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HYPERPOLAR ACTIONS ON REDUCIBLE SYMMETRIC

SPACES

ANDREAS KOLLROSS

Abstract. We study hyperpolar actions on reducible symmetric spaces of the

compact type. Our main result is that an indecomposable hyperpolar action
on a symmetric space of the compact type is orbit equivalent to a Hermann

action or of cohomogeneity one.

1. Introduction and Main Results

An isometric action of a compact Lie group on a Riemannian manifold is called
polar if there exists an immersed submanifold which meets every orbit such that
the orbits intersect the submanifold orthogonally at each of its points. Such a
submanifold is called a section of the Lie group action. If there is a section which
is flat in its induced Riemannian metric, then the action is called hyperpolar.

Polar and hyperpolar actions have been studied by Conlon [1], Szenthe [17],
Palais and Terng [16]. The problem of classifying hyperpolar actions on compact
symmetric spaces was posed by Heintze, Palais, Terng and Thorbergsson in [7].
Natural examples for hyperpolar actions are given by the isotropy actions and
isotropy representations of symmetric spaces. Moreover, actions of cohomogeneity
one, i.e. actions whose orbits of maximal dimension are hypersurfaces, and the so-
called Hermann [9] actions, see Section 5 for a definition, are well-known examples
of hyperpolar actions. The main result of this article is the following.

Theorem A. An indecomposable hyperpolar action of cohomogeneity greater than
one on a Riemannian symmetric space of compact type is orbit equivalent to a
Hermann action.

In the special case where the symmetric space is irreducible, this follows from
the classification of hyperpolar actions obtained by the author in [10]. Note that
the indecomposability of a hyperpolar action does not imply that the space acted
on is irreducible, as was pointed out in [6]. See Section 3 on how to construct
indecomposable actions with arbitrarily many irreducible factors, see Section 9 for
further examples. Theorem A implies the following splitting theorem for hyperpolar
actions.

Theorem B. Assume the compact connected Lie group H acts hyperpolarly on
the Riemannian symmetric space M of the compact type. Then, possibly after
replacing H by a larger orbit equivalent group, there are splittings H = H1×· · ·×Hn

and M = M1×· · ·×Mn such that the following holds. The H-action on M is orbit
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equivalent to the product of all Hi-actions on the Mi. For each i ∈ {1, . . . , n} the
action of Hi on Mi is one of the following:

(i) transitive, in which case Mi is irreducible;
(ii) indecomposable and of cohomogeneity one;
(iii) an indecomposable Hermann action.

The proof of Theorems A and B is based on a partial classification of hyperpolar
actions on products of two irreducible compact symmetric spaces. See [12], [13],
[14] for similar recent results on polar actions with non-flat sections. See [2] for a
survey on polar and hyperpolar actions.

This article is organized as follows. After presenting some preliminary notions
and facts, a basic construction for actions on compact symmetric spaces is intro-
duced in Section 3. In Section 4, some criteria for hyperpolarity, in particular for
actions on products of symmetric spaces, are given. In Section 5, Hermann actions
are defined and indecomposable Hermann actions are classified. In Section 6, the
results of Onǐsčik [15] on transitive actions are reviewed; they are needed in Sec-
tion 7, where our main result is proved in the special case of two irreducible factors.
In Section 8, the classification of indecomposable hyperpolar actions from the pre-
vious section is generalized to spaces with arbitrarily many irreducible factors, thus
proving Theorem A. In Section 9, examples of indecomposable cohomogeneity one
actions, which are not orbit equivalent to Hermann actions, are given. Some open
questions are stated in the last section.

2. Preliminaries

Let G be a connected Lie group and let K ⊆ G be a closed subgroup. The pair
(G,K) is called a symmetric pair if there exists an involutive automorphism σ of G
such that (Gσ)0 ⊆ K ⊆ Gσ, where we denote by Gσ the set of fixed points of σ
and by (Gσ)0 its identity component. If (G,K) is a symmetric pair, we say that K

is a symmetric subgroup of G. Let G̃ be the universal cover of G. We say that K
is a locally symmetric subgroup of G if there exists a symmetric subgroup K̃ ⊂ G̃
such that K0 = p(K̃)0, where p : G̃→ G is the covering map.

We use the term subaction to refer to the restriction of a Lie group action G×
M →M to H×M , where H ⊆ G is a closed subgroup. If M1 and M2 are any sets,
we always denote by πi : M1×M2 →Mi the natural projection (m1,m2) 7→ mi for
i = 1, 2. If an action of the group G1 on the set M1 and an action of the group G2

on the set M2 is given, we define the product action of G1 × G2 on M1 ×M2 by
(g1, g2) · (m1,m2) := (g1 ·m1, g2 ·m2). For any group H, we define the diagonal
subgroup ∆H of H×H by ∆H := {(h, h) |h ∈ H} . More generally, if H1 and H2 are
two locally isomorphic Lie groups and H is a Lie group such that local isomorphisms
φ1 : H → H1 and φ2 : H → H2 exist, then we say that {(φ1(h), φ2(h)) |h ∈ H}
is a diagonal subgroup of H1 × H2. If G is a compact Lie group endowed with
a biinvariant Riemannian metric, then the connected component of the isometry
group is covered by G×G, where the action of an element (h1, h2) ∈ G×G on G
is given by

(2.1) (h1, h2) · g := h1 g h
−1
2 .

Henceforth, ifH is a connected compact Lie group acting isometrically on a compact
Lie group G with biinvariant metric, we will always assume that H is given by a
closed subgroup of G × G and, conversely, if H ⊆ G × G is a closed subgroup
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it will be understood that the H-action on G is given by (2.1). We say that
isometric actions of the same Lie group on two Riemannian manifolds M and N
are conjugate if there is an equivariant isometry between M and N . We say that two
isometric actions on Riemannian manifolds M and N are locally conjugate if there
exists a Riemannian manifold V with an isometric Lie group action and surjective
equivariant local isometries V →M and V → N . We say that two isometric actions
on two Riemannian manifolds M and N are orbit equivalent if there is an isometry
M → N which maps each connected component of an orbit in M to a connected
component of an orbit in N . We will denote the isometry group of a Riemannian
manifold M by I(M) and by I(M)0 its connected component.

Definition 2.1. Let M1 and M2 be Riemannian manifolds and let I(M1) and
I(M2) be their isometry groups. Let H ⊆ I(M1)× I(M2) be a closed subgroup.

(i) We define an isometric action of H on one of the factors Mi by

(h1, h2) · pi := hi · pi for (h1, h2) ∈ H, pi ∈Mi.

We call this the projection action of H on Mi or the H-action on Mi.
(ii) Let o1 ∈M1. Then we define

Ho1 := {h ∈ H | h · o1 = o1}.
The subgroup Ho1 of H is called the partial isotropy group of the H-action
on M at o1.

(iii) Let o1 ∈ M1 and let Ho1 be the partial isotropy group as defined in (ii).
The H-action on M2, restricted to Ho1 ×M2, is called the intersection
action of Ho1 on M2.

The orbits of the projection action are exactly the projections of the H-orbits
on M to Mi, i.e. we have H · oi = πi(H · (o1, o2)) for i = 1, 2, oi ∈ Mi. The
orbits of the intersection action of Ho1 on M2 are given by the intersections of
the H-orbits on M with {o1} ×M2, more precisely, we have {o1} × (Ho1 · o2) =
(H · (o1, o2)) ∩ ({o1} ×M2) for o1 ∈M1, o2 ∈M2.

In the special case where the H-action on M1 is transitive, all the partial isotropy
groups Ho1 , o1 ∈M1, are conjugate in H and hence all intersection actions of Ho1 ,
o1 ∈M1 on M2 are conjugate.

Note that for general Riemannian manifolds M1,M2 the isometry group I(M1×
M2) of the Riemannian product contains I(M1) × I(M2) as a subgroup, but is in
general a larger group. For instance, if M1 and M2 are Euclidean spaces, then
we have I(Rn+m) 6= I(Rn) × I(Rm) if m,n ≥ 1. Thus, projection actions and
intersection actions are not defined for general products of Riemannian manifolds.
However, to study actions of connected Lie groups on reducible symmetric spaces
of the compact type, they are useful: Let M1 and M2 be connected Riemannian
symmetric spaces whose universal covers are without Euclidean factors. Then the
connected component of the isometry group of the Riemannian product M = M1×
M2 is given by I(M)0 = I(M1)0 × I(M2)0. Hence any connected subgroup H of
I(M) is contained in I(M1)×I(M2) and the projection actions of H on Mi are well
defined for i = 1, 2. Since the (hyper-)polarity of an action depends only on the
connected component of the group acting, see Remark 2.4 below, we may restrict
ourselves to actions of connected Lie groups in the following.

Definition 2.2. We say that an isometric action of a Lie group H on a product of
two Riemannian manifolds M1 ×M2 decomposes if there exist Lie groups H1 and
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H2 such that Hi acts isometrically on Mi for i = 1, 2 and the H-action is orbit
equivalent to the product action of H1×H2 on M1×M2. We say that an isometric
action of a Lie group on a Riemannian manifold M is decomposable if there exist
Riemannian manifolds M1 and M2 such that M = M1 × M2 as a Riemannian
product and the action of H on the product M1 ×M2 decomposes. Otherwise, we
say the action is indecomposable.

The following criterion for the hyperpolarity of an action is well known.

Proposition 2.3. Let G be a connected semisimple compact Lie group, let σ be
an involutive automorphism of G and let K ⊂ G be a closed subgroup such that
(Gσ)0 ⊆ K ⊆ Gσ. Let g = k⊕ p be the decomposition into eigenspaces of dσe. Let
G/K be endowed with the Riemannian metric induced by an Ad(G)-invariant inner
product on g. Let H ⊆ G be a closed subgroup, acting on G/K with cohomogeneity d.
Then the H-action on G/K is hyperpolar if and only if NeK(H · eK) ⊆ p contains
a d-dimensional abelian subspace.

Proof. See [11, Proposition 4.1] �

Remarks 2.4. It follows from the proposition that the hyperpolarity of an action
can be decided on the Lie algebra level. Therefore we may restrict ourselves to
consider one representative of each local isometry class of symmetric spaces. For
the same reason, we may assume that the groups acting hyperpolarly on symmetric
spaces are connected.

Since sections of polar actions are totally geodesic submanifolds, it follows that
we have

(2.2) dim(H) ≥ dim(M)− rk(M)

whenever a compact Lie group H acts hyperpolarly on a Riemannian symmetric
space M .

3. Expanding and Reducing Factors

In this section, we introduce a construction which relates certain isometric ac-
tions on compact symmetric spaces. The construction described below can be stated
in a sort of shorthand notation as follows:

H yM1 ×G2/K2  H ×K2 yM1 ×G2.

i.e. an action of H on M1×G2/K2 is transformed into an action of H×K2 on M1×
G2. This construction is motivated by [7, Proposition 2.11], where it was observed
that, in the special case where M1 is trivial, the H-action on G2/K2 is hyperpolar
if and only if the H ×K2-action on G2 is hyperpolar, cf. Theorem 3.4 below.

There are two types of irreducible symmetric spaces of the compact type, see [8]:
The spaces of Type I and Type II. The spaces of Type I are those with simple
isometry group; they are exactly the Riemannian symmetric spaces which have a
homogeneous presentation G/K where G is a simple compact Lie group and (G,K)
is a symmetric pair. The spaces of Type II are the simple compact Lie groups L
endowed with a biinvariant Riemannian metric; their isometry group is finitely
covered by L× L and so they have the homogeneous presentation (L× L)/∆L.

Let M be a Riemannian symmetric space such that M = M1 ×M2 where the
factors M1 and M2 are, not necessarily irreducible, symmetric spaces of the compact
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type. Let G = G1×G2, where Gi is the universal cover of the connected component
of the isometry group of Mi, cf. [18, Theorem 8.3.9]. We may assume that the
Riemannian metric on M is induced by an Ad(G)-invariant inner product µ on g.
Let H be a connected compact Lie group acting isometrically and almost effectively
on M . We may assume that H is a connected closed subgroup of G, replacing H
by a finite cover, if necessary. Let o ∈ M be an arbitrary reference point and let
K = Go be its isotropy subgroup with respect to the G-action. Define Ki = K∩Gi
for i = 1, 2. Let g = k⊕ p as usual. Define pi = p ∩ gi.

We will now define a Lie group action closely related to the H-action on M .
Roughly speaking, we replace H by H ×K2 and M by a symmetric space M̄ such
that M̄/K2

∼= M . Let

(3.1) M̄ = M1 ×G2.

Let G2 be endowed with the biinvariant Riemannian metric induced by µ|g2 × g2.
Let M1 be endowed with the invariant Riemannian metric induced by µ|g1 × g1.
Define the natural projection π : M̄ → M by π(m1, g2) = (m1, g2K2). With our
choice of Riemannian metrics, π is a Riemannian submersion. Let

(3.2) H̄ = H ×K2.

Define an action of H̄ on M̄ as follows: Let h̄ = (h1, h2, k) ∈ H̄, m1 ∈M1, g2 ∈ G2

and let m̄ = (m1, g2). Define

(3.3) h̄ · m̄ := (h1, h2, k2) · (m1, g2) := (h1 ·m1, h2 g2 k
−1
2 ).

Note that this action can also be viewed as a subaction of the action of Ḡ =
G1 ×G2 ×K2 on M̄ given by (g1, g2, k2) · (x, y) := (g1 · x, g2 y k

−1
2 ). Formally, we

also consider the Ḡ-action on M given by (g, k2) ·m = g ·m, i.e. the action given by
the G-action on M , where the K2-factor is ignored. With respect to these actions,
the map π : M̄ →M is equivariant.

Definition 3.1. We say that the H̄-action on M̄ as introduced above is obtained
from the H-action on M by expanding the factor M2. Conversely, if there is a Rie-
mannian symmetric space isometric to (3.1), together with an action of a group H̄
as in (3.2), where H̄ acts on M̄ as described in (3.3), then we say that the H-action
on M is obtained from the H̄-action on M̄ by reducing the factor G2. If there exists
an H-action on a symmetric space M which is obtained by reducing a factor G2

in an H̄-action on M̄ , then we say the H̄-action is reducible, otherwise we say it is
irreducible.

Note that the process of expanding a factor can be repeated arbitrarily many
times by expanding any factor of the space M̄ obtained in the previous step. Since
dim M̄ = dimM + dimK2 and dimK2 > 0, the dimension of the spaces thus
generated strictly increases with each step. Further note that if the factor M2 is
a symmetric space of Type I, then G2 will be of Type II; if the factor M2 is a
symmetric space of Type II, then G2 will be the Riemannian product M2 ×M2;
thus we may produce actions on reducible symmetric spaces with arbitrarily many
irreducible factors by repeating the process. On the other hand, given any symmet-
ric space M̄ of the compact type, together with a reducible H̄-action, successively
reducing factors will lead to an irreducible action in finitely many steps.

Let us remark that the equivariant submersion π : M̄ → M induces a bijection
between the orbit space of the H-action on M and the orbit space of the H̄-action
on M̄ .
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Definition 3.2. Let M be a simply connected Riemannian symmetric space of
compact type. Let M = MI × MII be such that MI is a product of symmetric
spaces of Type I and MII is a product of symmetric spaces of Type II. Then the
action obtained by expanding the factor MI is called the group lift of the original
action.

Clearly, if MI is trivial, then the H-action on M is its own group lift. It follows
from Theorem 3.4 below that an isometric action on a Riemannian symmetric
space of the compact type is hyperpolar if and only if its group lift is. Therefore,
to study hyperpolar actions on these spaces, we may restrict ourselves to actions
on symmetric spaces of Type II.

Lemma 3.3. Let M = M1 ×M2, where M1 and M2 are simply connected Rie-
mannian symmetric space of the compact type. Assume H and L are compact
connected Lie groups acting isometrically on M . Consider the actions of H̄ and
L̄ on M̄ which are obtained from the H-action and the L-action by expanding the
factor M2. Then the H-action on M is orbit equivalent to the L-action on M if
and only if the H̄-action on M̄ is orbit equivalent to the L̄-action on M̄ .

Proof. It follows from the above mentioned fact that π induces a bijection between
orbit spaces that the orbits of the H-action on M agree with the orbits of the
L-action on M if and only if the orbits of the H̄-action on M̄ agree with the orbits
of the L̄-action on M̄ . �

Theorem 3.4. Let M1 and M2 be simply connected Riemannian symmetric spaces
of the compact type and let H be a closed connected subgroup of the universal cover G
of the connected component of the isometry group of M = M1 ×M2. Assume the
H̄-action on M̄ is obtained from the H-action on M by expanding the factor M2.
Then the following hold.

(i) The H̄-action on M̄ is hyperpolar if and only if the H-action on M is.
(ii) The H̄-action on M̄ is decomposable if and only if the H-action on M is.
(iii) If π(ō) = o, then the isotropy groups of ō and o are isomorphic, i.e. H̄ō

∼=
Ho. Moreover, their slice representations are equivalent.

It follows from the statement on the isotropy groups in part (iii) of Theorem 3.4
that the codimension of the orbit H̄ · ō in M̄ equals the codimension of the orbit
H ·π(ō) in M . In particular, the H-action on M and the H̄-action on M̄ are of the
same cohomogeneity.

Proof. We show part (iii) first. Let us compute the two isotropy groups. Let
ō = (m1, g2) and let o = (m1,m2). We have

Ho =
{

(h1, h2) ∈ H | hj ∈ gjKjg
−1
j for j = 1, 2

}
,

where we assume mj = gjKj for j = 1, 2 and

H̄ō =
{

(h1, h2, g
−1
2 h2g2) ∈ H̄ | hj ∈ gjKjg

−1
j for j = 1, 2

}
.

An isomorphism H̄ō → Ho is obviously given by the projection on the first two
components.

We may assume ō = (eK1, e) and o = (eK1, eK2), replacing H̄ and H by conju-
gate subgroups in Ḡ and G, if necessary. The Lie algebra of H̄ is

h̄ = {(X1, X2, Y ) | (X1, X2) ∈ h, Y ∈ ki} .
6



The normal space to the H̄-orbit at ō consists of all elements (Z1, Z2) where Z1 ∈ p1,
Z2 ∈ g2 and such that µ(Z1, X1) + µ(Z2, X2) − µ(Z2, Y ) = 0 for all (X1, X2) ∈ h
and all Y ∈ k2. However, since this condition is equivalent to the condition that
µ(Z1, X1) + µ(Z2, X2) = 0 for all (X1, X2) ∈ h and Z2 ∈ p2, we actually have
Nō(H̄ · ō) = No(H · o), using the identifications TōM̄ = p1× g2 and ToM̄ = p1× p2.

From this it follows that the slice representations of H̄ō on Nō(H̄ · ō) and of Ho on
No(H · o) are equivalent, where we use the isomorphism described in the first part
of the proof to identify the two isotropy groups H̄ō and Ho. We have shown (iii).

In the above situation, we may additionally assume that ō is a regular point of
the H̄-action on M̄ . It then follows that o is a regular point of the H-action on M
by (iii). Since we have just shown that the normal spaces of the two actions at ō
and o agree, (i) follows from Proposition 2.3.

We will now prove (ii). For the purposes of this proof, let us assume that
M = M1×· · ·×Mn where the factors are irreducible. It suffices to prove (ii) in the
case where the H̄-action on M̄ is obtained from the H-action on M by expanding
the irreducible factor M1. Assume {1, . . . , n} is the disjoint union of two nonempty
sets I and J , where 1 ∈ I. Let MI =

∏
j∈IMj and MJ =

∏
j∈JMj .

First assume the H-action on M is decomposable in such a way that the H-
action on M is orbit equivalent to the product of the action of a Lie group HI

on MI and the action of a Lie group HJ on MJ . Then by Lemma 3.3, the H̄-action
on M̄ is orbit equivalent to the product of the action of H̄I on M̄I and the action
of HJ on MJ .

Now assume the H̄-action on M̄ is decomposable in such a way that the H̄-action
on M̄ is orbit equivalent to the product of the action of a Lie group H̄I on M̄I and
the action of a Lie group HJ on MJ . Then by Lemma 3.3, the H-action on M is
orbit equivalent to the product of the action of HI on MI and the action of HJ

on MJ .
This suffices to prove (ii) in case M1 is a symmetric space of Type I, since in

this case G1 is a simple compact Lie group and hence an irreducible symmetric
space. However, if M1 is of Type II, then G1 is a product of two isomorphic simple
compact Lie groups and thus the following additional case may arise: Assume the
action of H̄ = H × G1 on M̄ is decomposable in such a way that the H̄-action
on M̄ is orbit equivalent to the product of the action of a Lie group H+ on M+ :=∏
j∈I\{1}Mj ×G1 and the action of a Lie group H− on M− :=

∏
j∈JMj ×G1. In

this case the H̄-action on M̄ is orbit equivalent to the product of the two projection
actions, namely of the H̄-action on M+ and the H̄-action on M−. However, for
the first action the orbits are of the form X × G1, where X ⊆ MI and for the
second action the orbits are of the form Y × G1, where Y ⊆ MJ , respectively. It
follows that all orbits of the H-action on M are of the form X × Y ×M1. Hence
the H-action on M is decomposable. �

4. Hyperpolar Actions on Products

Lemma 4.1. Let M1 and M2 be Riemannian symmetric spaces of the compact type
and let H be a closed connected subgroup of the universal cover G of the connected
component of the isometry group of M = M1 ×M2. Assume H acts isometrically
on M and such that the action is hyperpolar and indecomposable. Then both the
H-actions on M1 and M2 are transitive.
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Proof. Using Theorem 3.4, it suffices to prove the lemma for the group lift of the
H-action on M . Thus we may assume M is a Riemannian product of symmetric
spaces of Type II.

Let Σ ⊂ M be a section of this action. It follows from [6, Theorem B] that
the action of the Weyl group W (Σ) on Σ is indecomposable. In particular, there
is an element g ∈ M such that the slice representation of the H-action at g is
irreducible. After conjugating H, if necessary, we may assume that g is the identity
element e of M . Let V = Ne(H · e) be the normal space to the orbit through e.
Then V is the representation space of the slice representation of He. For i = 1, 2,
let πi : M → Mi be the natural projection. Since πi is equivariant with respect to
the H-actions on M and Mi, it follows that its differential Dπi(e) restricted to V
becomes an intertwining map with respect to the He-representation on V . Hence
the kernel Vi is an invariant subspace. Since V is an irreducible representation
of He, it follows that V = Vi if we assume Vi is non-trivial, which then implies
that V3−i is trivial. Then the H-action on M is decomposable, since it is orbit
equivalent to the product of two actions one of which is transitive, a contradiction.
This proves that V1 = V2 = 0 and both projection actions of H on M1 and on M2

are transitive. �

Lemma 4.2. Assume the compact Lie group L acts isometrically on a symmetric
space M of compact type. Let H ⊆ L be a closed subgroup such that the L-action
on M restricted to H is hyperpolar and indecomposable. Then the H-action on M
is orbit equivalent to the L-action or the L-action is transitive.

Proof. This follows with the same argument as in the proof of [7, Corollary 3.14],
where instead of the indecomposability of the H-action it is assumed that the affine
Coxeter group associated with the H-action is irreducible. It was later proved in
[6, Theorem B] that this assumption is equivalent to the indecomposability of the
action. �

We will now prove the following characterization of indecomposable hyperpolar
actions in terms of projection actions and intersection actions.

Proposition 4.3. Let M = M1×M2 where M1 and M2 are Riemannian symmetric
spaces of the compact type. Let o = (o1, o2) ∈ M1 ×M2. Assume the compact Lie
group H acts isometrically on M and such that the action is indecomposable. Then
the action is hyperpolar if and only if all of the following hold.

(i) The H-action on M1 is transitive.
(ii) The H-action on M2 is transitive.
(iii) The Ho1-action on M2 is hyperpolar.
(iv) The Ho2-action on M1 is hyperpolar.

Proof. Let G and K be as in Proposition 2.3 and let p = p1 ⊕ p2, according to the
splitting M = M1 ×M2. Let d be the cohomogeneity of the H-action on M . We
may assume that H is a closed subgroup of G. Let ν ⊂ p be the normal space
No(H · o) and let ν1 = π1(ν) and ν2 = π2(ν). We have ν1 = No1(Ho2 · o1) and
ν2 = No2(Ho1 · o2). In case the actions of H on M1 and on M2 are both transitive,
we have that πi induces a linear isomorphism ν → νi for i = 1, 2.

Assume first the H-action on M is hyperpolar and indecomposable. By Lem-
ma 4.1, both the H-action on M1 and the H-action on M2 are transitive, i.e. (i)
and (ii) hold. After conjugating H, if necessary, we may assume o = eK. It follows
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from Proposition 2.3 that ν, and hence both ν1 and ν2, contain a d-dimensional
abelian subspace. Since H acts transitively on M1 as well as on M2, the conjugacy
classes of the isotropy subgroups Ho1 and Ho2 do not depend on the points o1 or o2.
This shows that the Ho1 -action on M2 and the Ho2-action on M1 are hyperpolar
for arbitrary o1 ∈M1 and o2 ∈M2. In particular, (iii) and (iv) hold.

Now assume (i)–(iv) hold. Since by assumption H acts transitively on M1 and
on M2, the conjugacy classes of the isotropy subgroups Ho1 and Ho2 do not depend
on the points o1 or o2. Therefore, we may assume that o is a regular point of the
H-action on M by conjugating H in G, if necessary. Then (iii) and (iv) still hold
and ν1 and ν2 are d-dimensional abelian subspaces of p1 and p2 by Proposition 2.3.
This shows that ν ⊂ p is a d-dimensional abelian subspace and it follows that the
H-action on M is hyperpolar by Proposition 2.3. �

Remark 4.4. Note that if the equivalence in the statement of Proposition 4.3 holds,
then the H-action on M , the Ho1-action on M2 and the Ho2 -action on M1 all have
the same cohomogeneity.

5. Hermann Actions

The actions we will describe in this section were introduced by Hermann [9] as
examples of variationally complete actions. It was shown by Conlon [1] that hy-
perpolar actions are variationally complete and much later by Gorodski and Thor-
bergsson [5] that an isometric action on a compact symmetric space is variationally
complete if and only if it is hyperpolar.

Definition 5.1. Let M be a Riemannian symmetric space of the compact type.
Let G be the isometry group of M . If H ⊂ G is a locally symmetric subgroup of G
then the action of H on M is called a Hermann action.

Let G be a semisimple compact Lie group and assume G = G1× · · · ×Gn where
the Gi are simple. Let α be an involutive automorphism of G. Then there is a self-
inverse permutation π = πα of the set {1, . . . , n} and isomorphisms αi : Gi → Gπ(i)

such that

(5.1) α(g1, . . . , gn) = (απ(1)(gπ(1)), . . . , απ(n)(gπ(n)))

and we have αi = α−1
j whenever π(i) = j.

Remark 5.2. Let G be a Riemannian symmetric space of Type II, i.e. a simple
compact Lie group, equipped with a biinvariant Riemannian metric. Then the
action of G × G on G given by (h, k) · g = h g k−1 is conjugate to the action of
G×G on G given by (h, k) · g = k g h−1. In fact, the inversion map g 7→ g−1 is an
equivariant isometry.

Remark 5.3. Similarly, if G is a Riemannian symmetric space of Type II and α is
an automorphism of G, then the action of G×G on G given by (h, k) · g = h g k−1

is conjugate to the action of G×G on G given by (h, k) ·g = α(h) g α(k)−1. Indeed,
an equivariant isometry is given by the map α : G→ G.

Proposition 5.4. An indecomposable Hermann action on a Riemannian symmet-
ric space of the compact type is locally conjugate to one of the following actions:
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(i) the action of H × Ln−1 ×K on Ln, defined by

(h,g1, . . . , gn−1, k) · (x1, . . . , xn) =

= (hx1 g
−1
1 , g1 x2 g

−1
2 , . . . , gn−2 xn−1 g

−1
n−1, gn−1 xn k

−1),

(ii) the action of H ×Ln−1 on Ln−1 ×L/K obtained from (i) by reducing the
last factor,

(iii) the action of Ln−1 on L/H × Ln−2 × L/K obtained from (i) by reducing
the first and the last factor,

(iv) the action of Ln on Ln, defined by

(g1, . . . , gn) · (x1, . . . , xn) =

= (g1 x1 g
−1
2 , g2 x2 g

−1
3 , . . . , gn−1 xn−1 g

−1
n , gn xn σ(g1)−1),

where L is a simply connected simple compact group, H and K are locally symmetric
subgroups of L and σ is an outer or trivial automorphism of L. Conversely, the
actions above are all indecomposable.

Proof. We may assume that M is a simply connected Riemannian symmetric space
of the compact type. Let G be the connected component of the universal cover
of the isometry group of M . Let ρ be an involutive automorphism of G such that
M = G/Gρ up to coverings. We may assume the presentation G/Gρ is almost
effective, i.e. the Lie algebra of Gρ does not contain non-trivial ideals of g.

Furthermore, we may assume that the Hermann action on M is given by Gτ ,
where τ is an involutive automorphism of G. Since the Hermann action is inde-
composable, it follows that also the Lie algebra of Gτ does not contain non-trivial
ideals of g.

Define a graph as follows. The vertices are the simple factors G1, . . . , Gm of G.
Let πρ and πτ be the permutations associated with the involutive automorphisms ρ
and τ as in (5.1). Two vertices Gi and Gj , i 6= j, are connected by two edges if
πρ(i) = j and πτ (i) = j. Two vertices Gi and Gj , i 6= j, are connected by one edge
if either πρ(i) = j or πτ (i) = j. Two vertices Gi and Gj are connected by zero
edges if i = j or πρ(i) 6= j 6= πτ (i).

If this graph is disconnected, then the Hermann action is decomposable; indeed,
the Hermann action can then be written as a product action where the factors
correspond to the connected components of the graph.

Now assume the action is indecomposable, i.e. the graph defined above is con-
nected. Then it follows that all simple factors of G are isomorphic to a simply
connected simple compact Lie group L and hence G ∼= Lm. It remains to show that
the H-action is locally conjugate to one of the actions (i) through (iv). Since any
vertex of the graph is connected with any other vertex by at most two edges, it is
either a path graph, a cycle graph, or it consists of two vertices connected by two
edges.

Let us first assume it is a path graph. By renumbering the nodes, we may assume
that the two terminal vertices of the graph are G1 and Gm and that Gi is connected
with Gi+1 by one edge for 1 ≤ i ≤ m−1. We have case (i) with m = 2n if πτ (1) = 1
and πτ (m) = m; we have case (iii) with m = 2n − 2 if πρ(1) = 1 and πρ(m) = m.
If either πτ (1) = 1 and πρ(m) = m or πρ(1) = 1 and πτ (m) = m, we have case (ii)
with m = 2n−1, see also Remark 5.2. Note that we may assume the isomorphisms
ρi with πρ(i) 6= i and τi with πτ (i) 6= i are all equal to the identity map of L by
using Remark 5.3.
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By a similar argument, it follows that the Hermann action is locally conjugate to
one of the actions as described in (iv) with m = 2n in the case of a cycle graph or two
vertices connected by two edges. By renumbering the nodes, we may assume that
Gi is connected with Gi+1 by an edge for 1 ≤ i ≤ m− 1 and that Gm is connected
with G1. Using Remark 5.3, we may assume that the isomorphisms ρi, i = 1, . . . ,m,
and τi, i = 1, . . . ,m− 1, are equal to the identity map of L. By conjugation of the
group acting, we may assume τm = idL if τm is an inner automorphism of L. �

Remarks 5.5. The actions described in Proposition 5.4 (iv) were called “σ-actions”
in [7] in the special case n = 1. The irreducible (in the sense of Definition 3.1)
Hermann actions on symmetric spaces of compact type are the following cases in
Proposition 5.4: Case (ii) with n = 1, i.e. the Hermann actions on irreducible sym-
metric spaces of Type I; Case (iii) with n = 2, i.e. the action of ∆G ⊂ G × G on
the product G/K ×G/L of two irreducible symmetric spaces of Type I with locally
isomorphic isometry group; Case (iv) with n = 1, i.e. σ-actions on simple compact
Lie groups. The actions given in Case (i) are never irreducible.

Proposition 5.6. Let M1 and M2 be Riemannian symmetric spaces of the compact
type and let M = M1 ×M2. Let H be a closed connected subgroup of G = G1 ×
G2, where Gi is the connected component of the universal cover of the isometry
group of Mi. Assume the H̄-action on M̄ is obtained from the H-action on M by
expanding the factor M2. Then the H-action on M is a Hermann action if and
only if the H̄-action on M̄ is.

Proof. Assume the H-action on M is a Hermann action. Then there is an involutive
automorphism τ of G such that H is the connected component of the fixed point
set of τ . Furthermore, there is an involutive automorphism ρ2 of G2 such that
M2 = G2/K2, where K2 agrees up to components with the fixed point set of ρ2.
Let M̄ = M1×G2. The connected component of the universal cover of the isometry
group of M̄ is Ḡ = G × G2. Define τ̄ ∈ Aut(Ḡ) by τ̄(g, g2) = (τ(g), ρ2(g2)) for
g ∈ G, g2 ∈ G2. This shows that H̄ = H ×K2 is a symmetric subgroup of Ḡ.

Conversely, if H̄ = H ×K2 agrees up to components with the fixed point set of
an involutive automorphism of Ḡ ∼= G×G2 and K2 is a symmetric subgroup of G2,
then this automorphism restricts to an involution of G. �

6. Transitive Actions

Let G be a Lie group and let G′, G′′ ⊆ G be two closed subgroups. Following
Onǐsčik [15], the triple (G,G′, G′′) is said to be a decomposition of G if we have
G = G′ ·G′′, i.e. if every element g ∈ G can be written as g = g′ g′′, where g′ ∈ G′
and g′′ ∈ G′′. A decomposition (G,G′, G′′) is said to be a proper decomposition
if the Lie algebras of both G′ and G′′ are proper subalgebras of the Lie algebra
of G. All proper decompositions of connected simple compact Lie groups have
been determined in [15, Theorem 4.1]. We reproduce the result in our Table 1. Let
us make some remarks on the table. The problem of finding all decompositions
of a connected Lie group can be formulated entirely on the Lie algebra level and
accordingly the table has to be interpreted on the Lie algebra level. It depends only
on the conjugacy class of G′ and G′′ in G if (G,G′, G′′) is a decomposition.

One can immediately make the following observations from the table: The only
simple compact Lie groups having proper decompositions are those of types A2n−1,
B3, Dn. Furthermore, if (G,G′, G′′) is a proper decomposition of the compact Lie
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No. G′ G G′′ (G′ ∩G′′)0

1 Sp(n) SU(2n) S(U(2n− 1)× U(1)) Sp(n− 1)× U(1)

SU(2n− 1) Sp(n− 1)

2 SO(2n− 1) SO(2n) U(n) U(n− 1)

SU(n) SU(n− 1)

Spin(7) SO(8) SO(6)× SO(2) U(3)

SO(6) SU(3)

3 SO(4n− 1) SO(4n) Sp(n) · Sp(1) Sp(n− 1) · Sp(1)

Sp(n) · U(1) Sp(n− 1) · U(1)
Sp(n) Sp(n− 1)

Spin(7) SO(8) SO(5)× SO(3) Sp(1) · Sp(1)

SO(5)× SO(2) Sp(1) · U(1)
SO(5) Sp(1)

4 G2 SO(7) SO(6) SU(3)

5 G2 SO(7) SO(5)× SO(2) U(2)

SO(5) SU(2)

6 Spin(7) SO(8) SO(7) G2

7 Spin(9) SO(16) SO(15) Spin(7)

Table 1. Transitive actions.

group G, then G′ and G′′ are products all of whose normal subgroups are of type
An, Bn, Cn, D3, G2, or one-dimensional.

Proposition 6.1. Let G be a connected simple compact Lie group. Let H ⊂ G×G
be a closed connected subgroup whose action on G as defined in (2.1) is transitive.
Then H = G′ ×G′′ where (G,G′, G′′) is a decomposition of G.

Proof. We may assume H is not of the form G × H2 or H1 × G for H1, H2 ⊆ G,
since (G,G,H2) and (G,H1, G) are decompositions of G. Then H is contained in
a maximal connected subgroup of G ×G, i.e. H is contained in a subgroup of the
form {(g, σ(g)) | g ∈ G}, where σ ∈ Aut(G), or in a subgroup of the form G×G′′
or G′×G, where G′, G′′ ⊂ G are closed connected subgroups, see [10, Theorem 2.1]
or [4, Theorem 15.1]. The first kind of subgroups does not act transitively on G,
see [10, Section 3.2]. Hence G is contained in a subgroup of the latter kind. Define
G′ = π1(H) and G′′ = π2(H). Then (G,G′, G′′) is a proper decomposition of the
simple compact Lie group G. If H = G′ × G′′, we are done. Thus assume now
H 6= G′ × G′′, where (G,G′, G′′) is a proper decomposition of G. It follows from
[10, Theorem 2.1] that the Lie algebras g′ and g′′ contain an isomorphic ideal. The
only proper decomposition of a simple compact Lie group where this is the case
is (SO(8),Spin(7),SO(7)), see Table 1. It follows that H is a diagonal subgroup
of Spin(7) × SO(7). However, a Lie group of dimension 21 cannot act transitively
on SO(8). �
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7. Two Irreducible Factors

The purpose of this section is to prove the following.

Theorem 7.1. Let M1 and M2 be irreducible Riemannian symmetric spaces of the
compact type. Assume there is an indecomposable hyperpolar action of a compact
Lie group H on M1 ×M2 of cohomogeneity greater than one. Then the H-action
is orbit equivalent to a Hermann action.

Proof. By expanding the two factors M1 and M2, if necessary, we may assume that
both factors M1 and M2 are symmetric spaces of Type II, i.e. simple compact Lie
groups. We may assume the compact Lie group H acts almost effectively and hy-
perpolarly, but not transitively, on M = M1×M2 in such a way that the H-actions
on both M1 and M2 are transitive. By Proposition 6.1 it follows that both the
H-action on M1 and the H-action on M2 are given by (not necessarily proper) de-
compositions of M1 and M2. We start with the case where both decompositions are
proper. Let us remark that in order to study the action on M1×M2, we may reduce
the factors M1, M2, or both, if possible; by Theorem 3.4 this makes no difference
for the hyperpolarity of the action and it does not change the cohomogeneity. In
the following, we will use this fact wherever it is convenient.

We may assume that the H-action on M = M1×M2 is not a product action (not
even locally) and hence that there is a nonzero ideal of h such that the corresponding
connected subgroup of H acts almost effectively on M1 as well as on M2. We call
a maximal such group a diagonal factor of the two actions.

Lemma 7.2. Let M1 and M2 be Riemannian symmetric spaces of the compact
type. Assume there is an indecomposable hyperpolar action on M1 ×M2. Then the
cohomogeneity of the action is less or equal min(rk(M1), rk(M2)). In particular, if
one of the spaces M1 or M2 is a rank-one symmetric space, then the action is of
cohomogeneity one.

Proof. Assume there is an indecomposable hyperpolar action on M1×M2 of coho-
mogeneity d. By Proposition 4.3 it follows that there are hyperpolar actions on Mi,
i = 1, 2 of cohomogeneity d. Thus (2.2) implies that d ≤ min(rk(M1), rk(M2)). �

7.1. Both decompositions are proper. Inspection of Table 1 shows that a di-
agonal factor is either semisimple or the direct product of a semisimple and a
one-dimensional Lie group if both decompositions are proper. We start by consid-
ering simple diagonal factors. We will indicate the type of action we are considering
by referring to the numbering of Table 1, e.g. if the diagonal factor is G2, then 4−5
refers to the action of G2 on (SO(7)/SO(6))× (SO(7)/SO(5)SO(2)). In cases where
an ambiguity can arise, a ∆ is put in front of the diagonal factor.

Diagonal factors of type An, n ≥ 2. In Table 1, only the decompositions 1, 2 and 4
have simple factors of type An, n ≥ 2.
1 − 1. Consider the action of U(1) × SU(2n − 1) × U(1) on (SU(2n)/Sp(n))2 for
n ≥ 2. By Proposition 4.3 and Table 1, this action is hyperpolar only if the action
of Sp(n− 1)× U(1) on SU(2n)/Sp(n) is. However, this action is a subaction of the
S(U(2n − 2) × U(2))-action on SU(2n)/Sp(n), which is of cohomogeneity one [10,
Theorem B]. Thus, by Lemma 4.2, it is of cohomogeneity one or it is not hyperpolar.
1− 2, 2− 2, 2− 4. By Lemma 7.2, these actions are of cohomogeneity one if they
are hyperpolar.
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4 − 4. By Proposition 4.3 and Table 1, the action of SO(6) × G2
2 on SO(7)2 is

hyperpolar only if the SU(3) × G2-action on SO(7) is hyperpolar. This action is
a subaction of the U(3) × G2-action on SO(7), which is of cohomogeneity one [10,
Theorem B]. Thus, by Lemma 4.2, it is of cohomogeneity one or it is not hyperpolar.

Diagonal factors of type Bn, n ≥ 2. The only decompositions with simple factors of
type Bn, n ≥ 2, are 2, 3, 5, 6, 7. Note that decomposition 1 with n = 2 is (locally)
the same as decomposition 2 with n = 3, using the isomorphism SU(4) ∼= Spin(6).
Therefore, we do not need to consider decomposition 1 here.
2−2. By Proposition 4.3 and Table 1, the action of SO(2n−1) on (SO(2n)/U(n))2, n ≥
3, is hyperpolar if and only if the action of U(n − 1) on SO(2n)/U(n) is. This ac-
tion is a subaction of the SO(2n − 2) × SO(2)-action on SO(2n)/U(n), which is of
cohomogeneity one. Hence it follows from Lemma 4.2 that the SO(2n − 1)-action
is non-hyperpolar if it is not of cohomogeneity one.
2− 3. Assume the action of SO(4n− 1)×Sp(n) ·Sp(1) on (SO(4n)/U(2n))×SO(4n)
is hyperpolar. This leads to a contradiction with condition (2.2) if n ≥ 3. Since
Sp(2) · Sp(1) is a locally symmetric subgroup of SO(8), cf. [10, Proposition 3.3], we
obtain a contradiction by Lemma 7.2 in case n = 2.
2 − 5, 2 − 6. It follows from Lemma 7.2 that these actions are of cohomogeneity
one if they are hyperpolar.
2−7. Here we have to consider two different actions, depending on whether the diag-
onal factor is SO(15) or Spin(9). The action of Spin(9)×∆SO(15) on (SO(16)/U(8))×
SO(16) is not hyperpolar by condition (2.2). The action with diagonal factor
∆Spin(9) is of cohomogeneity one or not hyperpolar by Lemma 7.2.
3−3. Consider the action of (Sp(n) ·Sp(1))×SO(4n−1)×(Sp(n) ·Sp(1)) on SO(4n)2,
for n ≥ 2. This action is not hyperpolar by condition (2.2).
3− 6. By Lemma 7.2, this action is of cohomogeneity one if it is hyperpolar.
3−7. The action of (Sp(4) ·Sp(1))×SO(15)×Spin(9) on SO(16)2 is not hyperpolar
by condition (2.2).
5 − 5. Consider the action of SO(5) × SO(2)2 × G2

2 on SO(7)2. By Proposition 4.3
and Table 1, this action is hyperpolar if and only if the action of U(2)×G2 on SO(7)
is. This action is a subaction of the G2

2-action on SO(7), which is of cohomogeneity
one. Hence this action is of cohomogeneity one if it is hyperpolar by Lemma 7.2.
6 − 6. It follows from Lemma 7.2 that this action is of cohomogeneity one if it is
hyperpolar.
7−7. There are two actions to consider here. First, it follows from Lemma 7.2 that
the ∆Spin(9)-action on (S15)2 is of cohomogeneity one if it is hyperpolar. Second,
we have the action of ∆SO(15)×Spin(9)2 on SO(16)2. This action is not hyperpolar
by condition (2.2).

Diagonal factors of type Cn, n ≥ 3. These only occur in decompositions 1 and 3.
1−1, 1−3, 3−3. It follows from Lemma 7.2 that these actions are of cohomogeneity
one if they are hyperpolar.

Diagonal factors of type G2. Diagonal factors of type G2 only occur in decomposi-
tions 4 and 5.
4 − 4, 4 − 5. It follows from Lemma 7.2 that these actions are of cohomogeneity
one if they are hyperpolar.
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5 − 5. Assume the Lie group G2 acts hyperpolarly on (SO(7)/SO(5) × SO(2))2.
It then follows from Lemma 7.2 that the cohomogeneity is at most 4. Counting
dimensions leads to a contradiction.

Diagonal factors which are non-simple or contain normal subgroups of rank one.
In case the diagonal factor is one-dimensional, the action on M1×M2 is transitive,
as can be seen from Table 1, thus all non-transitive subactions of actions whose
diagonal factor contains an abelian normal subgroup are also subactions of the
actions considered above. Thus by Lemma 4.2 they are of cohomogeneity one or
not hyperpolar. A similar argument applies to diagonal factors of rank one and
those containing more than one simple ideal.

7.2. One decomposition proper, the other non-proper. We assume here that
M is the direct product of two simple compact Lie groups M = G1 ×G2. Further-
more, since one decomposition is non-proper, it follows that H contains a simple
factor which is locally isomorphic to one of G1 or G2, say G1. Since the H-action
on M is indecomposable, it follows that this factor is contained in a diagonal fac-
tor of the action. Hence we may assume we are in the following situation. The
group G1 ⊂ G2 is a proper closed subgroup, H1 ⊂ G1 and H2 ⊂ G2 are proper
closed subgroups, Z is the centralizer of G1 in G2 and G2 = (G1Z) ·H2 is a proper
decomposition of G2. An action of H1 × Z ×H2 ×G1 on M is defined as follows:

(h1, z, h2, g) · (x, y) = (h1 x g
−1, g z y h−1

2 ),(7.1)

where (h1, z, h2, g) ∈ H1 × Z × H2 × G1 and (x, y) ∈ G1 × G2. Furthermore, we
may assume H is a closed subgroup of H1×Z×H2 such that the restriction of the
action of H1 × Z ×H2 ×G1 on M to H ×G1 is hyperpolar.

Lemma 7.3. The action of H ×G1 on G = G1 ×G2 as defined by (7.1) and the
action of H on G2, defined by

(h1, z, h2) · y = h1 z y h
−1
2 ,(7.2)

where (h1, z, h2) ∈ H1 × Z ×H2, y ∈ G2, have the same cohomogeneity. Further-
more, if the action of H × G1 on G is hyperpolar, then the H-action on G2 is,
too.

Proof. The second part of the statement follows from Proposition 4.3 (iii) if one
chooses o1 to be the identity element of G1. For the first part, see Remark 4.4. �

In Examples 9.4 below, two such actions are exhibited.

Lemma 7.4. Let G1 and G2 be simple compact Lie groups such that G1 ⊂ G2

is a proper closed subgroup. Let G = G1 × G2 be endowed with the biinvariant
Riemannian metric induced by an Ad(G)-invariant inner product on the Lie algebra
of G. Let H be a closed subgroup of H1 × Z × H2 where H1 ⊂ G1 and H2 ⊂ G2

are proper closed subgroups, where Z is the centralizer of G1 in G2 and where
G2 = (G1Z) ·H2 is a proper decomposition. Assume the H × G1-action on M as
defined by (7.1) is hyperpolar and indecomposable. Then it is of cohomogeneity one.

Proof. We will mostly use Lemma 7.3. It follows from the lemma that the action
of H on G2 is hyperpolar. By Lemma 4.2 we may assume H = H1×Z ×H2. Such
hyperpolar actions have been classified in [10, Subsection 2.4.5]. There we were
only interested in maximal non-transitive subgroups and to prove the proposition
we will have to slightly refine this classification. As in [10], we will go through the
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rows of Table 1 case-by-case, using the following numbering. The various cases are
denoted as 1.a), 1.b), . . . , 7.a), 7.b), where the number refers to the number in
Table 1 and where the letter a) means G′ = G1Z,G

′′ = H2, the letter b) means
G′ = H2, G

′′ = G1Z, cf. [10]. We do not need to consider the cases where G1 is of
rank one, since in these cases the H-action on G2 is transitive, as can be seen from
Table 1.

We may also ignore those cases where (G2, H2) is a symmetric pair such that
G2/H2 is a symmetric space of rank one, since in this case hyperpolar actions are
necessarily of rank one. This applies to Cases 1.a), 2.b), 3.b), 4.a), 6.a) 6.b) and
7.a).
1.b). Let G1 = SU(2n − 1), G2 = SU(2n), Z = U(1), H2 = Sp(n). Let o2 be the
identity element of G2. Consider the intersection action of Ho2 on G1. It follows
from Table 1 that this intersection action is given by the action of H1 × Sp(n− 1)
on SU(2n − 1). This is a subaction of the action of H1 × S(U(2n − 2) × U(1))
on SU(2n− 1). If the former action is hyperpolar, then it follows from Lemma 4.2
that the two actions are orbit equivalent. However, we have rk(SU(2n−1)/S(U(2n−
2)× U(1))) = 1 and it follows that in this case the action is of cohomogeneity one.
2.a). The case where G1 = SO(2n − 1), G2 = SO(2n), Z = {1}, H2 = U(n) can be
treated in an analogous fashion as Case 1.b).
3.a). Let G1 = SO(4n−1), G2 = SO(4n), Z = {1}, H2 = Sp(n)·Sp(1). Let o2 be the
identity element of G2. Consider the intersection action of Ho2 on G1. It follows
from Table 1 that this intersection action is given by the action of H1×(Sp(n−1)×
SO(3)) on SO(4n − 1). This action is a subaction of the action of H1 × (SO(4n −
4) × SO(3)) on SO(4n − 1) and hence it is at most of cohomogeneity three if it is
hyperpolar. By the main result of [10], if it is not of cohomogeneity one, we may
assume H1 = SO(4n− `− 1)× SO(`), 2 ≤ ` < 2n, possibly replacing H by a larger,
orbit equivalent group. Now consider theH-action onG2 as given in (7.2). Then the
H-action on G2 is a subaction of the action of SO(4n−`−1)×SO(`+1)×Sp(n)·Sp(1)
on SO(4n), which is not hyperpolar [10, Subsection 2.3.2]. Thus the H-action on G2

is not hyperpolar by Lemma 4.2.
4.b). See Case 4.b) in [10, p. 601].
5.a). The maximal subgroups of G2 are SO(4), SU(3) and a group of type A1,
cf. Case 5.a) in [10, p. 601]. The groups SO(4) and A1 are excluded by (2.2).
The subgroup SU(3) is contained in SO(6), which acts with cohomogeneity one on
SO(7)/(SO(5)× SO(2)).
5.b). Let o2 be the identity element of G2. Consider the Ho2 -action on G1. This
action is given by the action of H1×U(2) on SO(5), where H1 ⊂ SO(5) is a proper
closed subgroup. The maximal connected subgroups of SO(5) are SO(4), SO(3) ×
SO(2) and a group of type A1. The actions of SO(4)×U(2) and (SO(3)× SO(2))×
U(2) are subactions of cohomogeneity one actions, thus they are of cohomogeneity
one if they are hyperpolar by Lemma 4.2. The subgroup of type A1 can be excluded
by a dimension count.
7.b). The irreducible maximal connected subgroups of G1 = SO(15) are excluded
by a dimension count, cf. [10, Appendix], the reducible ones are contained in re-
ducible subgroups SO(k)× SO(16− k), k = 2, . . . , 8 of SO(16). It was shown in [10,
Subsection 2.4.1] that the action of Spin(9) × (SO(k) × SO(16 − k)), k = 2, . . . , 8
on SO(16) is hyperpolar only if k = 2, in which case the cohomogeneity is one. �
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7.3. Both decompositions are non-proper. With the same argument as in the
beginning of Subsection 7.2, the non-proper factor in each decomposition must be
contained in the diagonal factor, forcing the two factors M1 and M2 to be locally
isomorphic. Thus, up to coverings, we are looking at actions of the following form.
Let G be a simple compact Lie group and let H ⊆ G × G be a closed subgroup.
Then H×G acts on G×G by the rule (h1, h2, g) ·(x, y) = (h1 x g

−1, g y h−1
2 ), where

(h1, h2) ∈ H, g ∈ G, (x, y) ∈ G × G. Note that this action is obtained from the
H-action on G as defined in (2.1) by expanding G. By Theorem 3.4, the H-action
on the simple compact Lie group G is hyperpolar. Therefore, it is orbit equivalent
to a Hermann action or of cohomogeneity one by the main result of [10]. It follows
from Proposition 5.6 and Lemma 3.3 that the H × G-action on G × G is orbit
equivalent to a Hermann action. We have completed the proof of Theorem 7.1. �

8. Arbitrarily Many Factors

Proof of Theorem A. Let M be a Riemannian symmetric space of compact type.
Assume the compact Lie group H acts isometrically on M such that the H-action
on M is indecomposable and hyperpolar with cohomogeneity greater than one. It
follows from Theorem 3.4 that the group lift of the H-action on M is also inde-
composable and hyperpolar with the same cohomogeneity. By Lemma 3.3 and
Proposition 5.6, it suffices to show that the group lift of the H-action on M is
orbit equivalent to a Hermann action. Hence, after replacing the H-action on M
by its group lift, we may assume that M is a compact Lie group with a biinvariant
Riemannian metric. By Remark 2.4, we may assume that M is simply connected.
Thus it is of the form M = M1×M2×· · ·×Mn, where the Mi are simply connected
irreducible Riemannian symmetric spaces of Type II.

It remains to show that the H-action on M is orbit equivalent to a Hermann
action in this situation. If M is irreducible, i.e. in case n = 1, this follows from the
main result of [10, Theorem A]. For the case n = 2, this was shown in Section 7.
Hence we may assume n ≥ 3.

Let now i, j ∈ {1, . . . , n} such that i 6= j. Let I := {i, j} and let J := {1, . . . , n}\
I. Let MI =

∏
k∈IMk and MJ =

∏
k∈JMk. Let oI ∈ MI and let oJ ∈ MJ .

Consider the intersection action of HoJ on MI . By Proposition 4.3, this intersection
action is hyperpolar. By assumption, the space MI is a Riemannian product of two
symmetric spaces of Type II. By Remark 4.4, the intersection action has the same
cohomogeneity as the H-action on M , in particular, the cohomogeneity is≥ 2. Thus
it follows from Theorem 7.1 that the intersection action on MI is orbit equivalent
to a Hermann action. Furthermore, we have that Mi

∼= Mj . Since this argument
applies to arbitrary pairs i 6= j, it follows that there is a simply connected simple
compact Lie group L such that L ∼= M1

∼= M2
∼= . . . ∼= Mn.

Now let k ∈ {1, . . . , n} such that j 6= k 6= i. Consider the intersection action
on Mj × Mk. By the same argument as above, this intersection action is also
orbit equivalent to a Hermann action. Now consider the intersection action on Mj .
This action is at the same time an intersection action of the H-action on M as
well as of both its intersection actions on Mi × Mj and Mj × Mk. It follows
from Lemma 3.3 that the intersection actions on Mi ×Mj and on Mj ×Mk are
orbit equivalent, because they are both orbit equivalent to the action obtained by
expanding the factor Mj in the intersection action on Mj . Since this argument
applies to arbitrary subsets {i, j, k} ⊆ {1, . . . , n} of cardinality 3, it follows that
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all the intersection actions on the simple factors Mi
∼= L are orbit equivalent. Let

Q ⊂ L× L be a connected locally symmetric subgroup whose action on L is orbit
equivalent to all of these actions. After replacing H by a conjugate subgroup in
the isometry group of M , if necessary, and using suitable identifications such that
L = M1 = · · · = Mn, we may assume that all intersection actions on products
of two simple factors Mi ×Mj have the same connected components of orbits as
the action obtained from the Q-action on L by expanding a simple factor, see also
Remarks 5.2 and 5.3.

To show that the H-action on M is orbit equivalent to the action on Ln obtained
from the Q-action on L by n times expanding a simple factor, it now suffices to prove
that the connected components of the orbits of any indecomposable hyperpolar
action on a semisimple compact Lie group is already uniquely determined by the
orbits of the intersection actions on all products of two simple factors Mi ×Mj ,
where i, j ∈ {1, . . . , n}, i 6= j. Let oi ∈ Mi for i = 1, . . . , n. Assume the point
o = (o1, . . . , on) lies in a regular orbit of the H-action on M . Let Σ be the unique
section of the H-action containing the point o and let ν = ToΣ. For i = 1, . . . , n, let
νi = πi(ν). It follows from Proposition 4.3 that for every i, j ∈ {1, . . . , n} there is
a linear isomorphism Φij : νi → νj such that {X + Φij(X) | X ∈ νi} is the tangent
space to the section of the intersection action on Mi ×Mj at the point (oi, oj). It
follows that every vector of ν is contained in the set {X1 +Φ12(X1)+· · ·+Φ1n(X1) |
X1 ∈ ν1}. By a dimension count, it follows that this set is actually equal to ν. This
argument shows that the H-action on M has the same principal orbits as the action
on Ln obtained from the Q-action on L by n times expanding a simple factor L.
Thus the two actions are orbit equivalent. �

9. Examples of Cohomogeneity One Actions

In this section we give some examples of indecomposable cohomogeneity one
actions. Some of them can be found in [3, p. 21].

Example 9.1. Let G = SO(n + 1) and let K = SO(n). Then G/K = Sn is
the n-sphere and the K-action on G/K is an example of a Hermann action of
cohomogeneity one. By expanding the factor Sn we obtain the K×K-action on G.
If we further expand the factor G we obtain the action of K × G × K on G × G
given by (k1, g, k2) · (g1, g2) = (k1 g1 g

−1, g g2 k
−1
2 ). Since K ⊂ G is a symmetric

subgroup, we can reduce each of the G-factors. If we do this for both factors, we
obtain the action of SO(n) on Sn × Sn, see [3, Example 1], where the projection
actions of SO(n) on both factors are conjugate.

Of course, like in the example above, one may take any cohomogeneity one
action on a simple compact Lie group as given in [10, Theorem B] and expand
factors. This process may be repeated arbitrarily many times. However, there
are many indecomposable cohomogeneity one actions which are not given by this
construction. We will illustrate this below.

Examples 9.2. We shall give two examples for cohomogeneity one actions arising
from the triality automorphism of Spin(8).

(i) The compact Lie group Spin(8) has three pairwise inequivalent irreducible
real 8-dimensional representations %0, %1, %2 and we may use them to define
a Lie group homomorphism

Spin(8)→ SO(8)× SO(8)× SO(8), g 7→ (%0(g), %1(g), %2(g)).
18



This defines an isometric action of Spin(8) on M := S7 × S7 × S7. The
conjugation classes of the principal isotropy groups of the three represen-
tations %0, %1, and %2 acting on S7 are the three conjugacy classes of the
subgroup Spin(7) ⊂ Spin(8). The action of Spin(8) on M is of cohomogene-
ity one and indecomposable. This can be seen as follows. Let M1 = S7×S7

and let M2 = S7. (It does not matter which factors are grouped together
in M2, since there are outer automorphisms of Spin(8) which correspond
to permutations of the three representations %0, %1, %2.) Then the Spin(8)-
action is transitive on M1 with isotropy group G2. Since G2 acts with
cohomogeneity one on M2 = S7, it follows that the Spin(8)-action on M is
of cohomogeneity one. Using Proposition 4.3 and the fact that Spin(8) acts
transitively on both factors M1 and M2, it follows that the Spin(8)-action
on M is indecomposable cf. [3].

(ii) The following is a modification of Example 9.2. Consider the same sub-
group of SO(8)× SO(8)× SO(8) as defined above and let it act on

M := S7 × S7 ×Gr2(R8) =
SO(8)

SO(7)
× SO(8)

SO(7)
× SO(8)

SO(2)× SO(6)
,

i.e. the product of two 7-spheres and the Grassmannian of (oriented) 2-
planes in R8. Let us prove that this action is indecomposable and of
cohomogeneity one. Let M1 := S7 × S7 and let M2 := Gr2(R8). As in the
example above, the projection action on M1 is transitive and obviously the
projection action on M2 is transitive, too. The intersection action on M2

is conjugate to the G2-action on Gr2(R8), which is orbit equivalent to the
SO(7)-action on Gr2(R8), see [11], hence of cohomogeneity one. Now our
claim follows from Proposition 4.3.

Example 9.3. Let us give an example of a cohomogeneity one action as studied in
Subsection 7.1. The group Spin(7) acts transitively on S7 with (principal) isotropy
G2. Since G2 acts with cohomogeneity one on S7, it follows that an action of Spin(7)
on S7 × S7 where both projection actions are given by the 8-dimensional spin rep-
resentation is indecomposable and of cohomogeneity one. This action also occurs
as an intersection action in Example 9.2(i).

Examples 9.4. We give two examples for actions as described in Subsection 7.2,

(i) Consider the action of U(3)× G2 on SO(7), which is known to be of coho-
mogeneity one, see [10]. Using the intermediate subgroup U(3) ⊂ SO(6) ⊂
SO(7), we may define an action of U(3)× SO(6)×G2 on SO(6)×G2 given
by (h, `, k) · (x, y) = (hx`−1, `yk−1), where (h, `, k) ∈ U(3) × SO(6) × G2

and (x, y) ∈ SO(6) × G2. This action is also of cohomogeneity one and
indecomposable by Proposition 4.3.

(ii) The group Spin(9) has an isometric action on S8 × S15 defined by the
standard and the spin representation, cf. [3, p. 21]. The group lift of this
action is the action of Spin(8) × Spin(9) × SO(15) on G1 ×G2 = SO(9) ×
SO(16). By Lemma 7.3, these two actions have the same cohomogeneity
as the Spin(8)-action on S15 which is induced by the direct sum of the
two half-spin representations. This Spin(8)-action is cohomogeneity one,
this can proved using Table 1. Thus the Spin(9)-action on S8 × S15 is of
cohomogeneity one and indecomposable by Proposition 4.3.
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10. Open Questions

An intriguing question that remains open is how one can generalize the results of
this article to obtain a classification of cohomogeneity one actions. The examples in
the previous section show that our results will not straightforwardly carry over to
the case of indecomposable cohomogeneity one actions. Of course, it will suffice to
classify irreducible (in the sense of Definition 3.1) indecomposable cohomogeneity
one actions on symmetric spaces of the compact type, then all other actions can be
obtained by expanding factors. Finally, the question arises if it is possible to give
a conceptual, i.e. classification-free, proof of Theorem A.
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