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Abstract
We extend the concepts of de Casteljau and de Boor algorithms as well as splines to

geodesic spaces and establish a link to minimization of certain convex functionals. Moreover,
we investigate the relation to Karcher equation and geometric mean in Riemannian manifolds
and present some applications in geometric modeling.

Keywords. Bézier curve, Spline, Bernstein polynomial, Nonlinear subdivision, De Casteljau
algorithm, De Boor algorithm, Karcher equation, Geometric mean, Barycenter, Geometric median,
Convex functional, Geodesic space, Riemannian manifold

1 Introduction

A geodesic space is a metric space where any two points can be joined by a shortest geodesic
realizing the distance between those points. If there is a unique shortest geodesic between any
two points (unique geodesic spaces), affine combination of points is well defined and in turn, the
natural and general setting for de Casteljau and de Boor algorithms is provided. This construction
shares many interesting properties with the special case of manifold-valued data considered in [10]
and [15] (as well as [19] and [16] for subdivision schemes). Moreover, geodesic spaces give rise
to a wider range of applications. A survey on particular geodesic spaces including Alexandrov
and Busemann spaces can be found in [11] and [18]. A recent related work, considering subdivi-
sion schemes in metric spaces and link to barycenters in Hadamard spaces is [3]. Furthermore,
an extrinsic approach to spline curves in embedded manifolds by minimizing energy, and several
significant examples can be found in [6] and [7]. Data refinement in nonlinear geometries is a
substantial problem in geometric processing and has a wide range of applications. Furthermore,
many properties and applications of Bernstein polynomials immediately extend to analogous con-
structions in geodesic spaces. For example, an Rm-valued function f can be approximated by the
polynomial

∑n
i=0 f(i/n)Bni where Bni denotes the i-th Bernstein polynomial of degree n. Similar

results for manifold-valued functions are desirable. For Bernstein polynomials on spheres and
sphere-lie surfaces we refer to [2]. The intrinsic approach in the present work can be used to
construct the minimizer (e.g. geometric mean) of certain convex functionals, Bézier curves and
more generally splines. Usually, to ensure well definedness of our approach, restriction of control
points to a small enough neighbourhood is sufficient. In Riemannian manifolds, the size of this
neighbourhood (for the algorithmic construction of splines to be well defined) is determined by
the injectivity radius and for the minimization task concerning geometric mean and median, by
the convexity radius. There are interesting recent progresses and extensions in this direction to
general CAT (k) spaces, for which we refer to [12], [9] and [17]. In the present work we focus on
geometric modeling.
This work is organized as follows. In the next section, we introduce the construction of Bézier
curves via de Casteljau algorithm in unique geodesic sapces and their relation to certain convex
functionals. Section 3 is devoted to the link between geometric mean, Karcher equation and pre-
ceding results in Riemannian manifolds. The last two sections present rational Bézier curves, de
Boor algorithm, splines and some examples.

2 De Casteljau algorithm and minimizing convex function-
als

We recall a few definitions. Let (M,d) be a metric space. The length L of a curve c ∈ C0([0, 1],M)
is

L(c) := sup{
n−1∑
i=0

d(c(ti), c(ti+1)) : 0 = t0, · · · , tn−1 = 1, n ∈ N}.

c is called geodesic iff there exists ε > 0 with

L(c|[s,t]) = d(c(s), c(t)) whenever |s− t| < ε.
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Definition 1. We call M a unique geodesic space1 iff there exists a continuous map Φ : M×M →
C0([0, 1],M) such that for any two points x, y ∈M

L(Φ[0,t](x, y)) = td(x, y) for all 0 ≤ t ≤ 1.

Any reparametrization of Φ proportional to arclength, provides another shortest geodesic. Now,
suppose that there is a second map Φ̃ with the same properties as Φ. Then

d(Φt(x, y), Φ̃t(x, y)) ≤ d(x, Φ̃t(x, y)) + d(x,Φt(x, y)) = td(x, y)− td(x, y) = 0.

Therefore Φ is unique. We call Φ the affine map of M and use the interval notation for the image
of Φ, i.e., we set

[x, y] = Φ[0,1](x, y), ]x, y[= Φ]0,1[(x, y).

Note that Φ(x, y) is a homeomorphism from [0, 1] onto the geodesic segment joining x and y.
Moreover, in this setting, the notation of betweenness also makes sense:

y ∈ [x, z] ⇔ d(x, y) + d(y, z) = d(x, z).

For example, any neighbourhood of a complete Riemannian manifold within injectivity radius (in
particular, any Hadamard-Cartan manifold) is a unique geodesic space. Euclidean trees, and more
generally, Bruhat-Titz buildings provide examples of nonmanifold geodesic unique spaces. For any
neighbourhood in an open hemisphere of S2 we have

Φt(x, y) =
sin((1− t)ϕ)

sinϕ
x+

sin(tϕ)

sinϕ
y, with ϕ := arccos(〈x, y〉).

Note that in general for geodesic spaces, restriction to a small neighbourhood, does not result in
a unique geodesic space. For instance, every neighbourhood in R2 endowed with the Manhattan
(Taxicab) metric defined by

d(x, y) = |x1 − y1|+ |x2 − y2|,

is geodesic but not unique. Nevertheless, fixing a representative of identified geodesics, an affine
map can be simply defined. For example, let k be any function of the slope of the line through
x and y, c = (x + y)/2, g the line passing through the point c with slope k and x∗ resp. y∗ the
nearest point of g to x resp. y. Consider the geodesic [x, x∗] ∪ [x∗, y∗] ∪ [y∗, y] with [ , ] being
Euclidean. Obviously, the corresponding affine map reads

Φkt (x, y) =


(1− L3t

L1
)x+ L3t

L1
x∗ for 0 ≤ t < L1/L3,

L2−L3t
L2−L1

x∗ + L3t−L1

L2−L1
y∗ for L1/L3 ≤ t ≤ L2/L3,

L3−L3t
L3−L2

y∗ + L3t−L2

L3−L2
y for L2/L3 < t ≤ 1,

where L1 = |x− x∗|, L2 = L1 + |x∗ − y∗| and L3 = L2 + |y∗ − y|.
Throughout this work, unless otherwise stated explicitly, (M,d) will denote a unique geodesic
space and Φ its affine map. Now, we define the de Casteljau algorithm in unique geodesic spaces.
Let k be the smoothness of M and I := [0, 1].

Definition 2. Let i = 0, · · · , n, pi ∈ M and ψ0, · · · , ψn ∈ C0(I, I) bijections with ψj(s) = s for
s = 0, 1. Fix t ∈ I.

r = 1, · · · , n,
p0i := pi, i = 0, . . . , n− r,
tri = ψri (t) := ψi+n−r(t), p

r
i := Φtri (p

r−1
i , pr−1i+1 ).

1Some authors use the terminology, geodesic length space.
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We call the functions ψri parameter maps and I 3 t 7→ pn0 (t) corresponding Bézier curve.
Moreover, we call the maps I 3 t 7→ Bψr0 , · · · , Bψrn−r

, defined by the identity

r∑
i=0

Bψri pi := pr0 with M = R,

Bernstein characteristics of degree r. Usually parameter maps are piecewise linear or broken linear
(for rational Bézier curves). If parameter maps are fixed throughout a discussion, we drop the
subscript ψ and write Bri . Note that for each r, the functions Bri constitute a partition of the
unity. Moreover, for any homeomorphism (resp. Ck diffeomorphism) τ : [a, b] → I, replacing ψri
by ψri ◦ τ just reparametrizes the Bézier curve. Obviously this curve lies in the convex hull

{ΦI([pi, pi+1], [pj , pj+1]) : i, j = 0, · · · , n− 1}

of the control points and has the end point property pn0 (0) = p0, p
n
0 (1) = pn.

Example 3. For ψri = IdI we get the natural generalization of the classic de Casteljau algorithm
to unique geodesic spaces. In this case, if M is Euclidean, then Bernstein characteristics are just
the ordinary Bernstein polynomials of degree n.

Applications of de Casteljau algorithm to some Riemannian manifolds including Lie groups
and more generally, symmetric spaces can be found in [15]. Next we consider a metric real tree.

Example 4. Denote [x, y, z] = 0 iff x, y and z lie in the same geodesic. Let c ∈ M . The Paris
metric dp with respect to c can be defined as

dp(x, y) =

{
d(x, y) if [x, y, c] = 0,

d(x, c) + d(y, c) else.

If (M,d) is the Euclidean plane, then obviously

Φpt (x, y) =

{
(1− t)x+ ty if [x, y, c] = 0,

Rα((1− t)x+ tRα(c− y)) else

whereRα denotes the rotation by the angle sα with s = sign(det(c−x, y−c)) and α = ∠(x−c, y−c).
Bézier curves produced by the algorithm 2 enjoy the following subdivision property.

Theorem 5. For any partition 0 < s1 ≤ · · · ≤ sk < 1 the Bézier curve pn0 can be split into k + 1

Bézier curves p0,n0 on [0, s1], · · · , pk,n0 on [sk, 1].

Proof. For completeness we sketch the proof which is similar to the Euclidean case. Let k = 1 and
s ∈]0, 1[. The map t 7→ st resp. t 7→ s+ t−st is a bijection from [0, 1] onto [0, s] resp. [s, 1]. Hence
applying 2 with parameter maps ψ0,r

i (t) := sψri (t) resp. ψ1,r
i (t) := s+ψri (t)−sψri (t) with t ∈ [0, 1]

yields the desired subdivision pn0 ([0, 1]) = p0,n0 ([0, s])∪p1,n0 ([s, 1]), p0,n0 ([0, s])∩p1,n0 ([s, 1]) = {pn0 (s)}.
Iterating k completes the proof.

The following theorem gives further properties of the de Casteljau algorithm. Proofs are
slight modifications of the Riemannian case presented in [15] and we outline them for the reader’s
convenience.

Theorem 6. Consider control points P := (p0, . . . , pn) and Q := (q0, . . . , qn) in U ⊂ M . Then
the following holds.
a) Transformation invariance: Suppose a Lie group H acts on M by

H ×M 3 (h, x) 7→ hx ∈M
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leaving U invariant, i.e., HU ⊂ U . If the action is segment-equivariant, i.e., for every h ∈ G

h[x, y] = [hx, hy] for all x, y ∈ U.

Then

hB(p0, . . . , pn) = B(hp0, . . . , hpn) for all h ∈ H.

b) Local control: Suppose that M as embedded in an Euclidean space with any norm ‖.‖. Then

‖p− q‖∞ ≤ C‖P −Q‖∞

where C denotes a positive constant depending only on n, U .

Proof. a) The segments [hpi, hpi+1] and h[pi, pi+1] have the same endpoints:

Φ0(hpi, hpi+1) = hpi = hΦ0(pi, pi+1),

Φ1(hpi, hpi+1) = hpi+1 = hΦ1(pi, pi+1).

b) Fix t ∈ I. Due to finiteness of n there is a positive constant K determined by U and Lipschitz
constants of Φ on U such that

‖pri (t)− qri (t)‖ = ‖Φtri (p
r−1
i (t), pr−1i+1 (t))− Φtri (q

r−1
i (t), qr−1i+1 (t))‖

≤ K‖(pr−1i (t), pr−1i+1 (t))− (qr−1i (t), qr−1i+1 (t))‖.

Iteration yields

‖p(t)− q(t)‖ = ‖pn0 (t)− qn0 (t)‖ ≤ Kn‖P −Q‖∞

which immediately implies the desired inequality.

For our approach to minimization of convex functionals using de Casteljau algorithm, we recall
some definitions. Let M be a geodesic space. A function r : M → R is called (strictly) convex iff
r ◦ c is (strictly) convex for any nonconstant geodesic c. In the context of geodesic geometry and
tasks to consider here, we introduce the following notations.

Definition 7. We call a functional e : M ×M → R (uniquely) Casteljau-like iff it is convex in
the second argument and for any t ∈ I and p0, p1 ∈M the point p10 (uniquely) minimizes

M 3 x 7→ E(x) := (1− t) + e(x, p0) + te(x, p1).

For example, if e is (uniquely) Casteljau-like, f : R → R and u : M → R are convex and f
attains its minimum, then for ẽ(x, y) := f(e(x, y)) + u(y) we have

(1− t)ẽ(x, p0) + tẽ(x, p1) ≥ f(E(p10)) + u(p10).

Therefore, ẽ is also (uniquely) Casteljau-like. In some important applications e has strong con-
vexity properties, hence the main issue is just the minimizing property.

Example 8. Suppose that e is uniformly convex with modulus φ and there is an ε ∈ R such that
e(x, y) ≥ ε with e(x, y) = ε if and only if x = y. Then

E(x) ≥ e(x, p10) + t(1− t)φ((d× d)((x, p0), (x, p1))

= e(x, p10) + t(1− t)φ(d(p0, p1)) ≥ t(1− t)φ(d(p0, p1)) + ε.

Last inequality becomes an equality if and only if x = p10. Moreover, with e, also E attains its
minimum. Therefore, e is uniquely Casteljau-like.
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Now, let bni be some nonnegative real weights satisfying (w.l.g.)
∑n
i=0 b

n
i = 1 and consider the

following optimization task

En(.) :=

n∑
i=0

bni e(., pi)→ Min.

on M . If there is a unique minimizer, then it is called (weighted) geometric median for e = d
center of mass or geometric mean2 for e = d2. Next, we reduce the above minimization task to a
1-dimensional (along shortest geodesics) one and use the de Casteljau algorithm as an approach
to the solution for the case that bni = Bni (t) for some t ∈ I. Let us first consider just two control
points and their geometric median, i.e., n = 1 and e = d. We show that e is not Casteljau-like,
nevertheless any minimizer is in the geodesic segment from p0 to p1. Of course, this example
also shows that convexity of e does not imply its Casteljau-likeness. Suppose that d is convex.
Fix x ∈ M and t ∈ I. Let Bi denote the geodesic ball with radius ri = d(x, pi) around pi and
l := d(p0, p1). If ri > l for i = 1 or 0, then we have E1(x) > l ≥ E1(q) for any q ∈ [p0, p1].
Hence, x cannot be a minimizer. Therefore, we may and do assume that ri ≤ l. In view of the
triangle inequality, there is a point q ∈ [p0, p1] in the intersection of B0 and B1, i.e., d(x, pi) ≥
d(q, pi). Thus, e(x, pi) ≥ e(q, pi) implying E1(x) ≥ E1(q) = E1(Φs(p0, p1)) for some s ∈ I with
q = Φs(p0, p1), and we arrive at E1(x) ≥ ((1− t)s+ t(1− s))l. Therefore, E1 has a minimizer in
[p0, p1] (Clearly, this result remains valid, if e is any proper convex function of d.). Indeed, d(x, .)
is linearly increasing on [p0, p

1
0(1/2)] and linearly decreasing on [p0, p

1
0(1/2)] for any x and we have

argMin(E1) =


p0 for 0 ≤ t < 1/2,

p10(1/2) for t = 1/2,

p1 for 1/2 < t ≤ 1.

For geometric mean the situation changes, and we can construct the minimizer via de Casteljau
algorithm.

Theorem 9. Let p0, · · · , pn ∈M and

En(.) =

n∑
i=0

bni e(., pi).

Then the following holds.
a) The functional En has a unique minimizer, provided e is proper and strictly convex.
b) Suppose that bni = Bni (t) for some t ∈ [0, 1] and e is (uniquely) Casteljau-like. Then pn0 (t)
(uniquely) minimizes En.

Proof. a) En is as positive linear combination of proper strictly convex functionals e(x, pi) proper
and strictly convex. Therefore it attains its unique minimum.
b) Fix x ∈M . Set ei := e(x, pi) with i = 0, . . . , n+ 1. Then we have

En+1(x) =

n+1∑
i=0

Bn+1
i (t)ei = Bn+1

0 (t)e0 +

n∑
i=1

Bn+1
i (t)ei +Bn+1

n+1(t)en+1

= Bn+1
0 (t)e0 +

n∑
i=1

((1− tn+1
i )Bni (t) + tn+1

i Bni−1(t))ei +Bn+1
n+1(t)en+1

=

n∑
i=0

Bni (t)((1− tn+1
i )ei + tn+1

i ei+1)

Due to convexity of e in the second argument, we may write

En+1(x) ≥
n∑
i=0

Bni (t)e(x, p1i (t)).

2also known as Fréchet or Karcher mean
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If our claim is true for some n ≥ 2, then we arrive at

En+1(x) ≥ En+1(pn+1
0 (t)).

With e0, · · · , en+1, also En+1 attains its (unique) minimum. This completes the proof.

Corrolary 10. Suppose that d2 is convex. Then the de Casteljau point pn0 is the unique minimizer
of M 3 x 7→

∑n
i=0B

n
i d

2(x, pi).

Proof. For arbitrary p0, p1 ∈M and 0 ≤ t ≤ 1 we have

(1− t)d2(x, p0) + td2(x, p1) ≥ t(1− t)(d(x, p0) + d(x, p1))2

≥ t(1− t)d2(p0, p1)

with equality if and only if x = p10. The preceding theorem completes the proof.

We borrow the following definition from [14]. Let M be a Ck domain, i.e., an open set in a
geodesic space satisfying

E1(x) ≥ d2(x, p10) +
k

2
t(1− t)d2(p0, x, p1)

with some k ∈]0, 2]. Obviously, e = d2 is uniquely Casteljau-like on M . Due to the preceding
theorem pn0 is the unique minimizer of En. Note that for CAT (0) spaces the above inequality
(strong convexity) holds with k = 2 and in particular, for Euclidean spaces it becomes equality.

3 Karcher equation and Bernstein representation for manifold-
valued data

In this section, we assume that (M,d) is a smooth complete Riemannian manifold without con-
jugate points and give a characterization of Bézier curves as solution of Karcher equation. Note
that within the injectivity radius of the Riemannian exponential map exp in terms of local repre-
sentatives, the affine map of (M,d) is given by

Φt(x, y) = expx(t logx(y))

where logx denotes the local inverse of the exponential map at x. Next, we consider the case
e = d2 more closely. We recall two important well known special cases when for any control points
the geometric mean is well defined. First, if the sectional curvatures of M are bounded above by
k > 0 and diam(M) < π/(2

√
k). Second, if the sectional curvatures of M are semi-negative. In

this case, e.g., for surfaces with semi-negative Gaussian curvature (particularly ruled surfaces) as
well as Cartan-Hadamard manifolds like the space of positive definite symmetric matrices. Many
progresses concern the latter (for which there are also recent extensions to the infinite-dimensional
setting presented in [12]). Next, we look at the Karcher equation in the tangent space TxM
determining the centroid. For details as well as the proof (based on Jacobi field estimates) of
Karcher’s theorem below we refer to [1] and the classic reference [13]. For some similar results on
geometric median and extension of Weiszfeld algorithm for its computation, we refer to [4]. We
shall use the following version of Karcher’s theorem.

Theorem 11. Suppose that M has no conjugate points and sectional curvatures of M are bounded
above by k. Set 1√

k
:=∞ if k ≤ 0. If diam(M) < π/(2

√
k), then the squared distance function d2

is strictly convex and E has a unique minimizer x determined by the Karcher equation∑
i

bni logx pi = 0. (1)
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Note that for k ≤ 0 there is no restriction on diam(M). For k > 0 (thick geodesic triangles),
denoting the injectivity radius of M by rinj , we may replace M by a neighbourhood with diameter

less than min(rinj , π/(2
√
k)). Now, in analogy to the Bernstein representation of Bézier curves in

the Euclidean case and under the assumptions of the preceding theorem, it seems appropriate to
denote the solution of Karcher equation by

⊕
i b
n
i pi. Although the following result is an immediate

consequence of 10 and Karcher’s theorem, we present an alternate direct proof using the smooth
structure.

Theorem 12. Suppose that bni = Bni (t) for some t ∈ I. Then, under the assumptions of Karcher’s
theorem, we have pn0 (t) =

⊕
i bipi.

Proof. Fix t ∈ I. Suppose that n = 1. Then p := p10 parametrizes the geodesic from p0 to p1 with
initial velocity v := logp0(p1). Hence logp(p0) = −tw and logp(p1) = (1 − t)w where P pt denotes
the parallel transport along p at t and w := P pt v. Therefore

b10(t) logp(t)(p0) + b11(t) logp(t)(p1) = −(1− t)tw + t(1− t)w = 0 in Tp(t)M.

Hence, the point p(t) is critical. With d2, the weighted sum E1 is also strictly convex, implying
that the point p(t) is its unique minimizer. Theorems 9 and 11 complete the proof.

4 Rational Bézier curves

In a geodesic space (M,d) the rational Bézier curve with control points p0, · · · , pn and positive
weights w0, · · · , wn can be produced by applying the weighted version of de Casteljau algorithm

r = 1, . . . , n,

(p0i , w
0
i ) := (pi, wi), i = 0, . . . , n− r,

wri = (1− t)wr−1i + twr−1i+1 ,

tri = t
wr−1i+1

wri
, pri := Φtri (p

r−1
i , pr−1i+1 ).

Due to 10, minimizing

M 3 x 7→
n∑
i=0

wiB
n
i∑

wjBnj
d2(x, pi)

provides the same result. The following figures show the effect of weights. We remark that in
general, for a surface of revolution the geodesic differential equation reduces to a first order one
and can efficiently be solved using e.g. ode45 of MATLAB.

Example 13. In order to reflect constraints caused by the presence of some objects (without
changing the degree of the Bézier curve), we may choose weights as functions of distances from
control points to the objects. In the following we treat the small disc B in M as an attracting
object. Here each weight is simply chosen as inverse of the distance between corresponding control
point and B, i.e., wi = 1/d(pi, B). Similarly, avoiding objects can be treated. Of course, due to
the convex hull property of Bézier curves, the gained flexibility is restricted. For a treatment of
obstacles via a variational approach we refer to [7] and [6].

5 Splines and de Boor algorithm

For a knot vector, i.e., a finite or bi-infinite nondecreasing sequence

ξ : · · · ≤ ξ0 ≤ ξ1 ≤ ξ2 ≤ · · ·

7



Figure 1: Bézier curve in a one-sheeted hyperboloid: left) cubic , right) rational with weights 1, 5, 5, 1.

Figure 2: Bézier curve in a torus: left) cubic , right) rational with weights equal to inverse of distances
between the small disc and control points.

of real numbers without accumulation points, control points p0, · · · , pn in a geodesic space M with
metric d, we define the de Boor algorithm by

r = 1, . . . ,m,

p0i := pi, i = l −m, . . . , l,

tri,ξ =
t− ξi

ξi+n−r − ξi
, pri := Φtri,ξ(p

r−1
i , pr−1i+1 ).

For a knot interval Il := [ξl, ξl+1[ the spline curve p of degree ≤ m evaluated at t ∈ Il is obtained
as the final value pm−µl−µ where µ denotes the multiplicity of t. Moreover, for t ∈ Il the above
algorithm coincides with the de Casteljau algorithm applied to control points pl−m, · · · , pl−µ and
due to 10 after reindexing

p(t) = argminx∈M

m−µ∑
i=0

Bm−µi (t)d2(x, pi+l−m).

8



In particular, if M is Riemannian, then p(t) is the unique solution of

m−µ∑
i=0

Bm−µi (t) logx(pi+l−m) = 0.

Figure 3: Cubic spline curve in a torus: left) uniform: ξ = [0, 1, · · · , 9]/9, right) with double knots:
ξ = [0, 0, 1, 1, 2, 2, 3, 3, 3, 3]/3.

Example 14. Poses of a rigid body can be visualized as a curve in the Euclidean motion group

E3 = {
(

1 0
b R

)
: R ∈ SO(3), b ∈ R3}

for which convexity radius is π/2 and

Φt(x, y) = exp(tx log((x−1y)).

Figure 4: Cubic uniform spline curve in Euclidean motion group.
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6 Conclusion

In this paper we extended the setting for de Casteljau algorithm as well as de Boor algorithm
to unique geodesic spaces and presented some examples. In turn, Bézier and more generally
spline curves in these spaces can be constructed via iteration. We proved that for certain choice
of weights, geometric mean, i.e., minimizer of weighted sum of distance squared, can also be
constructed using those algorithms. Of course, the main issue remains the fact that one needs
to compute geodesics. We expect besides Riemannian manifolds, applications of our results in
other geodesic spaces including trees and Bruhat-Titz buildings. Furthermore, we expect similar
results concerning subdivision schemes as well as the bivariate case to produce nets and spline
surfaces in geodesic spaces. Moreover, weighted extended B-splines (WEB-splines, [5] and [8])
can be combined with our approach to provide efficient approximations with high accuracy for
solutions of boundary value problems on manifolds.
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2015-004 Kutter, M.; Rohde, C.; Sändig, A.-M.: Well-Posedness of a Two Scale Model for
Liquid Phase Epitaxy with Elasticity

2015-003 Rossi, E.; Schleper, V.: Convergence of a numerical scheme for a mixed
hyperbolic-parabolic system in two space dimensions
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2014-013 Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation
using importance sampling

2014-012 Györfi, L.; Ottucsák, G.; Walk, H.: The growth optimal investment strategy is secure,
too.

2014-011 Györfi, L.; Walk, H.: Strongly consistent detection for nonparametric hypotheses
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