichs flux are optimal in
the sense that they provide the largest possible CFL condition that guarantees positivity of u.
More details on this can be found in the proof of Lemma 3.1 in the next section.

3 Bounds on w and u

The proof of convergence of the above algorithm to the unique solution of (1.1) is based
on an extension of Helly’s theorem (see [10, Theorem 1.7.3]). To apply this theorem, we
have to prove the uniform boundedness of u and w in L1 as well as a uniform bound on the
time-space total variation. The necessary estimates are collected in this section, starting with
positivity estimates in section 3.1 and bounds on the L1 and L∞ norms in section 3.2. Once
these bounds are available, we are able to prove a bound on the total variation in space in
section 3.3. Finally, the Lipschitz continuity in time of u, proven in section 3.4, guarantees
enough regularity of the approximate solutions to pass to the convergence proof in Section 4.

3.1 Positivity of w and u

Lemma 3.1. Let assumptions (f), (v) and (0) hold. Then the approximate solution con-
structed by algorithm (A) is such that wni,j ≥ 0 and uni,j ≥ 0 for all i, j and n.

Proof. Consider w first, in particular, focus on the sequence
(
Wn,`

)
. Suppose Wn,`

i,j ≥ 0 for

all i, j and define S = Sni,j = τp

(
γ − δ uni,j

)
. By (2.4b) we have

Wn,`+1
i,j =

1

4

(
Wn,`
i+1,j +Wn,`

i−1,j +Wn,`
i,j+1 +Wn,`

i,j−1

)(
1 + S +

S2

2

)
.

The parabola
(
1 + S + S2/2

)
assumes only positive values and, by the inductive hypothesis,

we deduce that Wn,`+1
i,j ≥ 0. By induction, we can thus conclude that wni,j ≥ 0 for all i, j and

n.
Consider now u and define vn+1

i+1/2,j := v
(

(n+ 1) τ, xi+1/2,j

)
. By (2.4d) and (2.4e) we have

U
n+1/2
i,j =

1

8
(uni+1,j + 6uni,j + uni−1,j)− λ f(uni,j)

(
vn+1
i+1/2,j − v

n+1
i−1/2,j

)
− λ

[
f(uni+1,j)− f(uni,j)

2
vn+1
i+1/2,j −

f(uni−1,j)− f(uni,j)

2
vn+1
i−1/2,j

]

= uni+1,j

[
1

8
− λ

2

f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
vn+1
i+1/2,j

]
+ uni−1,j

[
1

8
+
λ

2

f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
vn+1
i−1/2,j

]

+ uni,j

[
3

4
+
λ

2
vn+1
i+1/2,j

(
f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
− 2

f(uni,j)

uni,j

)

− λ

2
vn+1
i−1/2,j

(
f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
− 2

f(uni,j)

uni,j

)]
.
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Observe that the CFL condition (2.1) yields

1

8
± λ

2

f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
vn+1
i+1/2,j ≥

1

8
− λ

2
‖∂uf‖L∞‖v‖L∞ > 0,

and for the remaining term

3

4
+
λ

2
vn+1
i+1/2,j

[
f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
− 2

f(uni,j)

uni,j

]
− λ

2
vn+1
i−1/2,j

[
f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
− 2

f(uni,j)

uni,j

]
≥ 3

4
− 3λ ‖v‖L∞ ‖∂uf‖L∞ > 0.

Hence, using also the inductive hypothesis, we have that U
n+1/2
i,j ≥ 0 for all i and j.

Using (2.4f), we can repeat the same steps as above considering Un+1/2 instead of un to
conclude that Un+1

i,j ≥ 0 for all i and j.

Finally, defining R = Rn+1
i,j = τ

(
αwn+1

i,j − β
)

and using (2.4g), we obtain

un+1
i,j = Un+1

i,j

(
1 +R+

R2

2

)
.

Analogously to w, we can conclude that un+1
i,j ≥ 0 for all i, j and n. �

3.2 L∞ and L1 bounds on w and u

Lemma 3.2. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution
(un, wn) constructed by algorithm (A) satisfies

‖wn‖L∞ ≤ e
n τ γ ‖wo‖L∞ (3.1)

‖un‖L∞ ≤ ‖u
o‖L∞ exp

(
(2K1 +K2)

1

γ
e(n+1) τ γ

)
, (3.2)

where K1,K2 are constants depending on α,K, ‖wo‖L∞ , ‖∂uf‖L∞.

Proof. Consider w first. By Lemma 3.1, uni,j ≥ 0 for all i, j and n. By (2.4b) we have for
0 ≤ l < m

Wn,l+1
i,j ≤ eτp(γ−δ u

n
i,j)

1

4

(
Wn,l
i+1,j +Wn,l

i−1,j +Wn,l
i,j+1 +Wn,l

i,j−1

)
≤ eτp γ

∥∥∥Wn,l
∥∥∥
L∞
.

By induction over l in the sequence Wn,l we obtain therefore∥∥∥wn+1
∥∥∥
L∞

= ‖Wn,m‖L∞ ≤ e
mτp γ‖wn‖L∞ = eτ γ‖wn‖L∞ .

Finally, induction over n yields

‖wn‖L∞ ≤ e
n τ γ ‖wo‖L∞ .
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Pass now to u and recall that by (v), we have

‖∇vn‖L∞ ≤ K‖wn‖L∞ .

As in Lemma 3.1, by (2.4d) and (2.4e), simple computations lead to∣∣∣Un+1/2
i,j

∣∣∣ = U
n+1/2
i,j

= uni+1,j

[
1

8
− λ

2

f(uni+1,j)− f(uni )

uni+1,j − uni,j
vn+1
i+1/2,j

]
+ uni−1,j

[
1

8
+
λ

2

f(uni−1,j)− f(uni )

uni−1,j − uni,j
vn+1
i−1/2,j

]

+ uni,j

[
3

4
+
λ

2

f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
vn+1
i+1/2,j −

λ

2

f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
vn+1
i−1/2,j

−λ
f(uni,j)

uni,j

(
vn+1
i+1/2,j − v

n+1
i−1/2,j

)]

≤ ‖un‖L∞

[
1

8
− λ

2

f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
vn+1
i+1/2,j +

1

8
+
λ

2

f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
vn+1
i−1/2,j

+
3

4
+
λ

2

f(uni+1,j)− f(uni,j)

uni+1,j − uni,j
vn+1
i+1/2,j −

λ

2

f(uni−1,j)− f(uni,j)

uni−1,j − uni,j
vn+1
i−1/2,j

−λ
f(uni,j)

uni,j

(
vn+1
i+1/2,j − v

n+1
i−1/2,j

)]

≤ ‖un‖L∞
(

1 + τ‖∂uf‖L∞
∥∥∥∂xvn+1

∥∥∥
L∞

)
≤ ‖un‖L∞ exp

(
τ K ‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)
.

The estimate on Un+1 can be obtained analogously using (2.4f) to get∥∥∥Un+1
∥∥∥
L∞
≤
∥∥∥Un+1/2

∥∥∥
L∞

exp

(
τ K ‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)
.

Concerning the source term, integrated by (2.4g), one can easily see that∣∣∣un+1
i,j

∣∣∣ ≤ Un+1
i,j exp

[
τ
(
αwn+1

i,j − β
)]
≤
∥∥∥Un+1

∥∥∥
L∞

exp

(
τα
∥∥∥wn+1

∥∥∥
L∞

)
.

Collecting the above estimates and using (3.1), we conclude that∥∥∥un+1
∥∥∥
L∞
≤ ‖un‖L∞ exp

[
τ e(n+1) τ γ ‖wo‖L∞

(
2K‖∂uf‖L∞ + α

)]
.

Iterating over n yields

‖un‖L∞ ≤ ‖u
o‖L∞ exp

τ ‖wo‖L∞ (2K‖∂uf‖L∞ + α
) n∑
k=1

ek τ γ


≤ ‖uo‖L∞ exp

[
e(n+1) τ γ 1

γ
‖wo‖L∞

(
2K‖∂uf‖L∞ + α

)]
.
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Denoting

K1 = K ‖wo‖L∞ ‖∂uf‖L∞ K2 = α ‖wo‖L∞ (3.3)

completes the proof. �

Positivity and uniform boundedness of the approximate solution allow now to prove the
L1 bounds necessary for the application of [10, Theorem 1.7.3] in the convergence proof later
on.

Lemma 3.3. Let assumptions (f), (v)and (0) hold. Then for all n the approximate solution
(un, wn) constructed by algorithm (A) satisfies

‖wn‖L1 ≤ en τ γ ‖wo‖L1 (3.4)

‖un‖L1 ≤ ‖uo‖L1 exp

(
K2

1

γ
e(n+1) τγ

)
, (3.5)

where K2 is the constant defined in Lemma 3.2, depending on α, ‖wo‖L∞.

Proof. Consider w first. By Lemma 3.1, uni,j ≥ 0 and wni,j ≥ 0 for all i, j and n. Let

Wn,0 = wn and 0 ≤ l < m. By (2.4b),∥∥∥Wn,l+1
∥∥∥
L1

=
∑
i∈Z

∑
j∈Z

h2Wn,l+1
i,j ≤ eτp(γ−δ u

n
i,j)
∑
i∈Z

∑
j∈Z

h2Wn,l
i,j ≤ e

τp γ
∥∥∥Wn,l

∥∥∥
L1
.

Induction over l yields∥∥∥wn+1
∥∥∥
L1

= ‖Wn,m‖L1 ≤ emτp γ‖wn‖L1 ≤ eτ γ‖wn‖L1 .

Induction over n now yields
‖wn‖L1 ≤ en τ γ‖wo‖L1 .

Pass now to u. By the conservation property of the Lax-Friedrichs scheme (2.4d)–(2.4f) we
have ∥∥∥Un+1

∥∥∥
L1

=
∥∥∥Un+1/2

∥∥∥
L1

= ‖un‖L1 .

To include the source term in the L1-estimate, we consider (2.4g) and obtain∥∥∥un+1
∥∥∥
L1

=
∑
i∈Z

∑
j∈Z

h2 un+1
i,j ≤

∑
i∈Z

∑
j∈Z

h2 eτ (αw
n+1
i,j −β) Un+1

i,j

≤ eτ α‖w
n+1‖

L∞
∑
i∈Z

∑
j∈Z

h2 Un+1
i,j

= eτ α‖w
n+1‖

L∞‖un‖L1 .

Using (3.1) and (3.3), this yields∥∥∥un+1
∥∥∥
L1
≤ ‖un‖L1 exp

(
τ α ‖wo‖L∞ e

(n+1) τ γ
)

≤ ‖uo‖L1 exp

τ K2

n+1∑
k=1

ek τ γ


≤ ‖uo‖L1 exp

(
K2

1

γ
e(n+2) τ γ

)
.

This completes the proof. �
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3.3 TV estimate

Lemma 3.4. Let assumptions (f), (v) and (0) hold and fix 0 < T < ∞. Then, for all n
such that nτ < T , the approximate solution (un, wn) constructed by algorithm (A) satisfies

TV(un) + TV(wn) ≤ en τ K3

(
TV(uo) + TV(wo) +

K4

K3
eτK5

)
where the functions Ki, i = 3, . . . , 5 depend on T , various norms of un, wn and ∂uf as well
as on all constants α, β, γ, δ and K and the function C defined in (v).

Proof. Consider w first. In particular, focus on Wn,l defined in (2.4b). To obtain a bound
on the total variation of wn+1, we have to estimate

TV(wn+1) =
∑
i∈Z

∑
j∈Z

h

[∣∣∣wn+1
i+1,j − w

n+1
i,j

∣∣∣+
∣∣∣wn+1

i,j+1 − w
n+1
i,j

∣∣∣] . (3.6)

Similarly as before, we define Sni,j = γ−δ uni,j for the sake of simplicity. To obtain a bound
for (3.6), we consider∑

i,j

h
∣∣∣Wn,l+1

i+1,j −W
n,l+1
i,j

∣∣∣
≤ 1

4
eτp γ

∑
i,j

h

(∣∣∣Wn,l
i+2,j −W

n,l
i+1,j

∣∣∣+
∣∣∣Wn,l

i,j −W
n,l
i−1,j

∣∣∣+
∣∣∣Wn,l

i+1,j+1 −W
n,l
i,j+1

∣∣∣+
∣∣∣Wn,l

i+1,j−1 −W
n,l
i,j−1

∣∣∣)

+
∑
i,j

h
∣∣∣Wn,l

i,j

∣∣∣ · τp
∣∣∣∣∣Sni+1,j

(
1 +

τp
2
Sni+1,j

)
− Sni,j

(
1 +

τp
2
Sni,j

)∣∣∣∣∣
≤ eτp γ

∑
i,j

h
∣∣∣Wn,l

i,j −W
n,l
i−1,j

∣∣∣+
∥∥∥Wn,l

∥∥∥
L∞

∑
i,j

h τp

∣∣∣Sni+1,j − Sni,j
∣∣∣ · ∣∣∣∣∣1 + τp

(
γ − δ

2
(uni+1,j + uni,j)

)∣∣∣∣∣
≤ eτp γ

∑
i,j

h
∣∣∣Wn,l

i,j −W
n,l
i−1,j

∣∣∣+ τp
(
1 + τp(γ + δ ‖un‖L∞)

)
δ
∥∥∥Wn,l

∥∥∥
L∞
·
∑
i,j

h
∣∣∣uni+1,j − uni,j

∣∣∣
≤ eτp γ

∑
i,j

h
∣∣∣Wn,l

i,j −W
n,l
i−1,j

∣∣∣+ τpe
δ ‖un‖L∞τp δ

∥∥∥Wn,l
∥∥∥
L∞

∑
i,j

h
∣∣∣uni+1,j − uni,j

∣∣∣
 .

An analogous estimate can be derived for
∑

i,j h
∣∣∣Wn,l+1

i,j+1 −W
n,l+1
i,j

∣∣∣. Induction over l yields
now

TV
(
wn+1

)
≤ eτγ

(
TV(wn) + τeτp δ ‖u

n‖L∞ δ ‖wn‖L∞ TV(un)
)
. (3.7)

Pass now to u. We need to estimate the following quantity:

TV(un+1) = h
∑
i∈Z

∑
j∈Z

[∣∣∣un+1
i+1,j − u

n+1
i,j

∣∣∣+
∣∣∣un+1
i,j+1 − u

n+1
i,j

∣∣∣] . (3.8)

Denoting Rn+1
i,j = αwn+1

i,j − β for the sake of simplicity, we obtain

TV
(
un+1

)
=
∑
i,j

h

[∣∣∣un+1
i+1,j − u

n+1
i,j

∣∣∣+
∣∣∣un+1
i,j+1 − u

n+1
i,j

∣∣∣]
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≤ eτ α ‖w
n+1‖L∞

∑
i,j

h

[∣∣∣Un+1
i+1,j − U

n+1
i,j

∣∣∣+
∣∣∣Un+1

i,j+1 − U
n+1
i,j

∣∣∣]

+
∥∥∥Un+1

∥∥∥
L∞

τ
∑
i,j

h

∣∣∣∣∣Rn+1
i+1,j

(
1 +

τ

2
Rn+1
i+1,j

)
−Rn+1

i,j

(
1 +

τ

2
Rn+1
i,j

)∣∣∣∣∣
+
∥∥∥Un+1

∥∥∥
L∞

τ
∑
i,j

h

∣∣∣∣∣Rn+1
i,j+1

(
1 +

τ

2
Rn+1
i,j+1

)
−Rn+1

i,j

(
1 +

τ

2
Rn+1
i,j

)∣∣∣∣∣
≤ eτ α ‖w

n+1‖L∞
(

TV
(
Un+1

)
+ τ α eτ β

∥∥∥Un+1
∥∥∥
L∞

TV
(
wn+1

))
.

To approximate TV (Un+1), we have to estimate∑
i,j

h

(∣∣∣Un+1
i+1,j − U

n+1
i,j

∣∣∣+
∣∣∣Un+1

i,j+1 − U
n+1
i,j

∣∣∣) .
It is a well-known fact that the standard Lax-Friedrichs scheme is TVD and thus TV (Un+1) ≤
TV (Un+1/2) ≤ TV (un). The situation here however is different, since the flux does not only
depend on u, but also on t and x through the component v(w). The conservation law itself
does therefore not satisfy the TVD-property (see [8]) and we cannot expect the numerical
scheme to be TVD. To estimate the increase in total variation due to the space-time dependent

velocity field, we consider the term
∑

i,j h
∣∣∣Un+1

i,j+1 − U
n+1
i,j

∣∣∣. By (2.4f), we have

Un+1
i,j+1 − U

n+1
i,j = U

n+1/2
i,j+1 − U

n+1/2
i,j

− λ
[
F
(
U
n+1/2
i,j+2 , U

n+1/2
i,j+1 , (n+ 1) τ, xi,j+3/2

)
− F

(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2

)
−F

(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2

)
+ F

(
U
n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j−1/2

)]
.

Add and subtract λF (U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+1) τ, xi,j+3/2) +λF (U

n+1/2
i,j , U

n+1/2
i,j−1 , (n+1) τ, xi,j+1/2),

then rearrange to obtain:
Un+1
i,j+1 − U

n+1
i,j = Ani,j − Bni,j ,

where

Ani,j = U
n+1/2
i,j+1 − U

n+1/2
i,j

− λ
[
F
(
U
n+1/2
i,j+2 , U

n+1/2
i,j+1 , (n+ 1) τ, xi,j+3/2

)
− F

(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2

)
+F

(
U
n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j+1/2

)
− F

(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+3/2

)]
,

(3.9)

Bni,j = λ

[
F
(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+3/2

)
− F

(
U
n+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2

)
+F

(
U
n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j−1/2

)
− F

(
U
n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j+1/2

)]
.

(3.10)
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From now on we omit the superscripts, n+ 1/2 or n+ 1, to enhance readability. Consider first
the term Ani,j and use (2.4d) to obtain

Ani,j = Ui,j+1 − Ui,j − λ
[
f(Ui,j+2) + f(Ui,j+1)− f(Ui,j+1)− f(Ui,j)

2
vi,j+3/2

−f(Ui,j+1) + f(Ui,j)− f(Ui,j)− f(Ui,j−1)

2
vi,j+1/2

]
+

1

8

(
(Ui,j+2 − Ui,j+1)− 2(Ui,j+1 − Ui,j) + (Ui,j − Ui,j−1)

)
=

3

4

(
Ui,j+1 − Ui,j

)
+
(
Ui,j+2 − Ui,j+1

)(1

8
− λ

2

f(Ui,j+2)− f(Ui,j+1)

Ui,j+2 − Ui,j+1
vi,j+3/2

)

+
(
Ui,j − Ui,j−1

)(1

8
+
λ

2

f(Ui,j)− f(Ui,j−1)

Ui,j − Ui,j−1
vi,j+1/2

)

− λ

2

[
f(Ui,j+1)− f(Ui,j)

] (
vi,j+3/2 − vi,j+1/2

)
.

Observe that both coefficients of Ui,j+2−Ui,j+1 and Ui,j−Ui,j−1 are positive. Then, summing
the modulus of Ani,j over i, j ∈ Z, using also (v), (3.1) and (3.3), yields:∑

i,j

h
∣∣∣Ani,j∣∣∣

≤
∑
i,j

h
∣∣Ui,j+1 − Ui,j

∣∣(1 +
λ

2

f(Ui,j+1)− f(Ui,j)

Ui,j+1 − Ui,j

(
vi,j+1/2 − vi,j+3/2

))

+
∑
i,j

h
λ

2

∣∣Ui,j+1 − Ui,j
∣∣ ∣∣∣∣∣f(Ui,j+1)− f(Ui,j)

Ui,j+1 − Ui,j

∣∣∣∣∣ ∣∣∣vi,j+3/2 − vi,j+1/2

∣∣∣
≤
∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2
i,j

∣∣∣ (1 + τ ‖∂uf‖L∞
∥∥∥∂yv1/2n+1

∥∥∥
L∞

)

≤
∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2
i,j

∣∣∣ (1 + τ K ‖∂uf‖L∞
∥∥∥wn+1

∥∥∥
L∞

)
. (3.11)

Pass now to Bni,j . We continue omitting the superscripts.

Bni,j = λ

[
f(Ui,j) + f(Ui,j+1)

2
vn+1
i,j+3/2 −

f(Ui,j) + f(Ui,j+1)

2
vn+1
i,j+1/2

+
f(Ui,j−1) + f(Ui,j)

2
vn+1
i,j−1/2 −

f(Ui,j−1) + f(Ui,j)

2
vn+1
i,j+1/2

]
=
λ

2

[
f(Ui,j)

(
vn+1
i,j+3/2 − 2vn+1

i,j+1/2 + vn+1
i,j−1/2

)
+
(
f(Ui,j+1)− f(Ui,j−1)

) (
vn+1
i,j+3/2 − v

n+1
i,j+1/2

)
+ f(Ui,j−1)

(
vn+1
i,j+3/2 − 2vn+1

i,j+1/2 + vn+1
i,j−1/2

)]
.

Since v = v2 is a smooth function and vn+1
i,j+1/2 = vn+1(xi, yj+1/2), we obtain

vn+1
i,j+3/2 − 2vn+1

i,j+1/2 + vn+1
i,j−1/2 ≤ h

2
∥∥∥∂yyvn+1

∥∥∥
L∞
.
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Then, using also (v),

λ

2
f
(
U
n+1/2
i,j

)(
vn+1
i,j+3/2 − 2vn+1

j+1/2 + vn+1
j−1/2

)
≤ λ

2
h2 ‖∂uf‖L∞

∣∣∣Un+1/2
i,j

∣∣∣C(∥∥∥wn+1
∥∥∥
L∞

)
, (3.12)

and similarly for the term with f(Ui,j−1), while the remaining term can be easily estimated
as follows

λ

2

(
f(U

n+1/2
i,j+1 )− f(U

n+1/2
i,j−1 )

)(
vn+1
i,j+3/2 − v

n+1
i,j+1/2

)
≤ λ

2
‖∂uf‖L∞

∣∣∣Un+1/2
i,j+1 − U

n+1/2
i,j−1

∣∣∣h∥∥∥∂yvn+1
∥∥∥
L∞
.

(3.13)

Hence, multiplying by h and summing over i and j, (3.12) and (3.13) yield

∑
i,j

h
∣∣∣Bni,j∣∣∣ ≤ τ‖∂uf‖L∞

K∥∥∥wn+1
∥∥∥
L∞

∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2
i,j

∣∣∣+ C

(∥∥∥wn+1
∥∥∥
L∞

)
‖un‖L1

 .

(3.14)
By (3.11) and (3.14) we have∑

i,j

h
∣∣∣Un+1

i,j+1 − U
n+1
i,j

∣∣∣ ≤ ∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2
i,j

∣∣∣ (1 + 2 τ K ‖∂uf‖L∞
∥∥∥wn+1

∥∥∥
L∞

)

+ τ ‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1 .

(3.15)

In a similar way we obtain∑
i,j

h
∣∣∣Un+1

i+1,j − U
n+1
i,j

∣∣∣ ≤ ∑
i,j

h
∣∣∣Un+1/2

i+1,j − U
n+1/2
i,j

∣∣∣ (1 + τ K ‖∂uf‖L∞
∥∥∥wn+1

∥∥∥
L∞

)
+ τ K ‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

∑
i,j

h
∣∣∣Un+1/2

i,j+1 − U
n+1/2
i,j

∣∣∣
+ 2 τ ‖∂uf‖L∞C

(∥∥∥wn+1
∥∥∥
L∞

)
‖un‖L1 .

(3.16)

By (3.15) and (3.16) we have therefore

TV
(
Un+1

)
≤
(

1 + 3 τ K ‖∂uf‖L∞
∥∥∥wn+1

∥∥∥
L∞

)
TV
(
Un+

1/2
)

+ 3 τ ‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1 . (3.17)

Analogously to the estimate (3.17) for TV
(
Un+1

)
, we obtain

TV
(
Un+

1/2
)
≤
(

1 + 3 τ K ‖∂uf‖L∞
∥∥∥wn+1

∥∥∥
L∞

)
TV(un)

+ 3 τ ‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1 . (3.18)
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Then,

TV
(
un+1

)
≤ eτ α‖w

n+1‖
L∞

{
exp

(
6 τ K‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)
TV (un)

+ τ α eτ β
∥∥∥Un+1

∥∥∥
L∞

TV
(
wn+1

)
(3.19)

+3 τ ‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1

[
1 + exp

(
3 τ K‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)] .

Collecting the estimates (3.19) and (3.7) of TV (un+1) and TV (wn+1), we obtain now

TV (un+1) + TV (wn+1)

≤

[
eτ α‖w

n+1‖
L∞ exp

(
6 τ K‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)

+

(
1 + τ α eτ β eτ α‖w

n+1‖
L∞
∥∥∥Un+1

∥∥∥
L∞

)
τ eτ γ eτp δ‖u

n‖L∞ δ ‖wn‖L∞

]
TV (un)

+ eτ γ
(

1 + τ α eτ β eτ α‖w
n+1‖

L∞
∥∥∥Un+1

∥∥∥
L∞

)
TV (wn)

+ 3 τ eτ α‖w
n+1‖

L∞‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1

[
1 + exp

(
3 τ K‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)]
≤ eτ K1 TV (un) + eτ K2 TV (wn) + τ K3 e

τ K4 ,

where Kl, l = 1, . . . , 4 are bounded functions depending on various norm of un, wn+1 and
∂uf as well as on all constants α, β, γ, δ and K, defined in (v). Defining K3 = max{K1, K2},
K4 := K3 and K5 := K4 and using induction over n yields now

TV (un) + TV (wn) ≤ en τK3

[
TV (uo) + TV (wo) +

K4

K3
eτ K5

]
.

This completes the proof. �

3.4 Lipschitz continuity in time

Lemma 3.5. Let assumptions (f), (v)and (0) hold. Then for all n the approximate solution
(un, wn) constructed by algorithm (A) is such that, for any n1, n2 ∈ N with n1 τ ≤ T and
n2 τ ≤ T ,

‖un1 − un2‖L1 ≤ |n1 − n2| τ K6(T, τ),

where the function K6(T, τ) is uniformly bounded for all n ≤ max{n1, n2} and depends on
α, β, γ, δ,K, on various norms of u,w, ∂uf , on the total variation of the initial datum and on
the map C defined in (v).

Proof. Due to Lemma 3.2, un is uniformly bounded by some constant depending on T .
Assumptions (f) and (v) guarantee therefore the Lipschitz continuity of the numerical flux
function F defined in (2.4d). Using (2.4e), (2.4f) and (3.18), we can thus conclude∥∥∥Un+1 − un

∥∥∥
L1
≤
∑
i,j

h2
(∣∣∣Un+1

i,j − U
n+1/2
i,j

∣∣∣+
∣∣∣Un+1/2

i,j − uni,j
∣∣∣)
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≤ τ
∑
i,j

h

[∣∣∣∣F (Un+1/2
i,j+1 , U

n+1/2
i,j , (n+ 1) τ, xi,j+1/2

)
− F

(
U
n+1/2
i,j , U

n+1/2
i,j−1 , (n+ 1) τ, xi,j−1/2

)∣∣∣∣
+

∣∣∣∣F (uni+1,j , u
n
i,j , (n+ 1) τ, xi+1/2,j

)
− F

(
uni,j , u

n
i−1,j , (n+ 1) τ, xi−1/2,j

)∣∣∣∣
]

≤ τ · 2L
∑
i,j

h

(∣∣∣Un+1/2
i,j+1 − U

n+1/2
i,j

∣∣∣+
∣∣∣uni+1,j − uni,j

∣∣∣
+
∣∣∣vn+1
i+1/2,j − v

n+1
i−1/2,j

∣∣∣+
∣∣∣vn+1
i,j+1/2 − v

n+1
i,j−1/2

∣∣∣)
≤ τ · 2L

((
2 + 3 τ K ‖∂uf‖L∞

∥∥∥wn+1
∥∥∥
L∞

)
TV (un) +

∥∥∥∇vn+1
∥∥∥
L1

+ 3 τ ‖∂uf‖L∞C
(∥∥∥wn+1

∥∥∥
L∞

)
‖un‖L1

)
,

where L denotes the Lipschitz constant of F . Including the source term and defining T such
that max{n1, n2} τ ≤ T <∞, we obtain by (2.4g)

∥∥∥un+1 − un
∥∥∥
L1
≤
∑
i,j

h2
∣∣∣Un+1

i,j − u
n
i,j

∣∣∣+ τ
∑
i,j

h2
∣∣∣Un+1

i,j

∣∣∣∣∣∣∣∣(αwn+1
i,j − β

)(
1 +

τ

2

(
αwn+1

i,j − β
))∣∣∣∣∣

≤
∥∥∥Un+1 − un

∥∥∥
L1

+ τ α
∥∥∥Un+1

∥∥∥
L1

∥∥∥wn+1
∥∥∥
L∞
eτ α‖w

n+1‖
L∞

≤ τ K6(T, τ),

where K6 is uniformly bounded for all n ≤ max{n1, n2} and all finite τ . �

Remark 3.6. Using more refined estimates, the L1 bound for ∇v, necessary in the proof
above, can be substituted by the L∞ bound on ∇v widely used in the proofs of Lemmas 3.1–
3.4. This allows to skip the assumption of ∇v being bounded in L1 in (v).

4 Convergence

For each mesh width h, we define Nτ := bT/τc and

uh =

Nτ∑
n=0

∑
i,j

uni,j χ
n
i,j , wh =

Nτ∑
n=0

∑
i,j

wni,j χ
n
i,j , (4.1)

where χni,j is the characteristic function of Ii,j × [n τ, (n+ 1) τ [, respectively Ii,j × [Nτ τ, T ] for
the last time step, with Ii,j defined as in (2.3).

Theorem 4.1. Let assumptions (f), (v) and (0) hold and fix 0 ≤ T < ∞. Let h` be a
sequence of grid sizes such that lim`→∞ h` = 0 and fix λ > 0 such that the sequence τ` := λh`
fulfills (2.1) for all `. Let uh` and wh` be given as in (4.1). Then the sequence (uh` , wh`)
converges to the unique weak solution (u,w) of (1.1). More precisely, (uh`) converges in L1

loc,
while (wh`) converges weakly* in L∞.
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Proof. Thanks to Lemma 3.2

‖wh‖L∞([0,T ]×R2;R) ≤ e
T γ‖wo‖L∞(R2;R)

‖uh‖L∞([0,T ]×R2;R) ≤ ‖u
o‖L∞(R2;R) exp

(
(2K1 +K2)

1

γ
eT γ

)
,

so that the sequence (uh, wh) is bounded in L∞([0, T ] × R2;R2). This implies the existence
of a subsequence (uhk , whk) that converges weakly* in L∞([0, T ]×R2;R2) to (u,w). Thanks
to Lemma 3.3, (uhk) is also uniformly bounded in L1([0, T ]× R2;R).
Furthermore, Lemma 3.4 and Lemma 3.5 yield a uniform bound for the space-time total
variation of uhk , defined by

TVT (uhk) =

Nτ∑
n=0

[
τ TV (unhk) +

∥∥∥un+1
hk
− unhk

∥∥∥
L1(R2;R)

]
We can thus apply [10, Theorem 1.7.3] and deduce the existence of ū ∈ BVloc

(
[0, T ]× R2;R

)
and a subsequence of (uhk) (still denoted by (uhk)) such that

uhk → ū in L1
loc

(
[0, T ]× R2;R

)
, (4.2)

uhk(t, x, y)→ ū(t, x, y) for a. e. (t, x, y) ∈ [0, T ]× R2. (4.3)

Due to the uniqueness of the limit ū in L1, shown in [8] (see also Remark 1.1), we can conclude
the convergence of the whole sequence (uhk) to ū.
From (4.3), it follows easily that uhk converges to ū also in L∞

(
[0, T ]× R2;R

)
. Since strong

convergence implies weak* convergence, we obtain that uhk
∗
⇀ ū in L∞

(
[0, T ]× R2;R

)
. Due

to the uniqueness of the weak* limit, we have that u = ū.
By (f), the continuity of the function f implies now that

f(uh)→ f(u). (4.4)

Note that Lemma 3.2 yields also∥∥wh(t, ·, ·)
∥∥
L∞(R2;R) ≤ e

T γ‖wo‖L∞(R2;R) for a. e. t ∈ [0, T ].

As above we can thus find a subsequence that converges weakly* in L∞(R2;R) for a. e. t ∈
[0, T ] and due to the uniqueness of the weak* limit, we have

whk(t, ·, ·) ∗⇀ w(t, ·, ·).

Recalling that η ∈ L1(R2;R), it is now easy to prove that (whk ∗η)(t, ·, ·) converges (strongly)
to (w ∗ η)(t, ·, ·) in L1(R2;R) for a. e. t ∈ [0, T ]. By (v), and in particular thanks to the fact
that the Lipschitz constant of v is bounded, we obtain

v(whk ∗ η)→ v(w ∗ η) in L1(R2;R) for a. e. t ∈ [0, T ]. (4.5)

To prove that (u,w) are weak solutions of (1.1), we choose test functions ψ ∈ C1
c([0, T ],C2

c(R2;R))

and ϕ ∈ C1
c([0, T ]× R2;R). Define now ψn,li,j := ψ(tn,l, xi,j), where tn,l = nτ + lτp, and

ψh =

N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,li,j χ
n,l
i,j
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δtψh =

N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,li,j − ψ
n,l−1
i,j

τp
χn,li,j

∆hψh =
N−1∑
n=0

∑
i,j

m−1∑
l=0

1

h2

(
ψn,li+1,j + ψn,li−1,j + ψn,li,j+1 + ψn,li,j−1 − 4ψn,li,j

)
χn,li,j .

Here, χn,li,j is the characteristic function of Ii,j × [tn,l, tn,l+1[, with Ii,j defined as in (2.3). Note
that δtψh and ∆hψh are discrete versions of time derivative and Laplace operator. Due to the
definition of ψh and its discrete derivatives, we have strong convergence in L∞([0, T ]×R2;R)
for ψh → ψ as well as for the derivatives δtψh → ∂tψ and ∆hψh → ∆ψ as h→ 0.
Multiply (2.4b) by h2 ψn,li,j and sum over n, i, j and l to obtain

0 = τp h
2
N−1∑
n=0

∑
i,j

m−1∑
l=0

Wn,l
i,j

ψn,li,j − ψn,l−1i,j

τp
+ µ

ψn,li+1,j + ψn,li−1,j + ψn,li,j+1 + ψn,li,j−1 − 4ψn,li,j
h2


+ τp h

2
N−1∑
n=0

∑
i,j

m−1∑
l=0

ψn,li,j (γ − δuni,j)
[
1 +

τp
2

(γ − δ uni,j)
]
Wn,l
i+1,j +Wn,l

i−1,j +Wn,l
i,j+1 +Wn,l

i,j−1
4

.

Using the above convergence results, we can conclude∫ T

0

∫
R2

w∂tψ + µw∆ψ + w(γ − δu)ψ dx dy dt = 0.

Analogously as above we define

ψh =

N−1∑
n=0

∑
i,j

ϕni,j χ
n
i,j δtϕh =

N−1∑
n=0

∑
i,j

ϕni,j − ϕ
n−1
i,j

τ
χni,j

δ+x ϕh =
N−1∑
n=0

∑
i,j

ϕni+1,j − ϕni,j
h

χni,j δ−x ϕh =
N−1∑
n=0

∑
i,j

ϕni,j − ϕni−1,j
h

χni,j .

δ+y ϕh =

N−1∑
n=0

∑
i,j

ϕni,j+1 − ϕni,j
h

χni,j δ−y ϕh =

N−1∑
n=0

∑
i,j

ϕni,j − ϕni,j−1
h

χni,j

and recall that we have ϕh → ϕ and δ±` ϕh → ∂`ϕ in L∞([0, T ] × R2;R) for h → 0 and
` = t, x, y. Multiplying (2.4e)–(2.4g) by h2ϕni,j and summing over all n, i and j we obtain

0 = τh2
N−1∑
n=0

∑
i,j

uni,j
ϕni,j − ϕ

n−1
i,j

τ
+ τh2

N−1∑
n=0

∑
i,j

(αwni,j − β)ϕni,j U
n+1
i,j

+ τh2
N−1∑
n=0

∑
i,j

1

2
f(uni,j)

(
vn+1
i−1/2,j

ϕni,j − ϕni−1,j
h

+ vn+1
i+1/2,j

ϕni+1,j − ϕni,j
h

)

+ τh2
N−1∑
n=0

∑
i,j

1

2
f(U

n+1/2
i,j )

(
vn+1
i,j−1/2

ϕni,j − ϕni,j−1
h

+ vn+1
i,j+1/2

ϕni,j+1 − ϕni,j
h

)

+ h2
N−1∑
n=0

∑
i,j

h2

4

(
uni,j

ϕni−1,j − 2ϕni,j + ϕni+1,j

h2
+ U

n+1/2
i,j

ϕni,j−1 − 2ϕni,j + ϕni,j+1

h2

)
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+ τh2
N−1∑
n=0

∑
i,j

τ

2
(αwni,j − β)2ϕni,j U

n+1
i,j .

Recall that wh is uniformly bounded in L∞ for all h. This directly implies that also w2
h is

uniformly bounded in L∞ and thus converges weakly* to some function g ∈ L∞([0, T ]×R2;R).
Due to the smoothness of v and the convergence of uh, wh, w2

h and ϕh, we can thus deduce
that the limit functions u, w and ϕ fulfill∫ T

0

∫
R2

u∂tϕ+ f(u)v · div (ϕ) + (αw − β)ϕ dx dy dt = 0.

We proved that (u,w) is a weak solution to (1.1). Since by [8] and Remark 1.1 we know that
the weak solution to (1.1) is unique, (u,w) is the unique weak solution. �

5 Numerical Examples

To conclude the paper, we present some numerical examples that show on one hand the con-
vergence of the scheme and on the other hand some qualitative properties of the system (1.1).
In all examples, we make the following choice for the vector field v:

v(w) = κ
∇(w ∗ η)√

1 +
∥∥∇(w ∗ η)

∥∥2 , (5.1)

where the compactly supported kernel function η is chosen as follows

η(x, y) = η̂
(
`2 −

∥∥(x, y)
∥∥2)3 χ

B(0,`)
with η̂ ∈ R+ such that

∫∫
R2

η(x, y) dx dy = 1. (5.2)

The positive parameter ` represents the maximal distance at which predators u feel the
presence of prey w. It can be easily verified that (5.1) fulfills the assumption (v).
We compute the numerical solution on the domain

D = [0, 0.5]× [0, 1]

and consider the following sizes of the space mesh:

h = 0.005 , h = 0.0025 , h = 0.00125 .

Since no exact solutions are available, we use the numerical solution computed for h =
0.000625 as reference solution (u,w).
Let (uh, wh) be the numerical solution associated to space mesh size h. The error is computed
in the following way

‖uh − u‖L1 = sup
t∈[0,T ]

∥∥uh(t)− u(t)
∥∥
L1(D;R),

‖wh − w‖L1 = sup
t∈[0,T ]

∥∥wh(t)− w(t)
∥∥
L1(D;R).

(5.3)

More precisely, we average the reference solution (u,w) on the coarse grid in order to compare
it to the solution (uh, wh).

17



We define EOCu, respectively EOCw, the experimental order of convergence for u, respec-
tively for w, computed as follows:

EOCu =

log
‖u1 − u‖L1

‖u2 − u‖L1

log
h1
h2

, EOCw =

log
‖w1 − w‖L1

‖w2 − w‖L1

log
h1
h2

, (5.4)

where (u1, w1), (u2, w2) are solutions with grid size h1 and h2 respectively.

5.1 Example 1

In our first example, we consider the test case proposed in [8, Section 3.1], where the param-
eters are chosen as

α = 2 β = 1 κ = 1

γ = 1 δ = 2 µ = 0.5 ` = 0.15
(5.5)

with the following initial datum on D

uo(x, y) = 4 χ
A

(x, y)

wo(x, y) = 3 (2y − 1) max{0, h(x, y)}χ
B

(x, y)

where (5.6)

h(x, y) = (4x− 1)2 + (4y − 2)2 − 0.25

A = {(x, y) ∈ R2 : (8x− 2)2 +
(
1.25 (4y − 1)

)2 ≤ 1}
B = {(x, y) ∈ R2 : y ≥ 0.5} .

For this example we consider to hyperbolic flux functions

1a. f(u) = u, as in [8];

1b. f(u) =


u2

1728
(10− u)3 if 0 ≤ u ≤ 10

0 elsewhere.

f(u) as in 1b.

It is easy to see that both functions fulfill assumption (f). The constants in case 1b are
related to the initial datum. Indeed, this choice guarantees that f(4) = 2 is the maximal
value of f . Note that ‖∂uf‖L∞ = 5(3 + 8

√
6)/144 ≈ 0.78458 ≤ 1.

To compute the convolution without boundary effects, we compute the solution on a
slightly bigger domain than D. More precisely, we enlarge the computational domain D by
adding in all directions a constant quantity, related to the size of the support of the kernel
function η. In particular, we add enough ghost cells so that, when computing the convolution
for a point on the boundary of D, the whole support of the kernel function η is inside the
extended computational domain.

The boundary conditions for u and w are chosen to remain equal to the initial datum
all along the boundary of this extended computational domain. For the balance law, this
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means to assume a constant value outside the computational domain and compute the flux
accordingly. Concerning the parabolic equation, this choice of boundary conditions amounts
to assume that the displayed solution is part of a solution defined on all R2 that gives constant
inflow into the computational domain.

The solution is computed up to time Tmax = 0.3 in Example 1a and up to time Tmax = 0.5
in Example 1b.

In Table 1 and 2 we report the values of the L1-error for the different mesh sizes and the
corresponding experimental order of convergence for flux function 1a and 1b respectively.
Figure 1 displays the error in logarithmic scale. The lines obtained connecting the values for
u, respectively w, can be easily compared with the line with slope 1, that represents the order
of convergence we expect theoretically for smooth solutions.

h ‖uh − u‖L1 EOCu ‖wh − w‖L1 EOCw

0.005 5.6 e−1 — 3.03 e−1 —

0.0025 2.75 e−1 1.03 1.14 e−1 1.41

0.00125 1.06 e−1 1.38 3.42 e−2 1.74

Table 1: L1-error computed as in (5.3) and experimental order of convergence computed as in (5.4)

for the solution to (1.1)–(5.1)–(5.5) with initial datum (5.6) and flux function f as in 1a.

h ‖uh − u‖L1 EOCu ‖wh − w‖L1 EOCw

0.005 5.79 e−1 — 4.3 e−1 —

0.0025 2.73 e−1 1.08 1.86 e−1 1.22

0.00125 1.01 e−1 1.43 6.37 e−2 1.54

Table 2: L1-error computed as in (5.3) and experimental order of convergence computed as in (5.4)

for the solution to (1.1)–(5.1)–(5.5) with initial datum (5.6) and flux function f as in 1b.

5.2 Example 2

In this example, we modify the treatment of the boundary and impose the following Neumann
boundary conditions:

∂u

∂n

∣∣∣
∂D

= 0
∂w

∂n

∣∣∣
∂D

= 0,

where ∂D represents the boundary of the domain D = [0, 0.5] × [0, 1] and n is the interior
unit normal vector.

We consider
f(u) = u(1− u), (5.7)
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Figure 1: Plot of the L1-error the solution to (1.1)–(5.1)–(5.5) with initial datum (5.6): case 1a on

the left, case 1b on the right. The dotted line has slope 1 and represents the order of convergence we

expect theoretically.

and it is easy to see that it fulfills the assumption (f). We set

α = 2 β = 0.8 κ = 1

γ = 0.8 δ = 24 µ = 0.1 ` = 0.25
(5.8)

with the following initial datum on D

uo(x, y) = 0.05
(

5 χ
E

(x, y) + 4 χ
F

(x, y)
)

wo(x, y) = 0.2

where

E = {(x, y) ∈ R2 : (4x− 0.6)2 + (4y − 3)2 ≤ 0.01}

F = {(x, y) ∈ R2 : (4x− 1.3)2 + (4y − 0.8)2 ≤ 0.04} .

(5.9)

The solution is computed up to time Tmax = 4 on a mesh of width h = 0.00125.
In this example we can clearly see the typical Lotka–Volterra effect, see Figure 2, where

the evolution of the total mass of predators and preys in time is shown. One population, in
this case predators u, apparently almost disappear, then its mass rises again, due to feeding on
prey and to newborns. At the same time the other population grows, untill its mass reaches
a sort of maximum point: from that instant on, predators eating prey produce a decrease in
prey mass. However, when the total mass of prey is very low, predators have nothing left to
eat, hence they decrease, while prey are free to increase, and the whole cycle begins again.
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