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Sylow Numbers from Character Tables
and Integral Group Rings

W. Kimmerle and I. Köster

1. Introduction

Groups naturally occur as symmetries of objects. The systematic study of finite groups was
started by Ludwig Sylow in 1872. The Sylow theorems give the existence and the number of
maximal p-subgroups. The composition of the so-called Sylow p-numbers was analyzed by Marshall
Hall in [5]. At the end of the 20th century the question arised what influence Sylow p-numbers
have on properties of the given group.

In a series of articles finite groups with given Sylow numbers were studied. Florian Luca and
Wenbin Guo gave evidence that for certain Sylow numbers the given group has to be soluble
[17], [4], see also [18], [15]. Jiping Zhang and Naoki Chigira found an equivalent condition for
p-nilpotency [22], [3]. In 2006, Xianhua Li showed in [16] the uniqueness of Sylow numbers for
finite simple groups (excluding Bn(q) and Cn(q)).

Alexander Moretó gave in [18] a criteria for the existence of nilpotent Hall π-subgroups as a
function of Sylow numbers. As nilpotent Hall π-subgroups are determined by the character table
(see [12]), this leads to the question, whether Sylow numbers are determined by character tables.

In this note only finite groups G are considered. By π(G) we denote the set of all prime divisors
p of |G|. The Sylow p-number np(G) is the number of all Sylow p-subgroups and defined as
np(G) = |G : NG(P )|, whereas NG(P ) is the normalizer of a Sylow p-subgroup P ∈ Sylp(G) in G.
The set {np(G) | p ∈ π(G) } is called Sylow numbers sn(G).

In the first section we analyze carefully the situation under extensions. Using nilpotent and cen-
tral extensions this enables us to prove that Sylow numbers of supersoluble groups are determined
by their character table. This is an immediate corollary of Theorem 3.4. In the second section we
consider groups with isomorphic integral group rings and prove that the Sylow numbers of a p -
constrained group are determined by its integral group ring, cf. Theorem 4.2. In particular this
shows that the integral group ring of a finite soluble group G determines its Sylow numbers. The
reason that we get a stronger result for integral group rings is the so - called F ∗ - theorem [19],
see also [8]. This shows that a finite group G is determined by ZG up to isomorphism provided
the generalized Fitting subgroup F ∗(G) is a p - group. This is certainly not the case for character
tables. Note that in general ZG does not determine G up to isomorphism, the smalles counterex-
ample known is a group of order 9728 · 221 [7]. We remark that we do not know an example of a
finite group G such that X(G) does not determine sn(G).

2. Sylow numbers

As mentioned above G denotes always a finite group. The following result of Marshall Hall
yields a formula for Sylow p-numbers by Sylow numbers of certain subgroups and factor groups:

Theorem 2.1. [5, Theorem 2.1] Let G have a normal subgroup M and assume P ∈ Sylp(G).
Then

np(G) = np(M)np(G/M)np(NPM (P ∩M)/(P ∩M)).



2

The theorem contains the following basic observations for group extensions. We note that these
observations may be easily established with direct arguments.

Proposition 2.2. Let G have a normal q-subgroup Q.

(i) If p 6= q, then np(G) = np(G/Q)np(PQ).
(ii) If p = q, then np(G) = np(G/Q).
(iii) Let E be a finite central extension of G with kernel K. Then np(E) = np(G) for each

prime p.

Proof: (i) and (ii) are immediate from 2.1. For (iii) we use induction. So we may assume that
K is of prime order.

Let p be a prime and denote by P a Sylow p - subgroup of G. If P ∩ K = {1} then by (i)
follows np(G) = np(G/K)np(PK). But np(PK) = 1 because K is central. If P ∩K 6= {1} then
P ∩KEG and (ii) yields np(G) = np(G/(P ∩K)). �

The structure of Sylow p-numbers only depends on composition factors of G, as stated in the
next proposition:

Theorem 2.3. [5, Theorem 2.2] The number of Sylow p-subgroups is the product of factors of the
following two kinds:

(i) the number np(X) of Sylow p-subgroups of a simple group S and
(ii) a prime power qt dividing the order of a chief factor T of G and qt ≡ 1 mod p.

A Sylow number of a soluble group therefore is the product of prime powers qt which divides
the order of a chief factor and each factor is congruent 1 mod p.

In order to use induction (especially for soluble groups) with quotient modulo normal subgroups
K where p /∈ π(K) the main problem is to determine the Sylow number of PK. A first basic
observation is the following.

Proposition 2.4. [2, Proposition 1C] Let K E G and K ∩ P = {1}. Then

np(PK) = |K : CG(P ) ∩K|
and

np(G) = np(G/K) · |K : CG(P ) ∩K|.

For the convenience of the reader we include a slightly more direct proof.

Proof: Let P ∈ Sylp(G) and assume that P g ∈ Sylp(PK). Due to the trivial intersection of
P and K and that K has order coprime to P the Schur - Zassenhaus theorem yields k ∈ K with
P g = P k.

Suppose for k1, k2 ∈ K, that P k1 = P k2 . Then k1k
−1
2 ∈ NG(P ) ∩ K, i.e. np(PK) = |K :

NG(P ) ∩K|.
It remains to prove, that NG(P ) ∩ K = CG(P ) ∩ K. Let k ∈ NG(P ) ∩ K. It follows that

p−1k−1pk ∈ K ∩ P = {1} for every p ∈ P . Consequently pk = kp for every k ∈ NG(P ) ∩K and
every p ∈ P . Thus, the result holds. �

In some special cases it is possible to obtain the Sylow numbers explicitely.

Corollary 2.5. Let G be a finite Frobenius group with Frobenius kernel K and Frobenius comple-
ment H. Let sn(H) = {a1, . . . , an}. Then

sn(G) = {1, |K| · a1, . . . , |K| · an}.
In particular if H is nilpotent then sn(G) = {1, |K|}.

Proof: If p ∈ π(K) then np(G) = 1 because by J. Thompson the Frobenius kernel is nilpotent.
If p /∈ π(K) then we get by Propostion 2.4 that

np(G) = np(G/K) · |K : CG(P ) ∩K|.
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Because H acts fixpointfreely on K we have always CG(P )∩K = 1. This completes the proof. �

Another obvious consequence of Proposition 2.4 is the following.

Corollary 2.6. Assume K E G, where p /∈ π(K). Then the following assertions are equivalent:

(i) np(G) = np(G/K),
(ii) K ⊆ NG(P ),
(iii) K ⊆ CG(P ).

Especially for induction with respect to soluble groups the following result is helpful.

Proposition 2.7. Let G be a finite group with non-trivial normal subgroups M and N of coprime
order. Suppose that all Sylow numbers of np(G/M), np(N) and np(G/MN) are known. Then
np(G) is known for each p /∈ π(M) ∪ π(N).

Proof. Because p /∈ π(M) we get by Proposition 2.6

np(G) = np(G/M) · |M : M ∩ CG(P )|,

where P ∈ Sylp(G) and similarly, because p /∈ π(N)

np(G/M) = np(G/MN) · np(N) · |MN/N : CG/N (PN/N) ∩MN/N |.

Consider the restriction κ|CG(P )∩M : CG(P )∩M → CG/N (PN/N)∩MN/N of the reduction map
κ : G→ G/N . This map is injective. Suppose for x ∈M that xN ∈ CG/N (PN/N), i.e. for every
y ∈ P we obtain y · x = x · y · n for some n ∈ N . But as n = [x, y] ∈M and M ∩N = 1 the map
is also surjective and therefore

|M : M ∩ CG(P )| = |MN/N : CG/N (PN/N) ∩MN/N |.

As np(G/M), np(N) and np(G/MN) are known, the result follows. �

3. Character Tables

We first collect some of the known results on ordinary character tables concerning properties
of the group G reflected by X(G).

3.1. Let G be a finite group.

(i) The second orthogonality relations show that X(G) determines the length of the conjugacy
classes of G.

(ii) The lattice of normal subgroups may be constructed out of X(G), see [11, p.23]. The normal
subgroups of G are given by intersections of the kernel of the irreducible characters. For
each normal subgroup N of G the conjugacy classes in N are determined. Moreover the
order of |N | is determined.

(iii) Let C be a conjugacy class and g ∈ C. Then by a result of G. Higman [11, Theorem
(8.21)] the prime divisors of the order of g may be calculated from X(G).

(iv) For a given N E G the ordinary character table X(G/N) may be computed out of the X(G)
by deleting appropriate lines and columns [11, p.24].

Of course the question whether the character table determines the Sylow numbers has an
affirmative answer when the character table determines the group up to isomorphism. This is for
example the case when G is semisimple, i.e. the direct product of non-abelian simple groups [13,
Satz 6.3], see also [12, Theorems 4 and 5].

Proposition 3.2. Suppose that the finite group G is quasinilpotent. Then X(G) determines sn(G).

Proof. Quasinilpotent groups are central extensions of semisimple groups. By Proposition 2.2
Sylow numbers remain unchanged under central extensions and by 3.1 (iv) and [13] the result
follows immediately. �
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Lemma 3.3. Let KEG and P ∈ Sylp(G), then it is possible to decide with X(G) whether the
intersection K ∩ CG(P ) is trivial or not.

Especially, if K is cyclic of prime order q, then np(G) may be calculated from X(G) provided
np(G/K) is known.

Proof: Regarding the character table we obtain using 3.1 (iii) the conjugacy classes which are
contained in K. By 3.1 (i) we can compute |CG(h)| for each h ∈ K. If |P | divides |CG(h)|, then

h ∈ CG(P g) for some g ∈ G. Consequently hg
−1

centralizes P . Conversely, if a non-trivial element
h of K centralizes P , then |P | divides the order of its centralizer.
If q = p then np(G) = np(G/K). In the other case we use Proposition 2.4. As K has prime order
the index |K : K ∩ CG(P )| equals q if and only if there is a non-trivial conjugacy class kG ∈ K
such that |P | divides |CG(k)|. �

Note that the previous result holds for arbitrary cyclic subgroups K. In general we cannot
decide by means of the character table whether the whole conjugacy class gG of g is contained in
CG(P ). For nilpotent normal subgroups of a group we are able to compute the Sylow number of
each factor seperately.

Theorem 3.4. Suppose that the finite group G has a nilpotent normal subgroup N such that G/N
is nilpotent then X(G) determines sn(G).

Proof: By 3.1 we may assume that the Sylow numbers of all proper quotients of G are given.
If p ∈ π(N), then the intersection P ∩ N , whereas P ∈ Sylp(G), is normal in G, as P ∩ N is
a characteristic subgroup of N and N is normal in G. By Proposition 2.2 the Sylow p-number
remains unchanged if we consider np(G/(P ∩N)) instead of np(G).
So assume that p /∈ π(N). Then P ∩N = 1 and we obtain with Proposition 2.4

np(G) = np(PN).

A nilpotent group N is the direct product of its Sylow subgroups, i.e. N = P1 × . . . × Pk,
Pi ∈ Sylpi

(N) and pi - p for all i. Consider PN/C(P1), where C(P1) E PN denotes the center of
P1. By 2.1 we get

np(PN) = np(PN/C(P1)) · np(PC(P1)).

Proposition 2.4 yields np(PC(P1)) = |C(P1) : C(P1) ∩ CG(P )|. Assume a ∈ C(P1) ∩ CG(P ).
Consequently, as N is nilpotent, we obtain that a ∈ C(N). By assumption G/N is nilpotent,

therefore for each P̃ ∈ Sylp(G) there exists n ∈ N such that P̃ = Pn. Then it follows a ∈ CG(P̃ ),
as

P̃ a = (Pn)a
a∈C(N)

= (P a)n
a∈CG(P )

= Pn = P̃ .

Let ag ∈ aG. Since P ag

= P we see that aG is contained in CG(P ). Therefore |np(PC(P1))| may
be computed by the character table. Note that the Sylow number np(PN/C(P1)) = nP (G/C(P1))
is given by induction and thus np(G) is determined. �

Proposition 3.5. Suppose that G has a supersoluble normal subgroup N such that each chief
factor of N is also a chief factor of G and np(G/N) is known for p ∈ π(G/N). Then np(G) may
be calculated from X(G).

Proof. By assumption a maximal normal subgroup M within N is of prime index q in N . Now
Lemma 3.3 implies that np(G/M) is known. By induction the result follows. �

Corollary 3.6. Suppose that G is supersoluble. Then X(G) determines sn(G).

Proof. The corollary follows immediately from Proposition 3.5 putting N = G. �

Next we consider the case of cyclic Sylow subgroups. The following is obvious.

Lemma 3.7. Suppose that G has a cyclic Sylow p - subgroup and assume that the order of the
representatives of the conjugacy classes of p - elements of G in the character table X(G) is given.
Then np(G) may be computed from X(G).
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Proof. Let pa be the maximal power of p dividing |G|. Let g be a p - element of order
pa. The length L of the conjugacy class of g may be calculated from X(G). Moreover by as-
sumption the number m of conjugacy classes of p - elements of order pa is given.Let P = 〈g〉.
Then L = |G/CG(P )| and because in each conjugacy class of elements of order pa are precisely
|NG(P )/|CG(P )| elements of P we get that

pa − pa−1 = m · |NG(P )|
|CG(P )|

,

therefore

np(G) = L ·m · 1

pa−1 · (p− 1)
.

�

Remarks. The character table with the power map on the conjugacy classes (i.e with given
headline) is usually called the spectral table Spec(G) of G. If the spectral table is given then
the order of the class representatives may be calculated via the power map and the additional
assumption in the previous lemma is satisfied. Of course the same holds if the prime p divides |G|
only with the first power.
In general the character table without the headline does not determine the order of the repre-
sentatives of all classes. By 3.1 (iii) however one can decide which primes divide the order of
arepresentative.

For the convenience of the reader we recall the following notions given in [12].

Definition 3.8. Let G and H be finite groups.

• A class structure of G is a labelled poset given by its normal subsets such that the label
contains at least the size of the corresponding subset.

• A class structure X is called of type JH if the labels give the information which elements
of X are normal subgroups and which are of the form N · C for some conjugacy class C
of G and NEG.
X is called of type JHS if it is of type JH and additionally the labels indicate for all

primes p which conjugacy classes contain elements of order a power of p.
X is called of type JHB if X is of type JH and the labels contain the power map on

the conjugacy classes.
• A bijection τ : G → H is called a class correspondence if it gives a bijection on the

conjugacy classes of G and H.
τ is called of type JH if it is a bijection on the normal subgroups of G and H and if

τ(N · C) = τ(N) · τ(C) for each normal subgroup N and each conjugacy class of G.
τ is called of type JHS if it is of type JH and τ(x) is a p - element if, and only if, x is

a p - element for each prime p.
τ is called of type JHB if it is of type JH and τ(C)n = τ(Cn) for each n ∈ N and all

conjugacy classes C of G.

Remarks. That JH comes from Jordan-Hölder, JHS from Jordan-Hölder-Sylow and JHB from
Jordan-Hölder-Brauer is explained in [12, §1] as well as the following relationship with spectral
and character tables.

• If Spec(G) = Spec(H), then G and H are in class correspondence of type JHB.
• If X(G) = X(H), then G and H are in class correspondence of type JHS.
• If G and H are in class correspondence of type JHB, then G and H are in G and H are

in class correspondence of type JHS.

In terms of class structures (cf. [12]) Lemma 3.7 may be strengthened. Obviously a class
structure on G of type JHB determines np(G) provided G has cyclic Sylow p - subgroups. But in
this case the situation is even better.
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Proposition 3.9. Let G be a finite group and suppose that G has cyclic Sylow p - subgroups.

(i) Then the order of the representatives of the conjugacy classes of p - elements in X(G) is
determined by X(G) provided G is p - soluble.

(ii) If H is a group which is in class correspondence of type JH to G then H has also cyclic
Sylow p - subgroups.

Proof. (i) X(G) determines X(G/N) for each normal subgroup N in a way that the induced
map on the conjugacy classes of G is given. Therefore we can reduce by Op′(G) and may suppose
that Op′(G) = 1.

As G is p-soluble, the Fitting subgroup of G is a p - group and because Op′(G) = 1 we have that
CG(F (G)) ≤ F (G). As the Sylow p - subgroups are cyclic it follows that G has a normal cyclic
Sylow p - subgroup P . By Lemma 3.1 (ii) X(G) shows precisely which conjugacy classes belong
to normal subgroups of G sitting inside of P . Because P is cyclic P has for each divisor d of its
order precisely one subgroup of order d. Thus we find the conjugacy classes having a generator of
P as representative and part (i) is proved.

Suppose that G and H are in class correspondence of type JH. Suppose that G is p-soluble.
Using [12, Lemma 1.8] we may assume that Op′(G) = Op′(H) = 1. The normal subgroup cor-
respondence given by a class correspondence of type JH shows that H has a normal Sylow p -
subgroup P ∗ which has for each divisor d of its order precisely one normal subgroup of order d.

We claim that this implies that P ∗ is cyclic. For M := P ∗/Φ(P ∗) is a semisimple Fp(G/P ∗)
- module because |G/P ∗| and |P ∗| are coprime. By the normal subgroup structure of P ∗ we see
that M has to be of order p. So Φ(P ∗) has index p in P ∗ and it follows that P ∗ is cyclic. This
proves part (ii) in the p - soluble case.

Suppose now that G is not p - soluble. We still can assume that Op′(G) = 1. As G is not p -
soluble it follows from a theorem of R. Brauer [2, Theorem 3C] that for a normal subgroup N of G
either P ⊆ N or P ⊆ G/N for some P ∈ Sylp(G). As Op′(G) = 1 we obtain P < N . Thus G has
precisely one minimal normal subgroup N . Since G is not p - soluble and p divides precisely one
chief factor by Brauer’s theorem we get that the generalized Fitting subgroup F ∗(G) is a simple
nonabelian group S and it follows that G is an almost simple group of type S 1. Moreover p does
not divide |G/S|. A class structure of type JH determines the chief factors [12, Theorem 5]. Thus
S is determined up to isomorphism and a group H in class correspondence of type JH to G must
be an almost simple group of type S such that p does not divide |H/S|. Consquently H has cyclic
Sylow p - subgroups as well. So part (ii) is completely established. �

If G has cyclic Sylow p - subgroups then the order of the centralizer of a Sylow p - subgroup
P coincides with the smallest order of the centralizer of a p - element. Thus X(G) or even a
class structure of type JHS of G determine |CG(P )|. The inertia group of the principal p - block
of CG(P ) in NG(P ) is NG(P ). Let B0 be the principal p - block of G. Then the celebrated
Brauer - Dade theory of cyclic blocks shows that |NG(P ) : CG(P )| coincides with the number of
non-exceptional characters in B0 [6]. Consequently X(G) determines np(G). We show that even
a class structure of type JHS determines np(G) provided G has cyclic Sylow p - subgroups.

Theorem 3.10. Suppose that G has a cyclic Sylow p - subgroup and let H be a group such that
G and H are in class correspondence of type JHS. Then np(G) = np(H). Moreover np(G) may be
calculated from data given by a JHS - class structure.

Proof. By Proposition 3.9(ii) we know that H has as well a cyclic Sylow p - subgroup. The
result is clear when the Sylow p - subgroup is central. Thus we assume that |CG(P )| < |G|. Let h

1 If S is a finite non-abelian simple groups then we call a group A(S) sandwiched between InnS and AutS, i.e.

Inn(S) ≤ A(S) ≤ Aut(S),

an almost simple group of type S.
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be a generator of a cyclic Sylow p - subgroup P . Certainly for each subgroup U of P we have that

CG(P ) ⊆ CG(U) and NG(P ) ⊆ NG(U).

Let U = 〈hk〉. Moreover NG(P ) < NG(U) if, and only if, CG(h) < CG(hk). Consequently
subgroups generated by p - elements with minimal centralizer order have normalizers of the same
order. Let M be the number of conjugacy classes of p - elements g such that |CG(g)| is minimal.
Note that a class correspondence of type JHS determines M . Because Sylow p - subgroups are
cyclic we see that there is a certain n ∈ N0 such that all p - elements of order > pn have centralizers
of minimal length. The number of such p - elements inside of P is pa − pn if |P | = pa. Thus we
get

pa − pn = M ·NG(P )/CG(P ).

The number of all such p - elements in G is M ·|G/CG(P )|. Note that a p - element with centralizer
of minimal order cannot be contained in different Sylow p - subgroups. Consequently

np(G) = M · L

pa − pn
,

where L = |G|/|CG(g)| and g is a p - element with minimal centralizer order. M, L and pa are
given a class structure of type JHS. By Sylow’s theorem np(G) ≡ 1 mod p. Thus there is precisely
one n ∈ N0 such that this congruence holds and np(G) is determined by X(G). �

Looking for possible candidates of soluble groups whose Sylow numbers are not determined by
their character table the following result shows that they must have at least with respect to two
different primes non-cyclic Sylow subgroups.

Proposition 3.11. Let G be a group of order qa · pa1
1 · . . . · p

ak

k , where pi are pairwise different
primes and q is a prime different from all pi. Assume further that all Sylow pi - groups of G are
cyclic. Then X(G) determines sn(G).

Proof. Assume first that G is soluble. Let G be a counterexample of minimal order. Note
that the result holds when G is a p - group. If N is a normal subgroup of G then G/N suffices
the hypothesis of the theorem as well. So we may assume that the result holds for G/N . Assume
that N is a minimal normal subgroup of G and that G is not simple. If N is not a q - group then
N is cyclic and |N | = pki for some i and k ≤ ai. By Lemma 3.3 we get that sn(G) is determined
by X(G). If N is a q - group then nq(G) = nq(G/N) and npi(G) is determined by Theorem 3.9.

Assume now that G is insoluble. By the Feit - Thompson theorem 2 divides |G| and it follows
by [9, IV, Satz 2.8] that q = 2. As in the soluble case it follows that a minimal counterexample
does not have minimal normal subgroups which are cyclic or of order 2m.

Thus the generalized Fitting subgroup F ∗(G) only consists of the layer E(G). As C(G) ≤
CG(F ∗(G)) ≤ F (G) = 1 we see that E(G) is a simple non-abelian group S. Then G is isomorphic
to an almost simple group of type S. By [1], see also [10, p.190], the only simple groups all of
whose Sylow subgroups of odd order are cyclic are PSL(2, 2f ), f > 1, PSL(2, p), p > 3, Sz(22n+1)
and the Janko group J1 of order 23 · 3 · 5 · 7 · 11 · 19.
All these simple groups have a cyclic outer automorphism group. Thus for each divisor m of
|Out(S)| there is precisely one almost simple group of type S of order m · |S|. By 3.1(ii) and [14]
X(G) determines G up to isomorphism and in particular sn(G). �

Corollary 3.12. Let G be a Frobenius group. Then X(G) determines sn(G).

Proof. By Corollary 2.5 it suffices to show that the Sylow numbers of a Frobenius complement
H are determined. Denote byK the Frobenius kernel then X(G) determines X(G/K) = X(H). But
Sylow subgroups of odd order of H are cyclic. Thus H satisfies the hypothesis of Proposition 3.11
and the result follows. �

4. Integral Group Rings

First we collect known results on properties of G determined by ZG.

4.1. Let G be a finite group.
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(i) It is a result due to G. Glauberman that ZG ∼= ZH implicates that X(G) = X(H) [11, 3.17].
Thus G and H share all properties given in 3.1.

(ii) If ZG ∼= ZH then there is a bijection σ : G → H such that the conjugacy classes of σ(g)
and g have the same length and representatives of the same order. Even the power map
on the classes is determined.

(iii) Let NEG and ZG ∼= ZH. Then exists MEH such that ZG/N ∼= ZH/M . If g ∈ N then
σ(g) ∈M , where σ is the bijection in (ii).

(iv) F ∗ - theorem. Assume that the generalized Fitting subgroup F ∗(G/Op′(G)) is a p - group
(i.e. that G is p - constrained) then ZG ∼= ZH implies that G ∼= H [19].

Theorem 4.2. Let G be a finite soluble group and assume that ZG ∼= ZH. Then sn(G) = sn(H).

Proof: If |G| = pk, the result holds. Assume |G| = paqb. By Theorem 2.1 we get

np(G) = np(Oq′(G))np(G/Oq′(G))np(NPOq′ (G)(P ∩Oq′(G))/(P ∩Oq′(G))

= np(G/Oq′(G)).

As Oq′(G/Oq′(G)) = 1, we conclude by the F ∗-Theorem, that G/Oq′
∼= H/Oq′(H) and therefore

np(G) = np(H). For nq(G) = nq(H) consider analogously G/Op′(G).
Assume |π(G)| ≥ 3. If Op′(G) = 1 for any p ∈ π(G) the proposition follows immediately by the

F ∗-Theorem. So we assume that Op′(G) 6= 1 for each p ∈ π(G).
Let p ∈ π(G) be fixed. If Op(G) 6= 1, then we can consider ZG/Op(G) without altering the
Sylow p-number. Note that by 4.1(i) and 3.1(ii) it follows that ZG/Op(G) ∼= ZH/Op(H). Thus
by induction on the order of G we get that np(G) = nP (H).

Without loss of generality we can assume that Op(G) = 1. As Os′(G) 6= 1 for each s ∈ π(G)
and because G is soluble, there exist q, r ∈ π(G)\{p} such that Oq(G) 6= 1 and Or(G) 6= 1. Hall’s
Theorem 2.1 yields (with normal subgroup Oq(G) and P ∈ Sylp(G))

np(G) = np(Oq(G)) · np(G/Oq(G)) · np(POq(G)) = np(G/Oq(G)) · np(POq(G)).

As before we get by induction that np(G/Oq(G)) = np(H/Oq(H)). Instead of P ∈ Sylp(G) we

consider in G := G/Or(G) the Sylow group P = POr(G)/Or(G) ∈ Sylp(G). Denote by Oq(G)

the image of Oq(G) in G. Then again by Theorem 2.1

np(Ḡ) = np(G/Oq(G)) · np(POq(G)).

With respect ot H - using the bar notation as well for reduction modulo Or(H) - we get for a

Sylow subgroup P̃ ∈ Sylp(H)

np(H) = np(H/Oq(H)) · np(P̃Oq(H)).

By 4.1(i) and 3.1(ii) and induction it follows that

np(G) = np(H) and np(G/Oq(G) = np(H/Oq(H).

Thus it suffices to show that np(POq(G)) = np(POq(G)). Denote by x ∈ G the corresponding
element of x ∈ G.
By Proposition 2.4 we obtain that np(POq(G)) = |Oq(G) : CG(P ) ∩ Oq(G)|. If x ∈ Oq(G)

centralizes P , then x centralizes P . Assume there exists x ∈ Oq(G), such that x ∈ CG(P ), but
x /∈ CG(P ). As x does not centralize P , there exists w ∈ P\{1} with x−1wx = wm for some
m ∈ Or(G)\{1}. Thus w−1x−1w = mx.1. But the left hand side lies in the normal subgroup
Oq(G) whileas the right hand side does not because m 6= 1. This contradiction completes the
proof �

x−2wx2 = x−1wmx = x−1wxm = wm2.

Remark. The arguments used in the proof above may be generalized to insoluble groups.
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Finally we show results for special classes of insoluble groups with abelian Sylow 2 - subgroups.

Theorem 4.3.

a) ZG determines n2(G) provided G has abelian Sylow 2 - subgroups.
b) ZG determines sn(G) provided G has an abelian Sylow 2 - subgroup of order ≤ 8.

Proof. a) If G is a finite group with abelian Sylow 2 - subgroup then G has a normal series

1 < M < N < G

such that M = O2′(G), G/N has odd order and N/M is a direct product of simple groups with
abelian Sylow 2 - subgroups and an abelian 2 - group [21]. Again we consider a counterexample
of minimal order.
Suppose that G has a minimal normal subgroup V which is not soluble. Clearly n2(G) = n2(N).
Then V is a normal subgroup of N with CN (V ) ∩ V = 1. Let g ∈ N . Then conjugation with g
induces an inner automorphism of V .

Thus N = CN (V ) · V. It follows that N is a direct product of the form V × CN (V ) and
n2(N) = n2(V ) × n2(CN (V ). Moreover n2(CN (V ) = n2(G/V ). Using 4.1 V is determined up
to isomorphism by ZG and G/V is not a counterexample. Thus we may assume that a minimal
counterexample does not have an insoluble minimal normal subgroup.

If M = 1 then N has to be a 2 - subgroup and G has a normal Sylow 2 - subgroup.
Assume that M 6= 1 and that G contains two minimal normal soluble subgroups of coprime

order then by Proposition 2.7we see that G is not a minimal counterexample.
Finally, if G has only minimal normal subgroups which are q - groups for some prime q then

soc(G) must be contained in M if M 6= 1. Moreover the Fitting subgroup F (G) is a q - group.
Let C = CG(F (G)). Clearly C is normal in G.

If C is not soluble then consider its layer E(C). The components of E(C) involve simple groups
with abelian Sylow 2 - subgroups. All these simple groups do not have a Schur multiplier involving
odd primes. So G has an insoluble minimal normal subgroup.

Thus C is soluble. Its Fitting subgroup F (C) is normal in G and must be a q - group. It follows
that C ⊂ F (G) and G is q - constrained. By the F ∗ - theorem 4.1 we see hat ZG determines G
up to isomorphism. Thus G is not a counterexample.

b) We argue as in part a) till the stage that M = 1. Because by assumption the abelian Sylow
2 - subgroup has order at most 23 it follows that N is either a direct product of a group of order
2 and a non-abelian simple group with Kleinian fourgroups as Sylow 2 - subgroups or it is simple.
In the first case G is a direct product of C2 with an almost simple group of type S and S is
isomorphic to a PSL(2, p). In the second case G is almost simple of type S with S = J1 or a Ree
group. All these almost simple groups are determined by their integral group rings and therefore
in both cases G as well. �
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