Universität Stuttgart

Fachbereich Mathematik

Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions

Elena Rossi, Veronika Schleper

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.

LATEX-Style: Winfried Geis, Thomas Merkle

Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions

Elena Rossi* and Veronika Schleper ${ }^{\dagger}$

Abstract

We prove the convergence of an explicit numerical scheme for the discretization of a coupled hyperbolic-parabolic system in two space dimensions. The hyperbolic part is solved by a Lax-Friedrichs method with dimensional and operator splitting, while the parabolic part is approximated by an explicit finite-difference method. To prove convergence of the scheme, we show strong convergence of the hyperbolic variable, while convergence of the parabolic part is obtained only weakly* in \mathbf{L}^{∞}. The proof relies on the fact that the hyperbolic flux depends on the parabolic variable through a convolution function. The paper also includes numerical examples that document the theoretically proved convergence and display the characteristic behaviour of the Lotka-Volterra equations.

2000 Mathematics Subject Classification: 65M12, 35M30
Keywords: numerical analysis, mixed systems of partial differential equations, coupled equations, Lax-Friedrichs method, finite difference schemes, nonlocal conservation laws

1 Introduction

We consider the following Cauchy problem in two space dimensions:

$$
\begin{align*}
& \partial_{t} u+\operatorname{div}(f(u) \boldsymbol{v}(w))=(\alpha w-\beta) u \tag{1.1a}\\
& \partial_{t} w-\mu \Delta w=(\gamma-\delta u) w \tag{1.1b}\\
& u(0, x, y)=u_{o}(x, y) \tag{1.1c}\\
& w(0, x, y)=w_{o}(x, y) \tag{1.1d}
\end{align*}
$$

This is a generalization of the predator-prey model presented in [8]. In particular, $u=$ $u(t, x, y)$ and $w=w(t, x, y)$ represent respectively the predator and the prey densities at time $t \in \mathbb{R}^{+}$and position $(x, y) \in \mathbb{R}^{2}$. The parameters $\alpha, \beta, \gamma, \delta$ appearing in system (1.1) are all positive, μ is strictly positive. More precisely, α is the predator birth rate due to feeding on prey, β is the predator mortality rate, γ is the prey birth rate, δ is the prey mortality rate due to predators and μ represents the diffusion speed of prey.
Predator-prey models are widely studied in the literature since a long time, starting with the pioneering works of Lotka [15] and Volterra [17] in the 1920s. The model proposed therein is

[^0]based on ordinary differential equations modeling the interactions of two species' populations u (predators) and w (prey), where birth and death rates depend on the interactions, see equation (1.2).
\[

$$
\begin{equation*}
\frac{d}{d t} u=(\alpha w-\beta) u, \quad \frac{d}{d t} w=(\gamma-\delta u) w \tag{1.2}
\end{equation*}
$$

\]

This basic model was extended subsequently to obtain more refined predictions of population sizes [13, 4, 3] or to model the immune system response to infectious diseases [5, 16]. Further applications of the Lotka-Volterra model 1.2 and variations of it can be found in economy, see e.g. [12] for a pioneering work.
All these models are based on ordinary differential equations, thus implicitly assuming a homogeneous distribution of the species in space. Model (1.1) overcomes this deficiency and allows for spacial variations of predators and prey. More precisely, we assume that prey diffuse in the whole space without preferred direction of motion, while predators are attracted by prey in a certain radius around them. To model this finite-range non-local behavior, the velocity vector \boldsymbol{v} of the predators depends on a convolution of the prey density with a kernel function measuring e.g. the ability of the predators to feel the presence of prey at a certain distance. This non local term in the flux of 1.1 a causes the predators to move in direction of the highest prey density, thus chasing the prey. Note that the prey does not try to escape the predators.
In [8], the well-posedness of (1.1) was shown for $f(u)=u$ and initial data in $\mathbf{L}^{1} \cap \mathbf{L}^{\infty}(\mathbb{R} ; \mathbb{R})$ with the additional constraint that u_{o} is of bounded total variation. The topic of the present work is to study the convergence of a finite difference scheme for the mixed hyperbolicparabolic system (1.1). We choose a Lax-Friedrichs type method for the hyperbolic part, including a modification to deal with the non local term \boldsymbol{v}, and a standard five-point stencil for the discretization of the parabolic part, see also (2.4) in Section 2 .
Since the velocity function \boldsymbol{v} depends only on w, we could view equation 1.1a) as a standard hyperbolic equation with space and time dependent flux function $\tilde{\boldsymbol{f}}(t, x, u):=f(u) \boldsymbol{v}(t, x)$. Equations of such type have been widely studied in the literature and especially the convergence of finite volume schemes is established in [11, 6, 7, 14] under different assumptions on $\boldsymbol{v}(t, x)$. Recently, a Lax-Friedrichs type method for a nonlocal hyperbolic conservation law was studied in [2, 1]. Due to the coupling of 1.1 a and 1.1 b$]$ through the velocity function \boldsymbol{v} and the source terms, the above results do not apply to the present case. The same holds true for the well known standard convergence results for finite difference discretizations of (quasi)linear parabolic equations, since these results are usually based on estimates in the discrete l^{2} norm. Here, the coupling of the parabolic part to a hyperbolic equation forces us to study the finite difference scheme in an $l^{1} \cap l^{\infty}$ setting.
To prove the convergence of the numerical scheme below, we make the following assumptions on the functions f and \boldsymbol{v} appearing in (1.1):
(f) $f \in \mathbf{C}^{2}(\mathbb{R} ; \mathbb{R}), f(0)=0$ and $\partial_{u} f \in \mathbf{L}_{l o c}^{\infty}(\mathbb{R} ; \mathbb{R})$;
$(\mathbf{v}) \boldsymbol{v}:\left(\mathbf{L}^{1} \cap \mathbf{L}^{\infty}\right)\left(\mathbb{R}^{2} ; \mathbb{R}\right) \rightarrow\left(\mathbf{C}^{2} \cap \mathbf{W}^{1, \infty}\right)\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ depends on w through a convolution in space, i.e. $\boldsymbol{v}(w):=\boldsymbol{v}(\eta * w)$ for a space dependent convolution kernel $\eta \in \mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$. Furthermore, there exist a constant K and an increasing map $C \in \mathbf{L}_{l o c}^{\infty}\left(\mathbb{R}^{+} ; \mathbb{R}^{+}\right)$such that for all $w \in\left(\mathbf{L}^{1} \cap \mathbf{L}^{\infty}\right)\left(\mathbb{R}^{2} ; \mathbb{R}\right)$

$$
\begin{aligned}
&\|\nabla \boldsymbol{v}(w)\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2 \times 2}\right)} \leq K\|w\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)} \\
&\|\nabla \boldsymbol{v}(w)\|_{\mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}^{2 \times 2}\right)} \leq K\|w\|_{\mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)}
\end{aligned}
$$

$$
\|\nabla(\nabla \cdot \boldsymbol{v}(w))\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right)} \leq C\left(\|w\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)}\right)
$$

With slight abuse of notation, we will also write $\boldsymbol{v}(t, x)$ instead of $\boldsymbol{v}(w)(t, x)$, to improve readability. Note that the case $f(u)=u$ is the one considered in 8]. An example of a function \boldsymbol{v} that fulfills all requirements of assumption (v) above can be found in Section 5 . The initial data (u_{o}, w_{o}) are chosen to fulfill the assumption
(0) $\left(u_{o}, w_{o}\right) \in\left(\mathbf{L}^{1} \cap \mathbf{L}^{\infty} \cap \mathbf{B V}\right)\left(\mathbb{R}^{2} ; \mathbb{R}^{+}\right) \times\left(\mathbf{L}^{1} \cap \mathbf{L}^{\infty} \cap \mathbf{B V}\right)\left(\mathbb{R}^{2} ; \mathbb{R}^{+}\right)$are positive-valued functions, i.e. $u_{o} \geq 0$ and $w_{o} \geq 0$ for a. e. $(x, y) \in \mathbb{R}^{2}$.

Remark 1.1. Under the assumption (f), existence and uniqueness of the solution to (1.1) follow by a straightforward extension of the results of [8].

The paper is organized as follows. In section 2, we introduce basic notations and describe the algorithm in details. To prove convergence of the given scheme, we derive bounds on the variables u and w in various norms in section 3 that are needed to conclude the convergence of the scheme in section 4 . Finally, section 5 is devoted to numerical examples including experimental convergence studies.

2 The Algorithm

We introduce a uniform mesh of width h along both x and y axes, given by the cartesian grid whose points are of the form

$$
\left\{\left(x_{i}, y_{i}\right) \mid x_{i}=i h, y_{j}=j h, i, j \in \mathbb{Z}\right\}
$$

Furthermore, we define the parabolic time step $\tau_{p}=\frac{h^{2}}{4 \mu}$ and let the time step τ be such that

$$
\tau=\tau_{p} \max \left\{n \in \mathbb{N}: \frac{n \tau_{p}}{h}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\|\boldsymbol{v}\|_{\mathbf{L}^{\infty}}<\frac{1}{4}\right\}=: m \tau_{p}
$$

In other words, τ is a multiple of τ_{p} that satisfies the following CFL condition:

$$
\begin{equation*}
\frac{\tau}{h}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\|\boldsymbol{v}\|_{\mathbf{L}^{\infty}}<\frac{1}{4} \tag{2.1}
\end{equation*}
$$

We also define $\lambda=\frac{\tau}{h}$. Let $(u(t, x, y), w(t, x, y))$ be the unique solution to (1.1) (see [8] for an existence and uniqueness result in the case of $f(u)=u$ and Remark 1.1 for the general case, under assumption (f)). To compute the solution numerically we set

$$
\begin{equation*}
u_{i, j}^{o}=\frac{1}{h^{2}} \int_{I_{i, j}} u_{o}(x, y) \mathrm{d} x \mathrm{~d} y, \quad w_{i, j}^{o}=\frac{1}{h^{2}} \int_{I_{i, j}} w_{o}(x, y) \mathrm{d} x \mathrm{~d} y \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{i, j}=\left[\left(i-\frac{1}{2}\right) h,\left(i+\frac{1}{2}\right) h\right] \times\left[\left(j-\frac{1}{2}\right) h,\left(j+\frac{1}{2}\right) h\right] \tag{2.3}
\end{equation*}
$$

so that $u_{i, j}^{o}$ and $w_{i, j}^{o}$ are the cell average of $u_{o}(x, y)$ and $w_{o}(x, y)$ respectively over the (i, j)-th cell. By (2.2) it follows easily that

$$
\begin{array}{rlrl}
\left\|u^{o}\right\|_{\mathbf{L}^{\infty}} & \leq\left\|u_{o}\right\|_{\mathbf{L}^{\infty}} & \left\|w^{o}\right\|_{\mathbf{L}^{\infty}} & \leq\left\|w_{o}\right\|_{\mathbf{L}^{\infty}} \\
\left\|u^{o}\right\|_{\mathbf{L}^{1}} & \leq\left\|u_{o}\right\|_{\mathbf{L}^{1}} \\
\operatorname{TV}\left(u^{o}\right) & \leq \operatorname{TV}\left(u_{o}\right) & \left\|w^{o}\right\|_{\mathbf{L}^{1}} & \leq\left\|w_{o}\right\|_{\mathbf{L}^{1}} \\
\operatorname{TV}\left(w^{o}\right) & \leq \operatorname{TV}\left(w_{o}\right),
\end{array}
$$

see also 9 .
To approximate (1.1), we use a finite-difference scheme for the parabolic part and a Lax-Friedrichs type finite volume method for the hyperbolic part. Therefore, we set $w^{n}:=$ $\sum_{i j} w_{i, j}^{n} \chi_{I_{i, j}}$ to be able to use the approximation w^{n} in the discretization of the hyperbolic equation. For simplicity, we denote $v=\boldsymbol{v} \cdot \boldsymbol{n}\left(u_{1}, u_{2}\right)$, where $\boldsymbol{n}\left(u_{1}, u_{2}\right)$ is the normal vector of the cell boundary pointing from the cell with value u_{1} to the cell with value u_{2}. The algorithm is now defined as follows:

$$
\begin{align*}
& \text { Algorithm (A): Mixed Scheme } \\
& \left.\begin{array}{l}
W^{n, 0}=w^{n} \\
W_{i, j}^{n, l+1}=\frac{1}{4}\left(W_{i+1, j}^{n, l}+W_{i-1, j}^{n, l}+W_{i, j+1}^{n, l}+W_{i, j-1}^{n, l}\right) \cdot\left[1+\tau_{p}\left(\gamma-\delta u_{i, j}^{n}\right)\left(1+\frac{\tau_{p}}{2}\left(\gamma-\delta u_{i, j}^{n}\right)\right)\right] \\
\\
w^{n+1}=W^{n, m} \\
F\left(u_{1}, u_{2}, t, x\right)=\frac{1}{2}\left(f\left(u_{1}\right)+f\left(u_{2}\right)\right) v(t, x)-\frac{1}{8 \lambda}\left(u_{1}-u_{2}\right) \\
U_{i, j}^{n+1 / 2}=u_{i, j}^{n}-\lambda\left[F\left(u_{i+1, j}^{n}, u_{i, j}^{n},(n+1) \tau, x_{i+1 / 2, j}\right)-F\left(u_{i, j}^{n}, u_{i-1, j}^{n},(n+1) \tau, x_{i-1 / 2, j}\right)\right] \\
U_{i, j}^{n+1}=U_{i, j}^{n+1 / 2}-\lambda\left[F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)-F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j-1 / 2}\right)\right] \\
\\
\\
u_{i, j}^{n+1}=U_{i, j}^{n+1}\left[1+\tau\left(\alpha w_{i, j}^{n+1}-\beta\right)\left(1+\frac{\tau}{2}\left(\alpha w_{i, j}^{n+1}-\beta\right)\right)\right]
\end{array}\right] \tag{2.4a}
\end{align*}
$$

In other words, the start computes an approximation of w^{n} solving the parabolic equation by an explicit scheme with smaller time step τ_{p}, thus having to perform m small time steps to reach the hyperbolic time step τ defined in (2.1). The balance law is now integrated by means of a finite volume scheme with dimensional splitting, while its source term is solved using a second order Runge-Kutta method. Note that the second order discretization of the source terms guarantees the positivity of the approximate solution, as shown in section 3.1.

Remark 2.1. All estimates of Section 3 as well as the convergence result of Section 4 can be shown analogously when (2.4e)-(2.4f) are replaced by

$$
\begin{aligned}
U_{i, j}^{n+1}=u_{i, j}^{n}-\lambda & {\left[F\left(u_{i+1, j}^{n}, u_{i, j}^{n},(n+1) \tau, x_{i+1 / 2, j}\right)-F\left(u_{i, j}^{n}, u_{i-1, j}^{n},(n+1) \tau, x_{i-1 / 2, j}\right)\right.} \\
& \left.F\left(u_{i, j+1}^{n}, u_{i, j}^{n},(n+1) \tau, x_{i, j+1 / 2}\right)-F\left(u_{i, j}^{n}, u_{i, j-1}^{n},(n+1) \tau, x_{i, j-1 / 2}\right)\right] .
\end{aligned}
$$

Remark 2.2. The main reason for the choice of a non standard CFL condition as (2.1) is the space-time dependent velocity field \boldsymbol{v}. To prove the positivity of u in Lemma 3.1 we observe
that the space-time dependence of \boldsymbol{v} introduces and additional constraint on λ. The choice of $1 / 4$ in the CFL condition and of $1 / 8$ in the definition of the Lax-Friedrichs flux are optimal in the sense that they provide the largest possible CFL condition that guarantees positivity of u. More details on this can be found in the proof of Lemma 3.1 in the next section.

3 Bounds on w and u

The proof of convergence of the above algorithm to the unique solution of (1.1) is based on an extension of Helly's theorem (see [10, Theorem 1.7.3]). To apply this theorem, we have to prove the uniform boundedness of u and w in \mathbf{L}^{1} as well as a uniform bound on the time-space total variation. The necessary estimates are collected in this section, starting with positivity estimates in section 3.1 and bounds on the \mathbf{L}^{1} and \mathbf{L}^{∞} norms in section 3.2 . Once these bounds are available, we are able to prove a bound on the total variation in space in section 3.3. Finally, the Lipschitz continuity in time of u, proven in section 3.4, guarantees enough regularity of the approximate solutions to pass to the convergence proof in Section 4.

3.1 Positivity of w and u

Lemma 3.1. Let assumptions (f), (v) and (0) hold. Then the approximate solution constructed by algorithm (A) is such that $w_{i, j}^{n} \geq 0$ and $u_{i, j}^{n} \geq 0$ for all i, j and n.

Proof. Consider w first, in particular, focus on the sequence $\left(W^{n, \ell}\right)$. Suppose $W_{i, j}^{n, \ell} \geq 0$ for all i, j and define $S=S_{i, j}^{n}=\tau_{p}\left(\gamma-\delta u_{i, j}^{n}\right)$. By 2.4b we have

$$
W_{i, j}^{n, \ell+1}=\frac{1}{4}\left(W_{i+1, j}^{n, \ell}+W_{i-1, j}^{n, \ell}+W_{i, j+1}^{n, \ell}+W_{i, j-1}^{n, \ell}\right)\left(1+S+\frac{S^{2}}{2}\right) .
$$

The parabola ($1+S+S^{2} / 2$) assumes only positive values and, by the inductive hypothesis, we deduce that $W_{i, j}^{n, \ell+1} \geq 0$. By induction, we can thus conclude that $w_{i, j}^{n} \geq 0$ for all i, j and n.

Consider now u and define $v_{i+1 / 2, j}^{n+1}:=v\left((n+1) \tau, x_{i+1 / 2, j}\right)$. By (2.4d) and 2.4e we have

$$
\begin{aligned}
U_{i, j}^{n+1 / 2}= & \frac{1}{8}\left(u_{i+1, j}^{n}+6 u_{i, j}^{n}+u_{i-1, j}^{n}\right)-\lambda f\left(u_{i, j}^{n}\right)\left(v_{i+1 / 2, j}^{n+1}-v_{i-1 / 2, j}^{n+1}\right) \\
& -\lambda\left[\frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{2} v_{i+1 / 2, j}^{n+1}-\frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{2} v_{i-1 / 2, j}^{n+1}\right] \\
= & u_{i+1, j}^{n}\left[\frac{1}{8}-\frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1}\right]+u_{i-1, j}^{n}\left[\frac{1}{8}+\frac{\lambda}{2} \frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}} v_{i-1 / 2, j}^{n+1}\right] \\
& +u_{i, j}^{n}\left[\frac{3}{4}+\frac{\lambda}{2} v_{i+1 / 2, j}^{n+1}\left(\frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}}-2 \frac{f\left(u_{i, j}^{n}\right)}{u_{i, j}^{n}}\right)\right. \\
& \left.-\frac{\lambda}{2} v_{i-1 / 2, j}^{n+1}\left(\frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}}-2 \frac{f\left(u_{i, j}^{n}\right.}{u_{i, j}^{n}}\right)\right] .
\end{aligned}
$$

Observe that the CFL condition (2.1) yields

$$
\frac{1}{8} \pm \frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1} \geq \frac{1}{8}-\frac{\lambda}{2}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\|v\|_{\mathbf{L}^{\infty}}>0
$$

and for the remaining term

$$
\begin{aligned}
& \frac{3}{4}+\frac{\lambda}{2} v_{i+1 / 2, j}^{n+1}\left[\frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}}-2 \frac{f\left(u_{i, j}^{n}\right)}{u_{i, j}^{n}}\right]-\frac{\lambda}{2} v_{i-1 / 2, j}^{n+1}\left[\frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}}-2 \frac{f\left(u_{i, j}^{n}\right)}{u_{i, j}^{n}}\right] \\
\geq & \frac{3}{4}-3 \lambda\|v\|_{\mathbf{L}^{\infty}}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}>0 .
\end{aligned}
$$

Hence, using also the inductive hypothesis, we have that $U_{i, j}^{n+1 / 2} \geq 0$ for all i and j.
Using (2.4f), we can repeat the same steps as above considering $U^{n+1 / 2}$ instead of u^{n} to conclude that $U_{i, j}^{n+1} \geq 0$ for all i and j.

Finally, defining $R=R_{i, j}^{n+1}=\tau\left(\alpha w_{i, j}^{n+1}-\beta\right)$ and using (2.4g), we obtain

$$
u_{i, j}^{n+1}=U_{i, j}^{n+1}\left(1+R+\frac{R^{2}}{2}\right) .
$$

Analogously to w, we can conclude that $u_{i, j}^{n+1} \geq 0$ for all i, j and n.

$3.2 \quad \mathbf{L}^{\infty}$ and \mathbf{L}^{1} bounds on w and u

Lemma 3.2. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution $\left(u^{n}, w^{n}\right)$ constructed by algorithm (A) satisfies

$$
\begin{align*}
\left\|w^{n}\right\|_{\mathbf{L}^{\infty}} & \leq e^{n \tau \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}} \tag{3.1}\\
\left\|u^{n}\right\|_{\mathbf{L}^{\infty}} & \leq\left\|u^{o}\right\|_{\mathbf{L}^{\infty}} \exp \left(\left(2 \mathcal{K}_{1}+\mathcal{K}_{2}\right) \frac{1}{\gamma} e^{(n+1) \tau \gamma}\right) \tag{3.2}
\end{align*}
$$

where $\mathcal{K}_{1}, \mathcal{K}_{2}$ are constants depending on $\alpha, K,\left\|w^{o}\right\|_{\mathbf{L}^{\infty}},\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}$.
Proof. Consider w first. By Lemma 3.1. $u_{i, j}^{n} \geq 0$ for all i, j and n. By 2.4b we have for $0 \leq l<m$

$$
\begin{aligned}
W_{i, j}^{n, l+1} & \leq e^{\tau_{p}\left(\gamma-\delta u_{i, j}^{n}\right)} \frac{1}{4}\left(W_{i+1, j}^{n, l}+W_{i-1, j}^{n, l}+W_{i, j+1}^{n, l}+W_{i, j-1}^{n, l}\right) \\
& \leq e^{\tau_{p} \gamma}\left\|W^{n, l}\right\|_{\mathbf{L}^{\infty}} .
\end{aligned}
$$

By induction over l in the sequence $W^{n, l}$ we obtain therefore

$$
\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}=\left\|W^{n, m}\right\|_{\mathbf{L}^{\infty}} \leq e^{m \tau_{p} \gamma}\left\|w^{n}\right\|_{\mathbf{L}^{\infty}}=e^{\tau \gamma}\left\|w^{n}\right\|_{\mathbf{L}^{\infty}} .
$$

Finally, induction over n yields

$$
\left\|w^{n}\right\|_{\mathbf{L}^{\infty}} \leq e^{n \tau \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}} .
$$

Pass now to u and recall that by (\mathbf{v}), we have

$$
\left\|\nabla v^{n}\right\|_{\mathbf{L}^{\infty}} \leq K\left\|w^{n}\right\|_{\mathbf{L}^{\infty}}
$$

As in Lemma 3.1, by 2.4 d and 2.4 e , simple computations lead to

$$
\begin{aligned}
\left|U_{i, j}^{n+1 / 2}\right|= & U_{i, j}^{n+1 / 2} \\
= & u_{i+1, j}^{n}\left[\frac{1}{8}-\frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1}\right]+u_{i-1, j}^{n}\left[\frac{1}{8}+\frac{\lambda}{2} \frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}} v_{i-1 / 2, j}^{n+1}\right] \\
& +u_{i, j}^{n}\left[\frac{3}{4}+\frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1}-\frac{\lambda}{2} \frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}} v_{i-1 / 2, j}^{n+1}\right. \\
& \left.\quad-\lambda \frac{f\left(u_{i, j}^{n}\right)}{u_{i, j}^{n}}\left(v_{i+1 / 2, j}^{n+1}-v_{i-1 / 2, j}^{n+1}\right)\right] \\
\leq & \left\|u^{n}\right\|_{\mathbf{L}^{\infty}}\left[\frac{1}{8}-\frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1}+\frac{1}{8}+\frac{\lambda}{2} \frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}} v_{i-1 / 2, j}^{n+1}\right. \\
& +\frac{3}{4}+\frac{\lambda}{2} \frac{f\left(u_{i+1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i+1, j}^{n}-u_{i, j}^{n}} v_{i+1 / 2, j}^{n+1}-\frac{\lambda}{2} \frac{f\left(u_{i-1, j}^{n}\right)-f\left(u_{i, j}^{n}\right)}{u_{i-1, j}^{n}-u_{i, j}^{n}} v_{i-1 / 2, j}^{n+1} \\
& \left.-\lambda \frac{f\left(u_{i, j}^{n}\right)}{u_{i, j}^{n}}\left(v_{i+1 / 2, j}^{n+1}-v_{i-1 / 2, j}^{n+1}\right)\right] \\
\leq & \left\|u^{n}\right\|_{\mathbf{L}^{\infty}}\left(1+\tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|_{\partial_{x} v^{n+1}}\right\|_{\mathbf{L}^{\infty}}\right) \\
\leq & \left\|u^{n}\right\|_{\mathbf{L}^{\infty}} \exp \left(\tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) .
\end{aligned}
$$

The estimate on U^{n+1} can be obtained analogously using 2.4 f to get

$$
\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \leq\left\|U^{n+1 / 2}\right\|_{\mathbf{L}^{\infty}} \exp \left(\tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)
$$

Concerning the source term, integrated by 2.4 g , one can easily see that

$$
\left|u_{i, j}^{n+1}\right| \leq U_{i, j}^{n+1} \exp \left[\tau\left(\alpha w_{i, j}^{n+1}-\beta\right)\right] \leq\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \exp \left(\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)
$$

Collecting the above estimates and using (3.1), we conclude that

$$
\left\|u^{n+1}\right\|_{\mathbf{L}^{\infty}} \leq\left\|u^{n}\right\|_{\mathbf{L}^{\infty}} \exp \left[\tau e^{(n+1) \tau \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}}\left(2 K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}+\alpha\right)\right]
$$

Iterating over n yields

$$
\begin{aligned}
\left\|u^{n}\right\|_{\mathbf{L}^{\infty}} & \leq\left\|u^{o}\right\|_{\mathbf{L}^{\infty}} \exp \left[\tau\left\|w^{o}\right\|_{\mathbf{L}^{\infty}}\left(2 K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}+\alpha\right) \sum_{k=1}^{n} e^{k \tau \gamma}\right] \\
& \leq\left\|u^{o}\right\|_{\mathbf{L}^{\infty}} \exp \left[e^{(n+1) \tau \gamma} \frac{1}{\gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}}\left(2 K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}+\alpha\right)\right] .
\end{aligned}
$$

Denoting

$$
\begin{equation*}
\mathcal{K}_{1}=K\left\|w^{o}\right\|_{\mathbf{L}^{\infty}}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} \quad \mathcal{K}_{2}=\alpha\left\|w^{o}\right\|_{\mathbf{L}^{\infty}} \tag{3.3}
\end{equation*}
$$

completes the proof.
Positivity and uniform boundedness of the approximate solution allow now to prove the \mathbf{L}^{1} bounds necessary for the application of [10, Theorem 1.7.3] in the convergence proof later on.
Lemma 3.3. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution $\left(u^{n}, w^{n}\right)$ constructed by algorithm (\mathbf{A}) satisfies

$$
\begin{align*}
\left\|w^{n}\right\|_{\mathbf{L}^{1}} & \leq e^{n \tau \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{1}} \tag{3.4}\\
\left\|u^{n}\right\|_{\mathbf{L}^{1}} & \leq\left\|u^{o}\right\|_{\mathbf{L}^{1}} \exp \left(\mathcal{K}_{2} \frac{1}{\gamma} e^{(n+1) \tau \gamma}\right) \tag{3.5}
\end{align*}
$$

where \mathcal{K}_{2} is the constant defined in Lemma 3.2, depending on $\alpha,\left\|w^{o}\right\|_{\mathbf{L}^{\infty}}$.
Proof. Consider w first. By Lemma 3.1, $u_{i, j}^{n} \geq 0$ and $w_{i, j}^{n} \geq 0$ for all i, j and n. Let $W^{n, 0}=w^{n}$ and $0 \leq l<m$. By 2.4b,

$$
\left\|W^{n, l+1}\right\|_{\mathbf{L}^{1}}=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h^{2} W_{i, j}^{n, l+1} \leq e^{\tau_{p}\left(\gamma-\delta u_{i, j}^{n}\right)} \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h^{2} W_{i, j}^{n, l} \leq e^{\tau_{p} \gamma}\left\|W^{n, l}\right\|_{\mathbf{L}^{1}}
$$

Induction over l yields

$$
\left\|w^{n+1}\right\|_{\mathbf{L}^{1}}=\left\|W^{n, m}\right\|_{\mathbf{L}^{1}} \leq e^{m \tau_{p} \gamma}\left\|w^{n}\right\|_{\mathbf{L}^{1}} \leq e^{\tau \gamma}\left\|w^{n}\right\|_{\mathbf{L}^{1}}
$$

Induction over n now yields

$$
\left\|w^{n}\right\|_{\mathbf{L}^{1}} \leq e^{n \tau \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{1}}
$$

Pass now to u. By the conservation property of the Lax-Friedrichs scheme (2.4d)-(2.4f) we have

$$
\left\|U^{n+1}\right\|_{\mathbf{L}^{1}}=\left\|U^{n+1 / 2}\right\|_{\mathbf{L}^{1}}=\left\|u^{n}\right\|_{\mathbf{L}^{1}}
$$

To include the source term in the \mathbf{L}^{1}-estimate, we consider 2.4 g) and obtain

$$
\begin{aligned}
\left\|u^{n+1}\right\|_{\mathbf{L}^{1}} & =\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h^{2} u_{i, j}^{n+1} \leq \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h^{2} e^{\tau\left(\alpha w_{i, j}^{n+1}-\beta\right)} U_{i, j}^{n+1} \\
& \leq e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}} \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h^{2} U_{i, j}^{n+1}} \\
& =e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\left\|u^{n}\right\|_{\mathbf{L}^{1}}}
\end{aligned}
$$

Using (3.1) and (3.3), this yields

$$
\begin{aligned}
\left\|u^{n+1}\right\|_{\mathbf{L}^{1}} & \leq\left\|u^{n}\right\|_{\mathbf{L}^{1}} \exp \left(\tau \alpha\left\|w^{o}\right\|_{\mathbf{L}^{\infty}} e^{(n+1) \tau \gamma}\right) \\
& \leq\left\|u^{o}\right\|_{\mathbf{L}^{1}} \exp \left(\tau \mathcal{K}_{2} \sum_{k=1}^{n+1} e^{k \tau \gamma}\right) \\
& \leq\left\|u^{o}\right\|_{\mathbf{L}^{1}} \exp \left(\mathcal{K}_{2} \frac{1}{\gamma} e^{(n+2) \tau \gamma}\right)
\end{aligned}
$$

This completes the proof.

3.3 TV estimate

Lemma 3.4. Let assumptions (f), (v) and (0) hold and fix $0<T<\infty$. Then, for all n such that $n \tau<T$, the approximate solution $\left(u^{n}, w^{n}\right)$ constructed by algorithm (A) satisfies

$$
\operatorname{TV}\left(u^{n}\right)+\operatorname{TV}\left(w^{n}\right) \leq e^{n \tau \mathcal{K}_{3}}\left(\operatorname{TV}\left(u^{o}\right)+\operatorname{TV}\left(w^{o}\right)+\frac{\mathcal{K}_{4}}{\mathcal{K}_{3}} e^{\tau \mathcal{K}_{5}}\right)
$$

where the functions $\mathcal{K}_{i}, i=3, \ldots, 5$ depend on T, various norms of u^{n}, w^{n} and $\partial_{u} f$ as well as on all constants $\alpha, \beta, \gamma, \delta$ and K and the function C defined in (v).

Proof. Consider w first. In particular, focus on $W^{n, l}$ defined in 2.4b). To obtain a bound on the total variation of w^{n+1}, we have to estimate

$$
\begin{equation*}
\operatorname{TV}\left(w^{n+1}\right)=\sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} h\left[\left|w_{i+1, j}^{n+1}-w_{i, j}^{n+1}\right|+\left|w_{i, j+1}^{n+1}-w_{i, j}^{n+1}\right|\right] . \tag{3.6}
\end{equation*}
$$

Similarly as before, we define $S_{i, j}^{n}=\gamma-\delta u_{i, j}^{n}$ for the sake of simplicity. To obtain a bound for (3.6), we consider

$$
\begin{aligned}
& \sum_{i, j} h\left|W_{i+1, j}^{n, l+1}-W_{i, j}^{n, l+1}\right| \\
\leq & \frac{1}{4} e^{\tau_{p} \gamma} \sum_{i, j} h\left(\left|W_{i+2, j}^{n, l}-W_{i+1, j}^{n, l}\right|+\left|W_{i, j}^{n, l}-W_{i-1, j}^{n, l}\right|+\left|W_{i+1, j+1}^{n, l}-W_{i, j+1}^{n, l}\right|+\left|W_{i+1, j-1}^{n, l}-W_{i, j-1}^{n, l}\right|\right) \\
& +\sum_{i, j} h\left|W_{i, j}^{n, l}\right| \cdot \tau_{p}\left|S_{i+1, j}^{n}\left(1+\frac{\tau_{p}}{2} S_{i+1, j}^{n}\right)-S_{i, j}^{n}\left(1+\frac{\tau_{p}}{2} S_{i, j}^{n}\right)\right| \\
\leq & e^{\tau_{p} \gamma} \sum_{i, j} h\left|W_{i, j}^{n, l}-W_{i-1, j}^{n, l}\right|+\left\|W^{n, l}\right\|_{\mathbf{L}^{\infty}} \sum_{i, j} h \tau_{p}\left|S_{i+1, j}^{n}-S_{i, j}^{n}\right| \cdot\left|1+\tau_{p}\left(\gamma-\frac{\delta}{2}\left(u_{i+1, j}^{n}+u_{i, j}^{n}\right)\right)\right| \\
\leq & e^{\tau_{p} \gamma} \sum_{i, j} h\left|W_{i, j}^{n, l}-W_{i-1, j}^{n, l}\right|+\tau_{p}\left(1+\tau_{p}\left(\gamma+\delta\left\|u^{n}\right\|_{\mathbf{L}^{\infty}}\right)\right) \delta\left\|W^{n, l}\right\|_{\mathbf{L}^{\infty}} \cdot \sum_{i, j} h\left|u_{i+1, j}^{n}-u_{i, j}^{n}\right| \\
\leq & e^{\tau_{p} \gamma}\left(\sum_{i, j} h\left|W_{i, j}^{n, l}-W_{i-1, j}^{n, l}\right|+\tau_{p} e^{\delta}\left\|u^{n}\right\|_{\mathbf{L} \infty} \tau_{p}\right. \\
& \left.\left\|W^{n, l}\right\|_{\mathbf{L}^{\infty}} \sum_{i, j} h\left|u_{i+1, j}^{n}-u_{i, j}^{n}\right|\right) .
\end{aligned}
$$

An analogous estimate can be derived for $\sum_{i, j} h\left|W_{i, j+1}^{n, l+1}-W_{i, j}^{n, l+1}\right|$. Induction over l yields now

$$
\begin{equation*}
\operatorname{TV}\left(w^{n+1}\right) \leq e^{\tau \gamma}\left(\operatorname{TV}\left(w^{n}\right)+\tau e^{\left.\tau_{p} \delta\left\|u^{n}\right\|_{\mathbf{L}^{\infty}} \delta\left\|w^{n}\right\|_{\mathbf{L}^{\infty}} \operatorname{TV}\left(u^{n}\right)\right)}\right. \tag{3.7}
\end{equation*}
$$

Pass now to u. We need to estimate the following quantity:

$$
\begin{equation*}
\operatorname{TV}\left(u^{n+1}\right)=h \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left[\left|u_{i+1, j}^{n+1}-u_{i, j}^{n+1}\right|+\left|u_{i, j+1}^{n+1}-u_{i, j}^{n+1}\right|\right] . \tag{3.8}
\end{equation*}
$$

Denoting $R_{i, j}^{n+1}=\alpha w_{i, j}^{n+1}-\beta$ for the sake of simplicity, we obtain

$$
\operatorname{TV}\left(u^{n+1}\right)=\sum_{i, j} h\left[\left|u_{i+1, j}^{n+1}-u_{i, j}^{n+1}\right|+\left|u_{i, j+1}^{n+1}-u_{i, j}^{n+1}\right|\right]
$$

$$
\begin{aligned}
\leq & e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}} \infty} \sum_{i, j} h\left[\left|U_{i+1, j}^{n+1}-U_{i, j}^{n+1}\right|+\left|U_{i, j+1}^{n+1}-U_{i, j}^{n+1}\right|\right] \\
& +\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \tau \sum_{i, j} h\left|R_{i+1, j}^{n+1}\left(1+\frac{\tau}{2} R_{i+1, j}^{n+1}\right)-R_{i, j}^{n+1}\left(1+\frac{\tau}{2} R_{i, j}^{n+1}\right)\right| \\
& +\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \tau \sum_{i, j} h\left|R_{i, j+1}^{n+1}\left(1+\frac{\tau}{2} R_{i, j+1}^{n+1}\right)-R_{i, j}^{n+1}\left(1+\frac{\tau}{2} R_{i, j}^{n+1}\right)\right| \\
\leq & e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}}\left(\operatorname{TV}\left(U^{n+1}\right)+\tau \alpha e^{\tau \beta}\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \operatorname{TV}\left(w^{n+1}\right)\right) .
\end{aligned}
$$

To approximate TV $\left(U^{n+1}\right)$, we have to estimate

$$
\sum_{i, j} h\left(\left|U_{i+1, j}^{n+1}-U_{i, j}^{n+1}\right|+\left|U_{i, j+1}^{n+1}-U_{i, j}^{n+1}\right|\right)
$$

It is a well-known fact that the standard Lax-Friedrichs scheme is TVD and thus TV $\left(U^{n+1}\right) \leq$ $\mathrm{TV}\left(U^{n+1 / 2}\right) \leq \operatorname{TV}\left(u^{n}\right)$. The situation here however is different, since the flux does not only depend on u, but also on t and x through the component $v(w)$. The conservation law itself does therefore not satisfy the TVD-property (see [8]) and we cannot expect the numerical scheme to be TVD. To estimate the increase in total variation due to the space-time dependent velocity field, we consider the term $\sum_{i, j} h\left|U_{i, j+1}^{n+1}-U_{i, j}^{n+1}\right|$. By (2.4f), we have

$$
\begin{aligned}
U_{i, j+1}^{n+1}- & U_{i, j}^{n+1}=U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2} \\
-\lambda & {\left[F\left(U_{i, j+2}^{n+1 / 2}, U_{i, j+1}^{n+1 / 2},(n+1) \tau, x_{i, j+3 / 2}\right)-F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)\right.} \\
& \left.-F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)+F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j-1 / 2}\right)\right] .
\end{aligned}
$$

Add and subtract $\lambda F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+3 / 2}\right)+\lambda F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)$, then rearrange to obtain:

$$
U_{i, j+1}^{n+1}-U_{i, j}^{n+1}=\mathcal{A}_{i, j}^{n}-\mathcal{B}_{i, j}^{n},
$$

where

$$
\begin{align*}
\mathcal{A}_{i, j}^{n}= & U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2} \\
& -\lambda\left[F\left(U_{i, j+2}^{n+1 / 2}, U_{i, j+1}^{n+1 / 2},(n+1) \tau, x_{i, j+3 / 2}\right)-F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)\right. \\
& \left.+F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)-F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+3 / 2}\right)\right], \tag{3.9}\\
\mathcal{B}_{i, j}^{n}= & \lambda\left[F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+3 / 2}\right)-F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)\right. \\
& \left.+F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j-1 / 2}\right)-F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)\right] . \tag{3.10}
\end{align*}
$$

From now on we omit the superscripts, $n+1 / 2$ or $n+1$, to enhance readability. Consider first the term $\mathcal{A}_{i, j}^{n}$ and use 2.4 d to obtain

$$
\begin{aligned}
\mathcal{A}_{i, j}^{n}= & U_{i, j+1}-U_{i, j}-\lambda\left[\frac{f\left(U_{i, j+2}\right)+f\left(U_{i, j+1}\right)-f\left(U_{i, j+1}\right)-f\left(U_{i, j}\right)}{2} v_{i, j+3 / 2}\right. \\
& \left.-\frac{f\left(U_{i, j+1}\right)+f\left(U_{i, j}\right)-f\left(U_{i, j}\right)-f\left(U_{i, j-1}\right)}{2} v_{i, j+1 / 2}\right] \\
& +\frac{1}{8}\left(\left(U_{i, j+2}-U_{i, j+1}\right)-2\left(U_{i, j+1}-U_{i, j}\right)+\left(U_{i, j}-U_{i, j-1}\right)\right) \\
= & \frac{3}{4}\left(U_{i, j+1}-U_{i, j}\right)+\left(U_{i, j+2}-U_{i, j+1}\right)\left(\frac{1}{8}-\frac{\lambda}{2} \frac{f\left(U_{i, j+2}\right)-f\left(U_{i, j+1}\right)}{U_{i, j+2}-U_{i, j+1}} v_{i, j+3 / 2}\right) \\
& +\left(U_{i, j}-U_{i, j-1}\right)\left(\frac{1}{8}+\frac{\lambda}{2} \frac{f\left(U_{i, j}\right)-f\left(U_{i, j-1}\right)}{U_{i, j}-U_{i, j-1}} v_{i, j+1 / 2}\right) \\
& -\frac{\lambda}{2}\left[f\left(U_{i, j+1}\right)-f\left(U_{i, j}\right)\right]\left(v_{i, j+3 / 2}-v_{i, j+1 / 2}\right) .
\end{aligned}
$$

Observe that both coefficients of $U_{i, j+2}-U_{i, j+1}$ and $U_{i, j}-U_{i, j-1}$ are positive. Then, summing the modulus of $\mathcal{A}_{i, j}^{n}$ over $i, j \in \mathbb{Z}$, using also (\mathbf{v}), 3.1) and (3.3), yields:

$$
\begin{align*}
& \sum_{i, j} h\left|\mathcal{A}_{i, j}^{n}\right| \\
\leq & \sum_{i, j} h\left|U_{i, j+1}-U_{i, j}\right|\left(1+\frac{\lambda}{2} \frac{f\left(U_{i, j+1}\right)-f\left(U_{i, j}\right)}{U_{i, j+1}-U_{i, j}}\left(v_{i, j+1 / 2}-v_{i, j+3 / 2}\right)\right) \\
& +\sum_{i, j} h \frac{\lambda}{2}\left|U_{i, j+1}-U_{i, j}\right|\left|\frac{f\left(U_{i, j+1}\right)-f\left(U_{i, j}\right)}{U_{i, j+1}-U_{i, j}}\right|\left|v_{i, j+3 / 2}-v_{i, j+1 / 2}\right| \\
\leq & \sum_{i, j} h\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|\left(1+\tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|\partial_{y} v^{1 / 2^{n+1}}\right\|_{\mathbf{L}^{\infty}}\right) \\
\leq & \sum_{i, j} h\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|\left(1+\tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) . \tag{3.11}
\end{align*}
$$

Pass now to $\mathcal{B}_{i, j}^{n}$. We continue omitting the superscripts.

$$
\begin{aligned}
\mathcal{B}_{i, j}^{n}= & \lambda\left[\frac{f\left(U_{i, j}\right)+f\left(U_{i, j+1}\right)}{2} v_{i, j+3 / 2}^{n+1}-\frac{f\left(U_{i, j}\right)+f\left(U_{i, j+1}\right)}{2} v_{i, j+1 / 2}^{n+1}\right. \\
& \left.+\frac{f\left(U_{i, j-1}\right)+f\left(U_{i, j}\right)}{2} v_{i, j-1 / 2}^{n+1}-\frac{f\left(U_{i, j-1}\right)+f\left(U_{i, j}\right)}{2} v_{i, j+1 / 2}^{n+1}\right] \\
= & \frac{\lambda}{2}\left[f\left(U_{i, j}\right)\left(v_{i, j+3 / 2}^{n+1}-2 v_{i, j+1 / 2}^{n+1}+v_{i, j-1 / 2}^{n+1}\right)\right. \\
& \left.+\left(f\left(U_{i, j+1}\right)-f\left(U_{i, j-1}\right)\right)\left(v_{i, j+3 / 2}^{n+1}-v_{i, j+1 / 2}^{n+1}\right)+f\left(U_{i, j-1}\right)\left(v_{i, j+3 / 2}^{n+1}-2 v_{i, j+1 / 2}^{n+1}+v_{i, j-1 / 2}^{n+1}\right)\right] .
\end{aligned}
$$

Since $v=v_{2}$ is a smooth function and $v_{i, j+1 / 2}^{n+1}=v^{n+1}\left(x_{i}, y_{j+1 / 2}\right)$, we obtain

$$
v_{i, j+3 / 2}^{n+1}-2 v_{i, j+1 / 2}^{n+1}+v_{i, j-1 / 2}^{n+1} \leq h^{2}\left\|\partial_{y y} v^{n+1}\right\|_{\mathbf{L}^{\infty}}
$$

Then, using also (v),

$$
\begin{equation*}
\frac{\lambda}{2} f\left(U_{i, j}^{n+1 / 2}\right)\left(v_{i, j+3 / 2}^{n+1}-2 v_{j+1 / 2}^{n+1}+v_{j-1 / 2}^{n+1}\right) \leq \frac{\lambda}{2} h^{2}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left|U_{i, j}^{n+1 / 2}\right| C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \tag{3.12}
\end{equation*}
$$

and similarly for the term with $f\left(U_{i, j-1}\right)$, while the remaining term can be easily estimated as follows

$$
\begin{equation*}
\frac{\lambda}{2}\left(f\left(U_{i, j+1}^{n+1 / 2}\right)-f\left(U_{i, j-1}^{n+1 / 2}\right)\right)\left(v_{i, j+3 / 2}^{n+1}-v_{i, j+1 / 2}^{n+1}\right) \leq \frac{\lambda}{2}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left|U_{i, j+1}^{n+1 / 2}-U_{i, j-1}^{n+1 / 2}\right| h\left\|\partial_{y} v^{n+1}\right\|_{\mathbf{L}^{\infty}} \tag{3.13}
\end{equation*}
$$

Hence, multiplying by h and summing over i and j, (3.12) and (3.13) yield

$$
\begin{equation*}
\sum_{i, j} h\left|\mathcal{B}_{i, j}^{n}\right| \leq \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left(K\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}} \sum_{i, j} h\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|+C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}}\right) \tag{3.14}
\end{equation*}
$$

By (3.11) and (3.14) we have

$$
\begin{align*}
\sum_{i, j} h\left|U_{i, j+1}^{n+1}-U_{i, j}^{n+1}\right| \leq & \sum_{i, j} h\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|\left(1+2 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \tag{3.15}\\
& +\tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}}
\end{align*}
$$

In a similar way we obtain

$$
\begin{align*}
\sum_{i, j} h\left|U_{i+1, j}^{n+1}-U_{i, j}^{n+1}\right| \leq & \sum_{i, j} h\left|U_{i+1, j}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|\left(1+\tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \\
& +\tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}} \sum_{i, j} h\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right| \tag{3.16}\\
& +2 \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1} .}
\end{align*}
$$

By (3.15) and (3.16) we have therefore

$$
\begin{align*}
\operatorname{TV}\left(U^{n+1}\right) \leq & \left(1+3 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \operatorname{TV}\left(U^{n+1 / 2}\right) \\
& +3 \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}} \tag{3.17}
\end{align*}
$$

Analogously to the estimate 3.17 for $\operatorname{TV}\left(U^{n+1}\right)$, we obtain

$$
\begin{align*}
\operatorname{TV}\left(U^{n+1 / 2}\right) \leq & \left(1+3 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \operatorname{TV}\left(u^{n}\right) \\
& +3 \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}} \tag{3.18}
\end{align*}
$$

Then,

$$
\begin{align*}
\operatorname{TV}\left(u^{n+1}\right) \leq & e^{\tau \alpha \| w^{n+1}} \|_{\mathbf{L}^{\infty}}\left\{\exp \left(6 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \operatorname{TV}\left(u^{n}\right)\right. \\
& +\tau \alpha e^{\tau \beta}\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}} \operatorname{TV}\left(w^{n+1}\right) \tag{3.19}\\
& \left.+3 \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}}\left[1+\exp \left(3 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\right]\right\}
\end{align*}
$$

Collecting the estimates (3.19) and (3.7) of TV $\left(u^{n+1}\right)$ and TV $\left(w^{n+1}\right)$, we obtain now

$$
\begin{aligned}
\operatorname{TV}\left(u^{n+1}\right) & +\operatorname{TV}\left(w^{n+1}\right) \\
\leq & {\left[e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}} \exp \left(6 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)}\right.} \\
& +\left(1+\tau \alpha e^{\tau \beta} e^{\tau \alpha}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \tau e^{\tau \gamma} e^{\left.\tau_{p} \delta\left\|u^{n}\right\|_{\mathbf{L}^{\infty}} \delta\left\|w^{n}\right\|_{\mathbf{L}^{\infty}}\right] \operatorname{TV}\left(u^{n}\right)} \\
& +e^{\tau \gamma}\left(1+\tau \alpha e^{\tau \beta} e^{\left.\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\left\|U^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \mathrm{TV}\left(w^{n}\right)}\right. \\
& +3 \tau e^{\tau \alpha}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}}\left[1+\exp \left(3 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\right] \\
\leq & e^{\tau K_{1}} \mathrm{TV}\left(u^{n}\right)+e^{\tau K_{2}} \mathrm{TV}\left(w^{n}\right)+\tau K_{3} e^{\tau K_{4}},
\end{aligned}
$$

where $K_{l}, l=1, \ldots, 4$ are bounded functions depending on various norm of u^{n}, w^{n+1} and $\partial_{u} f$ as well as on all constants $\alpha, \beta, \gamma, \delta$ and K, defined in (\mathbf{v}). Defining $\mathcal{K}_{3}=\max \left\{K_{1}, K_{2}\right\}$, $\mathcal{K}_{4}:=K_{3}$ and $\mathcal{K}_{5}:=K_{4}$ and using induction over n yields now

$$
\mathrm{TV}\left(u^{n}\right)+\operatorname{TV}\left(w^{n}\right) \leq e^{n \tau \mathcal{K}_{3}}\left[\operatorname{TV}\left(u^{o}\right)+\operatorname{TV}\left(w^{o}\right)+\frac{\mathcal{K}_{4}}{\mathcal{K}_{3}} e^{\tau \mathcal{K}_{5}}\right]
$$

This completes the proof.

3.4 Lipschitz continuity in time

Lemma 3.5. Let assumptions (f), (v) and (0) hold. Then for all n the approximate solution $\left(u^{n}, w^{n}\right)$ constructed by algorithm (\mathbf{A}) is such that, for any $n_{1}, n_{2} \in \mathbb{N}$ with $n_{1} \tau \leq T$ and $n_{2} \tau \leq T$,

$$
\left\|u^{n_{1}}-u^{n_{2}}\right\|_{\mathbf{L}^{1}} \leq\left|n_{1}-n_{2}\right| \tau \mathcal{K}_{6}(T, \tau)
$$

where the function $\mathcal{K}_{6}(T, \tau)$ is uniformly bounded for all $n \leq \max \left\{n_{1}, n_{2}\right\}$ and depends on $\alpha, \beta, \gamma, \delta, K$, on various norms of $u, w, \partial_{u} f$, on the total variation of the initial datum and on the map C defined in (v).

Proof. Due to Lemma 3.2, u^{n} is uniformly bounded by some constant depending on T. Assumptions (f) and (v) guarantee therefore the Lipschitz continuity of the numerical flux function F defined in 2.4 d . Using 2.4 e , 2.4 f) and (3.18), we can thus conclude

$$
\left\|U^{n+1}-u^{n}\right\|_{\mathbf{L}^{1}} \leq \sum_{i, j} h^{2}\left(\left|U_{i, j}^{n+1}-U_{i, j}^{n+1 / 2}\right|+\left|U_{i, j}^{n+1 / 2}-u_{i, j}^{n}\right|\right)
$$

$$
\begin{aligned}
\leq & \tau \sum_{i, j} h\left[\left|F\left(U_{i, j+1}^{n+1 / 2}, U_{i, j}^{n+1 / 2},(n+1) \tau, x_{i, j+1 / 2}\right)-F\left(U_{i, j}^{n+1 / 2}, U_{i, j-1}^{n+1 / 2},(n+1) \tau, x_{i, j-1 / 2}\right)\right|\right. \\
& \left.+\left|F\left(u_{i+1, j}^{n}, u_{i, j}^{n},(n+1) \tau, x_{i+1 / 2, j}\right)-F\left(u_{i, j}^{n}, u_{i-1, j}^{n},(n+1) \tau, x_{i-1 / 2, j}\right)\right|\right] \\
\leq & \tau \cdot 2 L \sum_{i, j} h\left(\left|U_{i, j+1}^{n+1 / 2}-U_{i, j}^{n+1 / 2}\right|+\left|u_{i+1, j}^{n}-u_{i, j}^{n}\right|\right. \\
& \left.+\left|v_{i+1 / 2, j}^{n+1}-v_{i-1 / 2, j}^{n+1}\right|+\left|v_{i, j+1 / 2}^{n+1}-v_{i, j-1 / 2}^{n+1}\right|\right) \\
\leq & \tau \cdot 2 L\left(\left(2+3 \tau K\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right) \operatorname{TV}\left(u^{n}\right)+\left\|\nabla v^{n+1}\right\|_{\mathbf{L}^{1}}\right. \\
& \left.+3 \tau\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}} C\left(\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}\right)\left\|u^{n}\right\|_{\mathbf{L}^{1}}\right),
\end{aligned}
$$

where L denotes the Lipschitz constant of F. Including the source term and defining T such that $\max \left\{n_{1}, n_{2}\right\} \tau \leq T<\infty$, we obtain by (2.4g)

$$
\begin{aligned}
\left\|u^{n+1}-u^{n}\right\|_{\mathbf{L}^{1}} & \leq \sum_{i, j} h^{2}\left|U_{i, j}^{n+1}-u_{i, j}^{n}\right|+\tau \sum_{i, j} h^{2}\left|U_{i, j}^{n+1}\right|\left|\left(\alpha w_{i, j}^{n+1}-\beta\right)\left(1+\frac{\tau}{2}\left(\alpha w_{i, j}^{n+1}-\beta\right)\right)\right| \\
& \leq\left\|U^{n+1}-u^{n}\right\|_{\mathbf{L}^{1}}+\tau \alpha\left\|U^{n+1}\right\|_{\mathbf{L}^{1}}\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}} e^{\tau \alpha\left\|w^{n+1}\right\|_{\mathbf{L}^{\infty}}} \\
& \leq \tau \mathcal{K}_{6}(T, \tau),
\end{aligned}
$$

where \mathcal{K}_{6} is uniformly bounded for all $n \leq \max \left\{n_{1}, n_{2}\right\}$ and all finite τ.
Remark 3.6. Using more refined estimates, the \mathbf{L}^{1} bound for ∇v, necessary in the proof above, can be substituted by the \mathbf{L}^{∞} bound on ∇v widely used in the proofs of Lemmas 3.13.4. This allows to skip the assumption of ∇v being bounded in \mathbf{L}^{1} in (\mathbf{v}).

4 Convergence

For each mesh width h, we define $N_{\tau}:=\lfloor T / \tau\rfloor$ and

$$
\begin{equation*}
u_{h}=\sum_{n=0}^{N_{\tau}} \sum_{i, j} u_{i, j}^{n} \chi_{i, j}^{n}, \quad w_{h}=\sum_{n=0}^{N_{\tau}} \sum_{i, j} w_{i, j}^{n} \chi_{i, j}^{n}, \tag{4.1}
\end{equation*}
$$

where $\chi_{i, j}^{n}$ is the characteristic function of $I_{i, j} \times\left[n \tau,(n+1) \tau\left[\right.\right.$, respectively $I_{i, j} \times\left[N_{\tau} \tau, T\right]$ for the last time step, with $I_{i, j}$ defined as in (2.3).

Theorem 4.1. Let assumptions (f), (v) and (0) hold and fix $0 \leq T<\infty$. Let h_{ℓ} be a sequence of grid sizes such that $\lim _{\ell \rightarrow \infty} h_{\ell}=0$ and fix $\lambda>0$ such that the sequence $\tau_{\ell}:=\lambda h_{\ell}$ fulfills (2.1) for all ℓ. Let $u_{h_{\ell}}$ and $w_{h_{\ell}}$ be given as in 4.1]. Then the sequence ($u_{h_{\ell}}, w_{h_{\ell}}$) converges to the unique weak solution (u, w) of (1.1). More precisely, $\left(u_{h_{\ell}}\right)$ converges in $\mathbf{L}_{\text {loc }}^{1}$, while $\left(w_{h_{\ell}}\right)$ converges weakly* in \mathbf{L}^{∞}.

Proof. Thanks to Lemma 3.2

$$
\begin{aligned}
\left\|w_{h}\right\|_{\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)} & \leq e^{T \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)} \\
\left\|u_{h}\right\|_{\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)} & \leq\left\|u^{o}\right\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)} \exp \left(\left(2 \mathcal{K}_{1}+\mathcal{K}_{2}\right) \frac{1}{\gamma} e^{T \gamma}\right)
\end{aligned}
$$

so that the sequence $\left(u_{h}, w_{h}\right)$ is bounded in $\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}^{2}\right)$. This implies the existence of a subsequence $\left(u_{h_{k}}, w_{h_{k}}\right)$ that converges weakly* in $\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}^{2}\right)$ to (u, w). Thanks to Lemma 3.3, $\left(u_{h_{k}}\right)$ is also uniformly bounded in $\mathbf{L}^{1}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$.
Furthermore, Lemma 3.4 and Lemma 3.5 yield a uniform bound for the space-time total variation of $u_{h_{k}}$, defined by

$$
\mathrm{TV}_{T}\left(u_{h_{k}}\right)=\sum_{n=0}^{N_{\tau}}\left[\tau \operatorname{TV}\left(u_{h_{k}}^{n}\right)+\left\|u_{h_{k}}^{n+1}-u_{h_{k}}^{n}\right\|_{\mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)}\right]
$$

We can thus apply [10, Theorem 1.7 .3$]$ and deduce the existence of $\bar{u} \in \mathbf{B V}_{l o c}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$ and a subsequence of $\left(u_{h_{k}}\right)$ (still denoted by $\left.\left(u_{h_{k}}\right)\right)$ such that

$$
\begin{align*}
& u_{h_{k}} \rightarrow \bar{u} \quad \text { in } \quad \mathbf{L}_{l o c}^{1}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right) \tag{4.2}\\
& u_{h_{k}}(t, x, y) \rightarrow \bar{u}(t, x, y) \quad \text { for a. e. }(t, x, y) \in[0, T] \times \mathbb{R}^{2} \tag{4.3}
\end{align*}
$$

Due to the uniqueness of the limit \bar{u} in \mathbf{L}^{1}, shown in [8] (see also Remark 1.1), we can conclude the convergence of the whole sequence $\left(u_{h_{k}}\right)$ to \bar{u}.
From (4.3), it follows easily that $u_{h_{k}}$ converges to \bar{u} also in $\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$. Since strong convergence implies weak* convergence, we obtain that $u_{h_{k}} \xrightarrow{*} \bar{u}$ in $\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$. Due to the uniqueness of the weak* limit, we have that $u=\bar{u}$.
By (f), the continuity of the function f implies now that

$$
\begin{equation*}
f\left(u_{h}\right) \rightarrow f(u) \tag{4.4}
\end{equation*}
$$

Note that Lemma 3.2 yields also

$$
\left\|w_{h}(t, \cdot, \cdot)\right\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)} \leq e^{T \gamma}\left\|w^{o}\right\|_{\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)} \quad \text { for a. e. } t \in[0, T]
$$

As above we can thus find a subsequence that converges weakly* in $\mathbf{L}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ for a. e. $t \in$ $[0, T]$ and due to the uniqueness of the weak* limit, we have

$$
w_{h_{k}}(t, \cdot, \cdot) \stackrel{*}{\rightharpoonup} w(t, \cdot, \cdot) .
$$

Recalling that $\eta \in \mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$, it is now easy to prove that $\left(w_{h_{k}} * \eta\right)(t, \cdot, \cdot)$ converges (strongly) to $(w * \eta)(t, \cdot, \cdot)$ in $\mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ for a. e. $t \in[0, T]$. By (\mathbf{v}), and in particular thanks to the fact that the Lipschitz constant of v is bounded, we obtain

$$
\begin{equation*}
v\left(w_{h_{k}} * \eta\right) \rightarrow v(w * \eta) \quad \text { in } \mathbf{L}^{1}\left(\mathbb{R}^{2} ; \mathbb{R}\right) \quad \text { for a. e. } t \in[0, T] \tag{4.5}
\end{equation*}
$$

To prove that (u, w) are weak solutions of (1.1), we choose test functions $\psi \in \mathbf{C}_{c}^{1}\left([0, T], \mathbf{C}_{c}^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)\right)$ and $\varphi \in \mathbf{C}_{c}^{1}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$. Define now $\psi_{i, j}^{n, l}:=\psi\left(t^{n, l}, x_{i, j}\right)$, where $t^{n, l}=n \tau+l \tau_{p}$, and

$$
\psi_{h}=\sum_{n=0}^{N-1} \sum_{i, j} \sum_{l=0}^{m-1} \psi_{i, j}^{n, l} \chi_{i, j}^{n, l}
$$

$$
\begin{aligned}
\delta_{t} \psi_{h} & =\sum_{n=0}^{N-1} \sum_{i, j} \sum_{l=0}^{m-1} \frac{\psi_{i, j}^{n, l}-\psi_{i, j}^{n, l-1}}{\tau_{p}} \chi_{i, j}^{n, l} \\
\Delta_{h} \psi_{h} & =\sum_{n=0}^{N-1} \sum_{i, j} \sum_{l=0}^{m-1} \frac{1}{h^{2}}\left(\psi_{i+1, j}^{n, l}+\psi_{i-1, j}^{n, l}+\psi_{i, j+1}^{n, l}+\psi_{i, j-1}^{n, l}-4 \psi_{i, j}^{n, l}\right) \chi_{i, j}^{n, l}
\end{aligned}
$$

Here, $\chi_{i, j}^{n, l}$ is the characteristic function of $I_{i, j} \times\left[t^{n, l}, t^{n, l+1}\left[\right.\right.$, with $I_{i, j}$ defined as in 2.3). Note that $\delta_{t} \psi_{h}$ and $\Delta_{h} \psi_{h}$ are discrete versions of time derivative and Laplace operator. Due to the definition of ψ_{h} and its discrete derivatives, we have strong convergence in $\mathbf{L}^{\infty}([0, T] \times \mathbb{R} ; \mathbb{R})$ for $\psi_{h} \rightarrow \psi$ as well as for the derivatives $\delta_{t} \psi_{h} \rightarrow \partial_{t} \psi$ and $\Delta_{h} \psi_{h} \rightarrow \Delta \psi$ as $h \rightarrow 0$.
Multiply (2.4b) by $h^{2} \psi_{i, j}^{n, l}$ and sum over n, i, j and l to obtain

$$
\begin{aligned}
0= & \tau_{p} h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \sum_{l=0}^{m-1} W_{i, j}^{n, l}\left(\frac{\psi_{i, j}^{n, l}-\psi_{i, j}^{n, l-1}}{\tau_{p}}+\mu \frac{\psi_{i+1, j}^{n, l}+\psi_{i-1, j}^{n, l}+\psi_{i, j+1}^{n, l}+\psi_{i, j-1}^{n, l}-4 \psi_{i, j}^{n, l}}{h^{2}}\right) \\
& +\tau_{p} h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \sum_{l=0}^{m-1} \psi_{i, j}^{n, l}\left(\gamma-\delta u_{i, j}^{n}\right)\left[1+\frac{\tau_{p}}{2}\left(\gamma-\delta u_{i, j}^{n}\right)\right] \frac{W_{i+1, j}^{n, l}+W_{i-1, j}^{n, l}+W_{i, j+1}^{n, l}+W_{i, j-1}^{n, l}}{4} .
\end{aligned}
$$

Using the above convergence results, we can conclude

$$
\int_{0}^{T} \int_{\mathbb{R}^{2}} w \partial_{t} \psi+\mu w \Delta \psi+w(\gamma-\delta u) \psi \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=0
$$

Analogously as above we define

$$
\begin{aligned}
\psi_{h}=\sum_{n=0}^{N-1} \sum_{i, j} \varphi_{i, j}^{n} \chi_{i, j}^{n} & \delta_{t} \varphi_{h} & =\sum_{n=0}^{N-1} \sum_{i, j} \frac{\varphi_{i, j}^{n}-\varphi_{i, j}^{n-1}}{\tau} \chi_{i, j}^{n} \\
\delta_{x}^{+} \varphi_{h}=\sum_{n=0}^{N-1} \sum_{i, j} \frac{\varphi_{i+1, j}^{n}-\varphi_{i, j}^{n}}{h} \chi_{i, j}^{n} & \delta_{x}^{-} \varphi_{h} & =\sum_{n=0}^{N-1} \sum_{i, j} \frac{\varphi_{i, j}^{n}-\varphi_{i-1, j}^{n}}{h} \chi_{i, j}^{n} \\
\delta_{y}^{+} \varphi_{h}=\sum_{n=0}^{N-1} \sum_{i, j} \frac{\varphi_{i, j+1}^{n}-\varphi_{i, j}^{n}}{h} \chi_{i, j}^{n} & \delta_{y}^{-} \varphi_{h} & =\sum_{n=0}^{N-1} \sum_{i, j} \frac{\varphi_{i, j}^{n}-\varphi_{i, j-1}^{n}}{h} \chi_{i, j}^{n}
\end{aligned}
$$

and recall that we have $\varphi_{h} \rightarrow \varphi$ and $\delta_{\ell}^{ \pm} \varphi_{h} \rightarrow \partial_{\ell} \varphi$ in $\mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$ for $h \rightarrow 0$ and $\ell=t, x, y$. Multiplying (2.4e-2.4g) by $h^{2} \varphi_{i, j}^{n}$ and summing over all n, i and j we obtain

$$
\begin{aligned}
0= & \tau h^{2} \sum_{n=0}^{N-1} \sum_{i, j} u_{i, j}^{n} \frac{\varphi_{i, j}^{n}-\varphi_{i, j}^{n-1}}{\tau}+\tau h^{2} \sum_{n=0}^{N-1} \sum_{i, j}\left(\alpha w_{i, j}^{n}-\beta\right) \varphi_{i, j}^{n} U_{i, j}^{n+1} \\
& +\tau h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \frac{1}{2} f\left(u_{i, j}^{n}\right)\left(v_{i-1 / 2, j}^{n+1} \frac{\varphi_{i, j}^{n}-\varphi_{i-1, j}^{n}}{h}+v_{i+1 / 2, j}^{n+1} \frac{\varphi_{i+1, j}^{n}-\varphi_{i, j}^{n}}{h}\right) \\
& +\tau h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \frac{1}{2} f\left(U_{i, j}^{n+1 / 2}\right)\left(v_{i, j-1 / 2}^{n+1} \frac{\varphi_{i, j}^{n}-\varphi_{i, j-1}^{n}}{h}+v_{i, j+1 / 2}^{n+1} \frac{\varphi_{i, j+1}^{n}-\varphi_{i, j}^{n}}{h}\right) \\
& +h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \frac{h^{2}}{4}\left(u_{i, j}^{n} \frac{\varphi_{i-1, j}^{n}-2 \varphi_{i, j}^{n}+\varphi_{i+1, j}^{n}}{h^{2}}+U_{i, j}^{n+1 / 2} \frac{\varphi_{i, j-1}^{n}-2 \varphi_{i, j}^{n}+\varphi_{i, j+1}^{n}}{h^{2}}\right)
\end{aligned}
$$

$$
+\tau h^{2} \sum_{n=0}^{N-1} \sum_{i, j} \frac{\tau}{2}\left(\alpha w_{i, j}^{n}-\beta\right)^{2} \varphi_{i, j}^{n} U_{i, j}^{n+1}
$$

Recall that w_{h} is uniformly bounded in \mathbf{L}^{∞} for all h. This directly implies that also w_{h}^{2} is uniformly bounded in \mathbf{L}^{∞} and thus converges weakly* to some function $g \in \mathbf{L}^{\infty}\left([0, T] \times \mathbb{R}^{2} ; \mathbb{R}\right)$. Due to the smoothness of v and the convergence of u_{h}, w_{h}, w_{h}^{2} and φ_{h}, we can thus deduce that the limit functions u, w and φ fulfill

$$
\int_{0}^{T} \int_{\mathbb{R}^{2}} u \partial_{t} \varphi+f(u) v \cdot \operatorname{div}(\varphi)+(\alpha w-\beta) \varphi \mathrm{d} x \mathrm{~d} y \mathrm{~d} t=0
$$

We proved that (u, w) is a weak solution to (1.1). Since by [8] and Remark 1.1 we know that the weak solution to (1.1) is unique, (u, w) is the unique weak solution.

5 Numerical Examples

To conclude the paper, we present some numerical examples that show on one hand the convergence of the scheme and on the other hand some qualitative properties of the system (1.1). In all examples, we make the following choice for the vector field v :

$$
\begin{equation*}
\boldsymbol{v}(w)=\kappa \frac{\nabla(w * \eta)}{\sqrt{1+\|\nabla(w * \eta)\|^{2}}} \tag{5.1}
\end{equation*}
$$

where the compactly supported kernel function η is chosen as follows

$$
\begin{equation*}
\eta(x, y)=\hat{\eta}\left(\ell^{2}-\|(x, y)\|^{2}\right)^{3} \chi_{B(0, \ell)} \quad \text { with } \hat{\eta} \in \mathbb{R}^{+} \text {such that } \iint_{\mathbb{R}^{2}} \eta(x, y) \mathrm{d} x \mathrm{~d} y=1 \tag{5.2}
\end{equation*}
$$

The positive parameter ℓ represents the maximal distance at which predators u feel the presence of prey w. It can be easily verified that (5.1) fulfills the assumption (v).
We compute the numerical solution on the domain

$$
D=[0,0.5] \times[0,1]
$$

and consider the following sizes of the space mesh:

$$
h=0.005, \quad h=0.0025, \quad h=0.00125
$$

Since no exact solutions are available, we use the numerical solution computed for $h=$ 0.000625 as reference solution (u, w).

Let $\left(u_{h}, w_{h}\right)$ be the numerical solution associated to space mesh size h. The error is computed in the following way

$$
\begin{align*}
\left\|u_{h}-u\right\|_{\mathbf{L}^{1}} & =\sup _{t \in[0, T]}\left\|u_{h}(t)-u(t)\right\|_{\mathbf{L}^{1}(D ; \mathbb{R})} \\
\left\|w_{h}-w\right\|_{\mathbf{L}^{1}} & =\sup _{t \in[0, T]}\left\|w_{h}(t)-w(t)\right\|_{\mathbf{L}^{1}(D ; \mathbb{R})} \tag{5.3}
\end{align*}
$$

More precisely, we average the reference solution (u, w) on the coarse grid in order to compare it to the solution $\left(u_{h}, w_{h}\right)$.

We define EOC_{u}, respectively EOC_{w}, the experimental order of convergence for u, respectively for w, computed as follows:

$$
\begin{equation*}
\operatorname{EOC}_{u}=\frac{\log \frac{\left\|u_{1}-u\right\|_{\mathbf{L}^{1}}}{\left\|u_{2}-u\right\|_{\mathbf{L}^{1}}}}{\log \frac{h_{1}}{h_{2}}}, \quad \quad \operatorname{EOC}_{w}=\frac{\log \frac{\left\|w_{1}-w\right\|_{\mathbf{L}^{1}}}{\left\|w_{2}-w\right\|_{\mathbf{L}^{1}}}}{\log \frac{h_{1}}{h_{2}}}, \tag{5.4}
\end{equation*}
$$

where $\left(u_{1}, w_{1}\right),\left(u_{2}, w_{2}\right)$ are solutions with grid size h_{1} and h_{2} respectively.

5.1 Example 1

In our first example, we consider the test case proposed in [8, Section 3.1], where the parameters are chosen as

$$
\begin{array}{rlll}
\alpha=2 & \beta=1 & \kappa=1 & \\
\gamma=1 & \delta=2 & \mu=0.5 & \ell=0.15 \tag{5.5}
\end{array}
$$

with the following initial datum on D

$$
\begin{align*}
& u_{o}(x, y)=4 \chi_{A}(x, y) \\
& w_{o}(x, y)=3(2 y-1) \max \{0, h(x, y)\} \chi_{B}(x, y) \tag{5.6}
\end{align*}
$$

where

For this example we consider to hyperbolic flux functions
1a. $f(u)=u$, as in [8];
1b. $f(u)= \begin{cases}\frac{u^{2}}{1728}(10-u)^{3} & \text { if } 0 \leq u \leq 10 \\ 0 & \text { elsewhere. }\end{cases}$

It is easy to see that both functions fulfill assumption (f). The constants in case $\mathbf{1 b}$ are related to the initial datum. Indeed, this choice guarantees that $f(4)=2$ is the maximal value of f. Note that $\left\|\partial_{u} f\right\|_{\mathbf{L}^{\infty}}=5(3+8 \sqrt{6}) / 144 \approx 0.78458 \leq 1$.

To compute the convolution without boundary effects, we compute the solution on a slightly bigger domain than D. More precisely, we enlarge the computational domain D by adding in all directions a constant quantity, related to the size of the support of the kernel function η. In particular, we add enough ghost cells so that, when computing the convolution for a point on the boundary of D, the whole support of the kernel function η is inside the extended computational domain.

The boundary conditions for u and w are chosen to remain equal to the initial datum all along the boundary of this extended computational domain. For the balance law, this
means to assume a constant value outside the computational domain and compute the flux accordingly. Concerning the parabolic equation, this choice of boundary conditions amounts to assume that the displayed solution is part of a solution defined on all \mathbb{R}^{2} that gives constant inflow into the computational domain.

The solution is computed up to time $T_{\max }=0.3$ in Example 1a and up to time $T_{\max }=0.5$ in Example 1b.

In Table 1 and 2 we report the values of the \mathbf{L}^{1}-error for the different mesh sizes and the corresponding experimental order of convergence for flux function 1a and $\mathbf{1 b}$ respectively. Figure 1 displays the error in logarithmic scale. The lines obtained connecting the values for u, respectively w, can be easily compared with the line with slope 1 , that represents the order of convergence we expect theoretically for smooth solutions.

\boldsymbol{h}	$\left\\|\boldsymbol{u}_{\boldsymbol{h}}-\boldsymbol{u}\right\\|_{\mathbf{L}^{\mathbf{1}}}$	$\mathrm{EOC}_{\boldsymbol{u}}$	$\left\\|\boldsymbol{w}_{\boldsymbol{h}}-\boldsymbol{w}\right\\|_{\mathbf{L}^{\mathbf{1}}}$	EOC_{w}
0.005	$5.6 e^{-1}$	-	$3.03 e^{-1}$	-
0.0025	$2.75 e^{-1}$	1.03	$1.14 e^{-1}$	1.41
0.00125	$1.06 e^{-1}$	1.38	$3.42 e^{-2}$	1.74

Table 1: \mathbf{L}^{1}-error computed as in (5.3) and experimental order of convergence computed as in (5.4) for the solution to (1.1)-5.1-5.5 with initial datum (5.6) and flux function f as in $\mathbf{1 a}$.

\boldsymbol{h}	$\left\\|\boldsymbol{u}_{\boldsymbol{h}}-\boldsymbol{u}\right\\|_{\mathbf{L}^{1}}$	EOC_{u}	$\left\\|\boldsymbol{w}_{\boldsymbol{h}}-\boldsymbol{w}\right\\|_{\mathbf{L}^{1}}$	$\mathrm{EOC}_{\boldsymbol{w}}$
0.005	$5.79 e^{-1}$	-	$4.3 e^{-1}$	-
0.0025	$2.73 e^{-1}$	1.08	$1.86 e^{-1}$	1.22
0.00125	$1.01 e^{-1}$	1.43	$6.37 e^{-2}$	1.54

Table 2: \mathbf{L}^{1}-error computed as in (5.3) and experimental order of convergence computed as in 5.4 for the solution to (1.1) 5.1 -5.5 with initial datum (5.6) and flux function f as in $\mathbf{1 b}$.

5.2 Example 2

In this example, we modify the treatment of the boundary and impose the following Neumann boundary conditions:

$$
\left.\frac{\partial u}{\partial n}\right|_{\partial D}=\left.0 \quad \frac{\partial w}{\partial n}\right|_{\partial D}=0
$$

where ∂D represents the boundary of the domain $D=[0,0.5] \times[0,1]$ and n is the interior unit normal vector.

We consider

$$
\begin{equation*}
f(u)=u(1-u) \tag{5.7}
\end{equation*}
$$

Figure 1: Plot of the \mathbf{L}^{1}-error the solution to 1.1 - 5.1 - 5.5 with initial datum 5.6 : case $\mathbf{1 a}$ on the left, case 1b on the right. The dotted line has slope 1 and represents the order of convergence we expect theoretically.
and it is easy to see that it fulfills the assumption (f). We set

$$
\begin{array}{llll}
\alpha=2 & \beta=0.8 & \kappa=1 & \\
\gamma=0.8 & \delta=24 & \mu=0.1 & \ell=0.25 \tag{5.8}
\end{array}
$$

with the following initial datum on D

$$
\begin{align*}
& u_{o}(x, y)=0.05\left(5 \chi_{E}(x, y)+4 \chi_{F}(x, y)\right) \\
& w_{o}(x, y)=0.2 \tag{5.9}
\end{align*}
$$

where

The solution is computed up to time $T_{\max }=4$ on a mesh of width $h=0.00125$.
In this example we can clearly see the typical Lotka-Volterra effect, see Figure 2, where the evolution of the total mass of predators and preys in time is shown. One population, in this case predators u, apparently almost disappear, then its mass rises again, due to feeding on prey and to newborns. At the same time the other population grows, untill its mass reaches a sort of maximum point: from that instant on, predators eating prey produce a decrease in prey mass. However, when the total mass of prey is very low, predators have nothing left to eat, hence they decrease, while prey are free to increase, and the whole cycle begins again.

References

[1] A. Aggarwal, R. M. Colombo, and P. Goatin. Nonlocal systems of conservation laws in several space dimensions. Preprint.
[2] P. Amorim, R. M. Colombo, and A. Teixeira. On the numerical integration of scalar nonlocal conservation laws. ESAIM: Mathematical Modelling and Numerical Analysis, online first, 2014.

Figure 2: The typical Lotka-Volterra effect obtained for the solution to $1.10-(5.1)-(5.7)-(5.8)$ with initial datum 5.9) and a mesh of width $h=0.00125$. The graphs display the integral of u (left), respectively w (right), representing the total mass of predators and prey.
[3] R. Arditi and L. Ginzburg. Coupling in predator-prey dynamics: ratio dependence. Journal of Theoretical Biology, 139:311-326, 1989.
[4] M. S. Bartlett. On theoretical models for competitive and predatory biological systems. Biometrika, 44:27-42, 1957.
[5] G. I. Bell. Mathematical model of clonal selection and antibody production. J. theor. Biol., 29:191-232, 1970.
[6] C. Chainais-Hillairet. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. M2AN Math. Model. Numer. Anal., 33(1):129156, 1999.
[7] C. Chainais-Hillairet and S. Champier. Finite volume schemes for nonhomogeneous scalar conservation laws: error estimate. Numer. Math., 88(4):607-639, 2001.
[8] R. M. Colombo and E. Rossi. Hyperbolic predators vs. parabolic prey. Commun. Math. Sci., to appear.
[9] M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comp., 34(149):1-21, 1980.
[10] C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2005.
[11] R. Eymard, T. Gallouët, M. Ghilani, and R. Herbin. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal., 18:563594, 1998.
[12] R. M. Goodwin. A growth cycle. In C. H. Feinstein, editor, Socialism, Capitalism and Economic Growth, pages 54-59. Cambridge University Press, 1967.
[13] C. S. Holling. The components of predation as revealed by a study of small-mammal predation of the european pine sawfly. The Canadian Entomologist, 91:293-320, 1959.
[14] K. H. Karlsen and J. D. Towers. Convergence of the Lax-Friedrichs scheme and stability for conservation laws with a discontinous space-time dependent flux. Chinese Ann. Math. Ser. B, 25(3):287-318, 2004.
[15] A. J. Lotka. Elements of Physical Biology. Williams and Wilkins, 1925.
[16] G. H. Pimbley, Jr. Periodic solutions of predator-prey equations simulating an immune response. I. Math. Biosci., 20:27-51, 1974.
[17] V. Volterra. Variazioni e fluttuazioni del numero d'individui in specie animali conviventi. Mem. Acad. Lincei Roma, 2:31-113, 1926.

Elena Rossi
University of Milano-Bicocca
E-Mail: e.rossi50@campus.unimib.it
Veronika Schleper
Pfaffenwaldring 57
70569 Stuttgart
Germany
E-Mail: veronika.schleper@mathematik.uni-stuttgart.de
WWW: http://www.ians.uni-stuttgart.de/am/mitarbeiter/schleper/

Erschienene Preprints ab Nummer 2012-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2015-005 Hinrichs, A.; Markhasin, L.; Oettershagen, J.; Ullrich, T.: Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions
2015-004 Kutter, M.; Rohde, C.; Sändig, A.-M.: Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with Elasticity
2015-003 Rossi, E.; Schleper, V.: Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
2015-002 Döring, M.; Györfi, L.; Walk, H.: Exact rate of convergence of kernel-based classification rule
2015-001 Kohler, M.; Müller, F.; Walk, H.: Estimation of a regression function corresponding to latent variables
2014-021 Neusser, J.; Rohde, C.; Schleper, V.: Relaxed Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition
2014-020 Kabil, B.; Rohde, C.: Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension
2014-019 Bilyk, D.; Markhasin, L.: BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension
2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for generators whose commutators are scalar
2014-017 Margolis, L.: A Sylow theorem for the integral group ring of $\operatorname{PSL}(2, q)$
2014-016 Rybak, I.; Magiera, J.; Helmig, R.; Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems
2014-015 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: Optimal Grading of the Newest Vertex Bisection and H^{1}-Stability of the L_{2}-Projection
2014-014 Kohler, M.; Krzyżak, A.; Walk, H.: Nonparametric recursive quantile estimation
2014-013 Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation using importance sampling
2014-012 Györfi, L.; Ottucsák, G.; Walk, H.: The growth optimal investment strategy is secure, too.
2014-011 Györfi, L.; Walk, H.: Strongly consistent detection for nonparametric hypotheses
2014-010 Köster, I.: Finite Groups with Sylow numbers $\left\{q^{x}, a, b\right\}$
2014-009 Kahnert, D.: Hausdorff Dimension of Rings
2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM
2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties

2014-006 Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of Properties
2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution Equations
2014-004 Markhasin, L.: $\quad L_{2}$ - and $S_{p, q}^{r} B$-discrepancy of (order 2) digital nets
2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness

2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs

2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods
2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension
2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killling spinors on Einstein manifolds
2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems
2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations
2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups
2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure
2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces
2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate of the minimum mean squared error
2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints
2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex hyperbolic spaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

[^0]: *University of Milano-Bicocca, Italy e.rossi50@campus.unimib.it
 ${ }^{\dagger}$ University of Stuttgart, Germany veronika.schleper@mathematik.uni-stuttgart.de

