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COLLOCATION WITH WEB–SPLINES

Christian Apprich, Klaus Höllig, Jörg Hörner and Ulrich Reif

May 8, 2015

Abstract

We describe a collocation method with weighted extended B–splines (WEB–
splines) for arbitrary bounded multidimensional domains, considering Poisson’s equa-
tion as a typical model problem. By slightly modifying the B–spline classification for
the WEB–basis, the centers of the supports of inner B–splines can be used as collo-
cation points. This resolves the mismatch between the number of basis functions and
interpolation conditions, already present in classical univariate schemes, in a simple
fashion.

Collocation with WEB–splines is very easy to implement; sample programs are
available on the website www.web-spline.de. In contrast to standard finite element
methods, no mesh generation and numerical integration is required, regardless of the
geometric shape of the domain. As a consequence, computing times are consider-
ably shorter than for Ritz-Galerkin schemes. Moreover, numerical tests confirm that
increasing the B–spline degree yields highly accurate approximations already on rel-
atively coarse grids.

Keywords: Collocation · WEB–spline · Boundary Value Problem · Interpolation

2010 Mathematics Subject Classification: 65L60 · 65D07

1 Introduction

B–splines play an important role in many branches of applied mathematics and engineer-
ing. Numerical methods, in particular approximation and data fitting, were among the first
applications. Later on, the potential for geometric modeling and computer graphics has
been realized, leading to a very fruitful synthesis of mathematical and engineering methods.
The application to the numerical solution of partial differential equations is fairly recent.
For a long time, the regular structure of tensor product grids prevented a systematic use
of B–splines as finite elements. However, the geometric limitations could be overcome in
a simple and elegant fashion. Essentially, two different techniques have been developed.
Weighted extended B–splines (WEB–splines), introduced by Höllig, Reif, and Wipper [17],
employ implicit descriptions of simulation domains; isogeometric elements, proposed by
Hughes, Cottrell, and Bazilevs [18], use NURBS parametrizations for geometry represen-
tation. Both approaches, which are described in detail in the textbooks [13, 9], have two
major advantages over classical mesh-based finite element techniques:

• regular grid with one trial function per grid point;
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• arbitrary choice of order and smoothness.

As a consequence, finite element methods with B–splines can be implemented very effi-
ciently and yield highly accurate numerical solutions with relatively few parameters.

In principle, isogeometric and weighted techniques can both be applied to all problems
admitting a finite element discretization. Which method is the optimal choice primar-
ily depends on the available geometry description. Isogeometric methods are best suited
for domains which can be smoothly parametrized over rectangles or cuboids, or which
can be expressed as unions of few such parametrizations. Often, the necessary domain
parametrizations are available from CAD/CAM models using NURBS [26]. Weighted
methods can handle domains well which have a convenient implicit description, or prob-
lems with natural boundary conditions. Implicit boundary representations naturally arise
in constructive solid geometry and can be constructed, e.g., with Rvachev’s R-function
method [30]. Moreover, general methods for defining weight functions are available [4, 13].
Figure 1 illustrates typical isogeometric (left) and weighted (right) discretizations. The
domain in the middle is an example where a combination of both techniques is appropriate
[16].

Figure 1: Isogeometric (left), mixed (middle), and weighted (right) finite element dis-
cretizations

In addition to substantial parameter savings, the smoothness of B–splines has other
important advantages compared to classical, mesh-based C0-elements. For a partial differ-
ential equation Lu = f given on some domain D ⊂ Rd, the pointwise residual of the finite
element approximation uh ≈ u can be computed if the chosen smoothness of the spline
space is sufficiently high:

Rh(x) = f(x)− (Luh)(x), x ∈ D .

Providing a convenient local a posteriori error measure, this feature can be used, for in-
stance, to guide adaptive refinement. Moreover, turning to the subject of this article,
B–splines can serve as basis functions for collocation. This straightforward discretization
technique determines a numerical approximation uh by demanding a vanishing residual at
a grid of points:

Rh(ξi) = 0, i ∈ I .
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For isogeometric elements, collocation has been very successfully applied to a variety of
problems [2, 3, 32]. So far, however, isogeometric collocation is limited to domains which
are smooth images of rectangles or cuboids. For domains, modeled by a union of several
isogeometric patches, two problems arise:

• there is no longer a canonical choice of the collocation points like for a tensor product
grid of a single parameter rectangle or cuboid;

• for tesselations of planar domains, it is possible to adapt some highly specialized tech-
niques from geometric modeling to maintain C1- or C2-continuity at extraordinary
points [12], but nothing similar is known for higher dimensional cases.

With WEB–splines Bi, both difficulties can be overcome in a simple and elegant fashion.
Deviating slightly from the original definition given in [17], a one-to-one correspondence
can be established between the basis functions Bi, i ∈ I, and uniform B–splines bi having
the centers ξi of their supports inside the domain D. Hence, regardless of the shape of D,
we can use the points ξi, i ∈ I, for collocation, a canonical choice in view of the fundamen-
tal Schoenberg-Whitney conditions (cf., e.g., [33]). Moreover, since WEB–splines share
all essential approximation properties of uniform B–splines, we obtain stable and highly
accurate numerical solutions. Perhaps the most significant advantage is the simplicity
of the implementation. Compared with Ritz-Galerkin methods, no numerical integration
is necessary, leading to substantial savings in computing time. The resulting Matlab1

code for Poisson’s problem in three dimensions consists of less than 130 lines and can be
downloaded from the website www.web-spline.de.

While WEB–collocation obviously has a broad range of applications, only Poisson’s
problem will be considered in this article. This typical model problem allows us to describe
our new approach in a simple setting. After reviewing the definition and properties of
uniform B–splines in Section 2, we give a slightly modified definition of WEB–splines, suited
for collocation methods, in Section 3. We illustrate this definition in Section 4 for univariate
interpolation, which serves as a motivating example for our collocation scheme. Sections
5 and 6 describe the collocation algorithm for Poisson’s equation with Dirichlet boundary
conditions and illustrate its performance. In the concluding Section 7 we summarize the
main features of WEB–collocation and outline topics for future research.

2 B-Splines

Univariate B–splines can be defined for arbitrary knot sequences. Unfortunately, the re-
sulting local flexibility for univariate approximation methods does not persist in several
variables. For tensor product B–splines, knot placement has a global effect. Therefore,
adaptive methods employ hierarchical bases with uniform B–splines (cf. e.g., [23, 10, 24, 1])
rather than global knot insertion techniques. The definition of WEB–splines is based on
uniform B–splines as well. In light of the remarks just made, this should not be considered

1Matlab R© is a registered trademark of The MathWorks, Inc., Natick, MA, U.S.A.
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a limitation or a potential drawback. Quite the contrary, using uniform knot sequences has
obvious computational advantages. In particular, values, derivatives, and scalar products
can be precomputed.

Definition 2.1 (B–Spline) A d-variate uniform B–spline bk of degree n, grid width h,
and support kh+ [0, n+ 1]dh is a product of univariate B–splines:

bk(x) = b(k1,...,kd)(x1, . . . , xd) = b(x1/h− k1) · · · b(xd/h− kd) ,

where b is the standard cardinal B–spline of degree n with knots 0, . . . , n+ 1.

k1h

k2h

ξk

Figure 2: Support and graph of a biquadratic uniform B–spline bk

As is illustrated in Figure 2, the uniform d-variate B–spline is a bell-shaped function
corresponding to a regular grid. On lines parallel to the coordinate axes, bk coincides with
a multiple of a uniform univariate B–spline. The center of the support,

ξk = (k1, . . . , kd)h+ (n+ 1, . . . , n+ 1)h/2 ,

is marked with a dot in the figure and is often used to identify the position of a B–spline
on the grid.

The properties of B–splines are familiar [6]:

• bk is nonnegative with support kh+ [0, n+ 1]dh;

• bk coincides with a polynomial of coordinate degree n on each grid cell `h+ (0, 1)dh;

• bk is (n− 1)-times continuously differentiable across grid cell boundaries;

• for any open set Ω ⊆ D, the B–splines with some support in Ω are linearly indepen-
dent.
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Based on the last property, we can define splines for arbitrary domains in the usual
way.

Definition 2.2 (Splines) The spline space corresponding to a domain D⊂ Rd is spanned
by all relevant B–splines, i.e., by those B–splines bk with some support in D (denoted by
k ∼ D):

Bh =
⊕
k∼D

bk .

For computations it is convenient to keep also irrelevant indices, i.e., to represent splines
as linear combinations

uh =
∑
k∈K

ukbk ,

where K⊂ Zd is the smallest rectangular array containing all relevant k, and uk is set to
zero for k 6∼ D.

Figure 3: Relevant and irrelevant biquadratic B–splines, marked with dots and crosses, for
a bounded domain D

Figure 3 shows the relevant and irrelevant biquadratic B–splines for a kidney-shaped
domain. As mentioned before, we use dots at the relevant B–spline centers ξk to visualize
the free parameters. Stars mark the irrelevant B–splines having no support inside of D.

The example reveals two principal difficulties, not present in the univariate theory:

• B–splines near the domain boundary with small support in D can cause severe in-
stabilities, even if the grid width h is not small.

• Due to the rectangular B–spline support, it appears difficult to incorporate boundary
conditions for general domains D.

WEB–splines, defined in the next section, resolve both problems in an elegant fashion. For
their construction, the following beautiful explicit formula for representing polynomials
plays a crucial role (cf., e.g., [14]).
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Theorem 2.1 (Marsden’s Identity) For any x, y ∈ Rd,

(x− y)n :=
d∏

ν=1

(xν − yν)n =
∑
k∈Zd

hndψ(k − y/h) bk(x) ,

where ψ(z) =
∏d

ν=1(zν + 1) · · · (zν + n).

We note that ψ(k − y/h) is a polynomial of coordinate degree n in k = (k1, . . . , kd).
Since any polynomial p of coordinate degree ≤ n can be written as a linear combination
of polynomials of the form (· − y`)

n, it follows that the coefficients uk in the B–spline
representation p =

∑
k ukbk are a polynomial of coordinate degree ≤ n in k.

3 WEB–Splines

WEB–splines eliminate the problems of the spline space Bh mentioned in the previous
section. They provide a stable basis and incorporate homogeneous boundary conditions.
We discuss each aspect in turn.

To stabilize the B–spline basis for the spline space Bh, we partition the relevant B–
splines for a domain into two types. With the application to collocation methods in mind,
we deviate slightly from the original splitting criterion.

Definition 3.1 (Classification) The inner B–splines bi, i ∈ I, for a domain D are those
relevant B–splines with centers ξi ∈ D. The remaining relevant B–splines bj, j ∈ J , are
referred to as outer B–splines.

Figure 4: Inner and outer biquadratic B–splines, marked with dots and circles, respectively

An example of this classification is shown in Figure 4. We see that the inner B–splines
bi generally have a large portion or all of their support in D. If D is a Lipschitz domain,
there exist boxes si and Si with si ⊂ D∩ supp bi ⊂ Si whose side lengths are bounded from
below, respectively above, by a constant times hd. Hence, one can show by constructing
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appropriate dual functionals that this part of the B–spline basis is stable. On the other
hand, the outer B–splines bj are close to the boundary, and some of them have very small
support in D. If we form appropriate linear combinations with neighboring inner B–splines,

ebi = bi +
∑
j∈J(i)

ei,jbj ,

we can avoid instabilities while maintaining the approximation power of the spline space.
The extension of inner B–splines bi by adjoining outer B–splines bj is described in detail

in [17]. Here, we merely sketch the key argument which is based on Marsden’s identity;
the extension coefficients ei,j are determined so that the representation of polynomials is
preserved. Since the Marsden coefficients hndψ(k − y/h) are polynomials of coordinate
degree n in k1, . . . , kd, we can recover their values for an outer index j by interpolating at
an array

I(j) = `+ {0, . . . , n}d, ` = `(j) ,

of inner indices i. We write the interpolant in Lagrange form

ψ(j − y/h) =
∑
i∈I(j)

ei,jψ(i− y/h) ,

where

ei,j =
d∏

ν=1

`ν+n∏
αν= `ν
αν 6= iν

jν − αν
iν − αν

(1)

are the values of the Lagrange polynomials corresponding to the indices i ∈ I(j), evaluated
at j. Substituting into Marsden’s identity, we arrive at

d∏
ν=1

(xν − yν)n =
∑
i∈I

hndψ(i− y/h)bi(x) +
∑
j∈J

∑
i∈I(j)

ei,jh
ndψ(i− y/h)bj(x) .

Interchanging the order of summation in the double sum leads to

∑
i∈I

hndψ(i− y/h)

bi(x) +
∑
j∈J(i)

ei,jbj(x)

 ,

where J(i) = {j ∈ J : i ∈ I(j)}. This shows that Marsden’s identity remains valid for
the extended B–splines ebi = [. . .]. As a consequence, the approximation power of the
stabilized spline space

eBh =
⊕
i∈I

ebi ⊂ Bh

has not deteriorated.
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We now turn to the representation of homogeneous Dirichlet boundary conditions. In
hindsight, the key idea is quite simple. If the domain is represented in implicit form by
means of some weight function w : Rd → R,

D : w(x) > 0 ,

multiplying the relevant B–splines bk by w yields weighted B–splines wbk which vanish on
∂D. This method has already been suggested by Kantorovich and Krylov [21], and was
extensively analyzed by Rvachev and his collaborators in the decades after 1970 [29, 30,
31, 34]. In order to preserve optimal approximation properties, it is essential that w is
positive and smooth on D and vanishes on ∂D in such a way that the ratio of w and the
boundary distance as well as its reciprocal remain bounded on D. However, even weight
functions which are not differentiable at the boundary turn out to be useful in practice.
Such weight functions can be constructed in various ways. Rvachev’s R-function method
combines weight functions for elementary domains according to Boolean operations; cf.
Figure 5 for an example. General purpose constructions are based on smoothed distance
functions [13] and spline approximations [4].

0

w2 = 0

w1 = 0

D
w1(x) = 1− x2

1 − x2
2

w2(x) = x2
1 + x2

w = w1 + w2 −
√
w2

1 + w2
2

Figure 5: Combining elementary weight functions via Rvachev’s method

Combining the extension procedure with the domain representation via weight functions
leads to the following definition:

Definition 3.2 (WEB–Splines) The weighted extended B–splines, corresponding to an
implicitly defined domain D : w > 0, are given by

Bi =
1

γi
w ebi, i ∈ I ,

where the normalizing constants γi are chosen proportional to the maximum of w on D ∩
supp bi. The WEB–splines form a stable basis for a subspace weBh of the weighted spline
space wBh.

Figure 6 shows several WEB–splines on a two–dimensional domain. Qualitatively, there
is little difference to standard uniform B–splines, except that the support is adapted to the
curved boundary, and WEB–splines near the boundary can be negative on small subsets
of their support.
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Figure 6: Biquadratic WEB–splines

As was shown in [17], WEB–splines inherit all properties of uniform B–splines which
are essential for finite element methods:

• The diameter of suppBi is proportional to the grid width h.

• At any point x ∈ D at most O(1) WEB–splines are nonzero.

• The WEB–basis is stable, i.e.,

hd/2 |U | �
∥∥∥∥∑

i

uiBi

∥∥∥∥ ,
where | · |, ‖ · ‖ denote the 2-norm of vectors and the L2-norm of functions on D,
respectively, and the symbol � denotes inequalities in both directions with constants
independent of h.

• Linear combinations of WEB–splines approximate functions u, for which u/w is
smooth on D, with optimal order O(hn+1).

The proofs of the last two properties are not straightforward. However, the arguments
of [17] are easily adapted to the slightly modified WEB–spline concept used in this article.

4 Univariate Interpolation

Collocation for boundary value problems is closely related to interpolation methods. There-
fore, we consider this simpler application first, as a motivating example for our new
discretization technique. We begin by recalling the fundamental criterion for the well-
posedness of univariate spline interpolation.

Theorem 4.1 (Schoenberg-Whitney Conditions) Any data fk can be interpolated
uniquely at an increasing sequence of points tk by a continuous spline

∑
k ukbk if and only

if bk(tk) > 0 for all k.
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Intuitively, for uniform B–splines bk, choosing tk to be the center ξk of supp bk appears
to be the optimal choice. Unfortunately, the number of relevant B–splines for a bounded
interval D is larger than the number of interpolation conditions. As is illustrated in Figure
7 for degree 3, some of the points tk = ξk lie outside of D. There are several possible
remedies:

• Place additional interpolation points near the left and right endpoints of D.

• Impose boundary conditions at the endpoints of D (typically derivative values).

• Remove knots near the endpoints of D (not-a-knot condition).

Unfortunately, none of these choices has a natural multivariate analogue for domains which
are topologically not of tensor product type.

ξ−3 0 h D 1 ξ9

b−3 b9

Figure 7: Cubic interpolation at B–spline centers

With the definitions of the previous section in mind, a simple alternative suggests itself:

Definition 4.1 (Interpolation with Extended B–Splines) With ebi, i ∈ I, the ex-
tended B–splines with respect to an interval D, an extended spline interpolant

uh =
∑
i∈I

ui
ebi

matches given data fi at the B–spline centers ξi. The coefficients ui are determined by
solving the linear system

AU = F, ai,i′ = ebi′(ξi) .

A multivariate generalization of this new interpolation variant is straightforward. By
definition, the centers ξi of the inner B–splines lie inside the domain D and can be used as
interpolation points, corresponding one-to-one to the stabilized basis functions ebi.
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For the example in Figure 7, there are two outer B–splines with centers at ξ−3 = −h
and ξ9 = 1 + h, i.e., I = {−2, . . . , 8} and J = {−3, 9}. According to definition (1) (with
d = 1, n = 3), the extension coefficients corresponding to I(−3) = {−2,−1, 0, 1} and
I(9) = {5, 6, 7, 8} are

e ·,−3 : 4,−6, 4,−1, e ·,9 : −1, 4,−6, 4 .

For example,

e−1,−3 =
−3− (−2)

−1− (−2)
· −3− 0

−1− 0
· −3− 1

−1− 1
= −6 .

This yields the extended B–splines

eb−2 = b−2 + 4b−3,
eb−1 = b−1 − 6b−3,

eb0 = b0 + 4b−3,
eb1 = b1 − b−3,

eb2 = b2, . . .

The corresponding interpolation matrix is easily computed from the B–spline values 1/6,
2/3, 1/6 at the grid points:

A =



2
3

+ 4
6

1
6
− 1 0 + 4

6
0− 1

6
1
6

2
3

1
6

0
1
6

2
3

1
6

. . . . . . . . .
1
6

2
3

1
6

0 1
6

2
3

1
6

0− 1
6

0 + 4
6

1
6
− 1 2

3
+ 4

6


.

For example, the second entry in the first row is the value of the second extended B–spline
at the first inner B–spline center:

eb−1(ξ−2) = b−1(ξ−2)− 6b−3(ξ−2) =
1

6
− 6 · 1

6
= −5

6
.

Since each B–spline is nonzero only at three evaluation points, the extension procedure
only influences the first and last row of A. The other rows coincide with the standard
cubic interpolation matrix.

Figure 8 illustrates the convergence of extended spline interpolation. We choose f(x) =
exp(x) sin(2πx) as a test function and obtain the standard order of convergence O(hn+1).
The small Matlab program, which generates the figure, can be downloaded from the
website www.web-spline.de and is easily modified to experiment with our interpolation
method.

5 Collocation for Poisson’s Problem

As already indicated in the introduction, the concept of collocation is as simple as con-
vincing. To approximate the solution u of Poisson’s problem

−∆u = −
d∑

ν=1

∂2u

∂x2
ν

= f in D, u = 0 on ∂D, (2)
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Figure 8: Error of extended spline interpolation for degrees n = 2 (•), 3 (N), 4 (�) and
5 (?) as a function of the grid width h

on a bounded domain D ⊂ Rd, d ∈ N, by a linear combination

uh =
∑
i∈I

uiBi ∈ weBh

of WEB–splines of degree n ≥ 2, vanishing on ∂D by construction, we require uh to satisfy
the governing differential equation at all centers ξi of B–spline supports for which i is an
inner index, i. e.

−∆uh(ξi) = −
∑
i′∈I

ui′∆Bi′(ξi) = f(ξi) for all i ∈ I, (3)

cf. Figures 9 (left) and 11 (right). Due to the one–to–one correspondence established above
between the basis functions Bi and the chosen collocation points, (3) forms a linear system

CU = F, ci,i′ = −∆Bi′(ξi),

with the same number of equations given and coefficients ui′ to be determined. Since the ξi
are located at the centers of the grid cells for even n, quadratic WEB–splines are admissible
as basis functions despite having discontinuous second derivatives across the grid lines.

Compared with current techniques for solving boundary value problems like finite ele-
ment or finite volume methods, which are typically restricted to a specific class of problems,
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collocation is a much more general concept. Any differential operator L, linear or nonlinear
and of arbitrary order, could replace the Laplacian in (2). We only need to ensure that the
functional basis is smooth enough to be inserted into the resulting differential equation.

Collocation techniques appear in the literature yet before 1940 [20, 11]. Progress in
analyzing the method was first made in the case of univariate problems and polynomial
bases, leading to convergence and stability results for different choices of collocation points
in the interval domain [22, 36, 35]. From the late 1960s on, spline functions were preferred to
global polynomials as collocation bases for solving ordinary differential equations [28, 7].
In contrast, multivariate collocation developed much slower, restrained in particular by
the lack of any obvious concept of how to incorporate essential boundary conditions into
the collocation space for boundary value problems on general domains in two or more
dimensions. Research thus focused on approximation on rectangular domains, using splines
of third [8, 19, 27] or higher degree [25]. The principal class of curved domains, for which
the method was successfully adopted, comprised all regions that are given as images of
rectangles or cuboids under smooth coordinate transforms [5, 2], or can be decomposed
into a finite number of such curvilinear patches or blocks, respectively [3, 32].

Our implementation of WEB–collocation for Poisson’s problem on plane or spatial
domains is fully self–contained, though sharing many concepts and structures with the
FEMB finite element package presented in [15]. For the sake of consistency, the domain
D is supposed to be scaled to fit into the d–dimensional unit cube Q = [0, 1]d. A weight
function w, implicitly defining D, is specified by the user, along with the right–hand side f
of (2), the spline degree n and the number H = 1/h of grid cells per coordinate direction.
The main steps of the algorithm are then the following:

Step 1: Precomputing Spline Values and Extension Coefficients

As all B–splines entering the WEB–spline basis, together with their partial derivatives of
order ≤ 2, need to be evaluated only at the collocation points, located at the centers ξi of
inner B–spline supports, we can determine and store the values

∂αbk′(ξk), α ∈ Nd
0, |α| ≤ 2, k, k′ ∈ K,

right in advance before starting the actual computation. Due to translatorial symmetry of
B–splines and boundedness of their supports, the number of nonzero values, that actually
need to be stored per order of derivative, is limited to n2 if n is odd, or (n+1)2 if n is even.
In a similar preprocessing step, we can compute and tabulate all extension coefficients ei,j
potentially appearing in any of the WEB–splines Bi. Namely, according to (1), the value
of ei,j only depends on the relative position of the indices i, j and `(j).

Step 2: Classification of B–Splines

Given the domain D : w > 0, we determine a box S ⊇ D and define the array K̃ ⊂ Zd as
the set of indices of B–splines which do not vanish on S. Hence, all relevant indices are
contained in K̃. In order to split the elements of K̃ into inner, outer, and irrelevant B–
splines, we evaluate the weight function w at all centers ξi of B–spline supports. Applying
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Definition 3.1, we include bi in the set of inner B–splines, if w(ξi) > 0. In the sense of
Definition 2.2, the remaining B–splines must be checked for an overlap of their support
with D. However, as a slight modification, we suggest to regard bj as outer if and only
if bj(ξi) > 0 for some inner index i ∈ I. This criterion is much easier to check and does
not alter the linear system to be solved. The two approaches reveal differences only when
evaluating the approximate solution uh at points which are very close to the boundary
of the domain, and typically, these differences are significantly smaller than the overall
approximation error.

Step 3: Constructing the WEB–Spline Basis

By traversing the set I of inner indices, we can identify all sub-arrays of size n + 1 and
store their centers ηi. Then, for each j ∈ J , we determine the nearest of these centers to
obtain the array I(j). To store extension coefficients and other data in standard matrix
format for further processing, we need to convert multi–indices to sequences of consecutive
univariate indices. Applying, for instance, lexicographic ordering to the set of relevant
indices K ⊂ Zd, we obtain the index set K∗ = {1, 2, . . . ,#K} ⊂ N. The subscript star
also identifies corresponding indices, i.e., k∗ is the index in K∗ corresponding to k ∈ K. In
an analogous way, we derive I∗ from I and identify i∗ ∈ I∗ with i ∈ I. Now, the extension
matrix E of size #K ×#I is defined by

E(k∗, i∗) =


1 if k = i ∈ I
ei,j if k = j ∈ J and i ∈ I(j)

0 else.

That is, rows of E corresponding to an inner index just refer to the index itself, while rows
corresponding to an outer index contain the extension coefficients. The ei,j can be read
from the table of precomputed values, according to Step 1.

Step 4: Assembly of the Collocation System

The assembly of the collocation system corresponding to the WEB–basis is fairly easy.
First, we apply the differential operator to the relevant weighted B–splines and evaluate
at the centers ξi to obtain a #I ×#K-matrix L:

L(i∗, k∗) = −∆(wbk)(ξi), i∗ ∈ I∗, k∗ ∈ K∗.

This step can also be made efficient by using the precomputed values according to Step 1.
Second, multiplication with the extension matrix yields the collocation matrix C = LE.
This matrix is square and contains, as requested, the entries C(i∗, `∗) = −∆(w eb`)(ξi).
Third, we define the vector F by evaluating the function f at the centers ξi, i.e., Fi∗ =
f(ξi), i∗ ∈ I∗. Now, the linear system to be solved reads CU = F .

Step 5: Solving and Postprocessing

For the purpose of keeping our code short and comprehensible, we solve the linear system
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CU = F by applying Matlab’s standard backslash command, which is sufficiently fast
and stable for dealing with the sample problems presented in this paper. It is, though,
evident that a high–performance solver, suited for general non–symmetric systems with
high sparsity, should be employed instead when moving to more complex computations. In
a final step, the coefficients ui in terms of the WEB–spline basis are recombined according
to

uh =
∑
i∈I

uiBi =
∑
i∈I

ui
γi
wbi +

∑
j∈J

∑
i∈I(j)

ui
γi
ei,j wbj =

∑
k∈K

ũk wbk,

yielding a representation of uh with respect to the regular B–spline basis of Bh. Again,
this can be implemented through a multiplication with the extension matrix E.

For a rough visualization and estimation of approximation errors and rates of conver-
gence, we use the values of w and bk at the centers of all B–spline supports, which have
already been computed in the course of the algorithm, so that no additional evaluation of
functions is necessary.

6 Convergence Rates and Computing Times

As a first illustration of the performance of our collocation algorithm, we consider a planar
free–form domain described by a weight function in Bézier form,

w(x) =
m∑

k1=0

m∑
k2=0

wk b
m
k (x1, x2) ,

where bmk (x) = bmk1(x1) b
m
k2

(x2) are the bivariate Bernstein polynomials of degree m, cf. [14].
The example shown in Figure 9 was generated using m = 4 and the matrix W = (wk) of
Bernstein coefficients displayed at the right side of the figure.

W =


−1 0 −8 0 −1

0 16 −10 16 0
−8 −10 4 −10 −8

0 16 −10 16 0
−1 0 −8 0 −1



Figure 9: Bézier domain with grid and collocation points ξi, i ∈ I (left), and matrix of
coefficients (right)

More generally, we could use bivariate splines for defining weight functions. In this
case, the collocation basis functions are products of linear combinations of B–splines. The
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grid widths need not be the same; usually a coarser mesh is used for the function w than
for the collocation grid. If a common knot spacing is desired, e.g., for a more efficient
implementation, this can be accomplished via subdivision.

Returning to our example, we chose u(x) = ew(x) − 1 as a “manufactured” solution
to Poisson’s problem. Setting f = −∆u, we computed approximations to u using WEB–
splines of degree n = 2, . . . , 5 on grids with up to 3200 cells per coordinate, resulting
in linear systems of about 5.3 million unknowns. The maximal pointwise errors and ac-
cumulated computation times are shown in the two diagrams of Figure 10. We observe
convergence at order O(hn) for splines of even degree n, and O(hn−1) for odd n, in full
conformance with the L∞ rates obtained by isogeometric collocation for boundary value
problems on a plane domain [2, 3, 32]. Although not yet fully optimized with respect to
the linear solver, our program returned the results, even for highly refined discretizations,
within a few minutes at most.
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Figure 10: Error (left) and computation time (right) of 2D WEB–spline collocation for
degrees n = 2 (•), 3 (N), 4 (�) and 5 (?) as functions of the grid width h

It is one of the most convenient features of WEB–spline collocation that, due to the
regular pattern of the underlying grids, the two–dimensional algorithm is easily adapted
to three dimensions. The only action to be taken is to replace doubly by triply indexed
array structures, expand double to triple loops, and provide trivariate instead of bivariate
weight and force functions. Hence, our Matlab codes for plane and for spatial problems
do not differ by a single line in length.

A three–dimensional test domain D is given by the smooth weight function2

w(x) = 1/4 − (y2
1 + y2

2/3 − 1)2(y2
1/4 + y2

2/4 − 1)2 − y2
3, yν = 5(xν − 1/2),

cf. Figure 11. We define u(x) = w(x) ex1+x2x3 , for x ∈ D, as true solution to (2) and, as
before, recover u by entering f = −∆u as right–hand side into our algorithm.

2Many other beautiful examples of domains bounded by compact algebraic surfaces can be found at
http://virtualmathmuseum.org/Surface/gallery o.html#AlgebraicSurfaces.
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Figure 11: Spatial domain D, defined by w(x) > 0 (left), and cross section of grid with
collocation points ξi, i ∈ I (right)

Figure 12 shows the decrease of the relative L2 error, together with the increase in
computation time, for a sequence of progressively refined grids (H ≤ 140) and WEB–
splines of degrees 2 to 5. Like in the two–dimensional case, we observe significantly higher
accuracies for WEB–splines of degree n ∈ {4, 5}, and the obvious pairing of subsequent
even and odd orders, as is characteristic for collocation methods. The runtimes, to end
with, were again short enough to await the results in front of the computer. For example,
a tricubic approximation with 224 376 B–spline coefficients was computed in less than 82
seconds on an Intel Core i7 – 3770 machine (2.8 GHz, 16 GB memory).
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Figure 12: Error (left) and computation time (right) of 3D WEB–spline collocation for
degrees n = 2 (•), 3 (N), 4 (�) and 5 (?) as functions of the grid width h

The small runtimes are partly due to the sparseness of the collocation system. For
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example, for tricubic B–splines, Ritz–Galerkin matrices have an average bandwidth of
(2 · 3 + 1)3 = 343, while the bandwidth for WEB–collocation is 33 = 27. As a conse-
quence, the total computation time t grows only moderately with the dimension, which
is proportional to h−3. The dashed line in the right diagram of Figure 12 suggests that
t ≈ O(h−4), which is only slightly worse than the optimal linear growth O(h−3).

7 Conclusion

We have described a collocation method with WEB–splines for Poisson’s equation with
homogeneous Dirichlet boundary conditions on arbitrary multidimensional domains. Re-
gardless of the shape of the domain, there is a canonical unique correspondence between
the basis functions and the collocation points which are the B–spline centers inside the
domain.

The method is simple to implement, and a sample Matlab code can be downloaded
from the website www.web-spline.de. Since no numerical integration is involved, the dis-
cretization is considerably less time-consuming than for standard Ritz-Galerkin methods.

Numerical tests confirm the error behavior expected from the classical univariate theory.
Theoretical derivation seems out of reach at present and remains an open question to our
as well as to any other multivariate collocation method. We recall, however, that for
WEB–spline approximations, the residual can be evaluated at arbitrary points, which, in
conjunction with bounds on derivatives, provides a convenient a posteriori error bound.

The generalization to other elliptic boundary value problems (e.g., biharmonic equation,
system of linear elasticity, eigenvalue problems, . . .) with homogeneous essential boundary
conditions is straightforward. Moreover, from the univariate example in Section 4, it is
apparent that the method can also be used for interpolating functions and data on arbitrary
free–form domains.

The implementation of natural and mixed boundary conditions is less obvious. It is
conceivable that the solution structures developed by Rvachev and his collaborators can be
adapted to suit the collocation approach. Another topic of current research is collocation for
hierarchical bases. This generalization is essential for treating singular problems efficiently.

We are optimistic that progress on the variety of open problems will be possible, making
WEB–collocation a very competitive alternative to standard Ritz-Galerkin approximation
with B–splines.
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