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Abstract

We establish a Bernstein-type inequality for a class of stochastic processes that include the clas-
sical geometrically φ-mixing processes, Rio’s generalization of these processes, as well as many
time-discrete dynamical systems. Modulo a logarithmic factor and some constants, our Bernstein-
type inequality coincides with the classical Bernstein inequality for i.i.d. data. We further use this
new Bernstein-type inequality to derive an oracle inequality for generic regularized empirical risk
minimization algorithms and data generated by such processes. Applying this oracle inequality to
support vector machines using the Gaussian kernels for both least squares and quantile regression,
it turns out that the resulting learning rates match, up to some arbitrarily small extra term in the
exponent, the optimal rates for i.i.d. processes.

1 Introduction

Concentration inequalities such as Hoeffding’s inequality, Bernstein’s inequality, McDiarmid’s inequal-
ity, and Talagrand’s inequality play an important role in many areas of probability. For example, the
analysis of various methods from non-parametric statistics and machine learning crucially depend on
these inequalities, see e.g. [19, 20, 22, 42]. Here, stronger results can typically be achieved by Bern-
stein’s inequality and/or Talagrand’s inequality, since these inequalities allow for localization due to
their specific dependence on the variance. In particular, most derivations of minimax optimal learning
rates are based on one of these inequalities.

The concentration inequalities mentioned above all assume the data to be generated by an i.i.d. pro-
cess. Unfortunately, however, this assumption is often violated in several important areas of applica-
tions including financial prediction, signal processing, system observation and diagnosis, text and speech
recognition, and time series forecasting. For this and other reasons there has been some effort to establish
concentration inequalities for non-i.i.d. processes, too. For example, generalizations of Bernstein’s in-
equality to α-mixing and φ-mixing processes have been found [10, 33, 32] and [38], respectively. Among
many other applications, the Bernstein-type inequality established in [10] was used in [50] to obtain con-
vergence rates for sieve estimates from α-mixing strictly stationary processes in the special case of neural
networks. Furthermore, [23] applied the Bernstein-type inequality in [33] to derive an oracle inequality
for generic regularized empirical risk minimization algorithms learning from stationary α-mixing pro-
cesses. Moreover, by employing the Bernstein-type inequality in [32], [7] derived almost sure uniform
rates of convergence for the estimated Lévy density both in mixed-frequency and low-frequency setups
and proved that these rates are optimal in the minimax sense. Finally, in the particular case of the least
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square loss, [2] obtained the optimal learning rate for φ-mixing processes by applying the Bernstein-type
inequality established in [38].

However, there exist many dynamical systems such as the uniformly expanding maps given in [17,
p. 41] that are not α-mixing. To deal with such non-mixing processes Rio [34] introduced so-called
φ̃-mixing coefficients, which extend the classical φ-mixing coefficients. For dynamical systems with ex-
ponentially decreasing, modified φ̃-coefficients, [47] derived a Bernstein-type inequality, which turns out
to be the same as the one for i.i.d. processes modulo some logarithmic factor. However, this modification
seems to be significant stronger than Rio’s original φ̃-mixing, so it remains unclear when the Bernstein-
type inequality in [47] is applicable. In addition, the φ̃-mixing concept is still not large enough to cover
many commonly considered dynamical systems. To include such dynamical systems, [31] proposed the
C-mixing coefficients, which further generalize φ̃-mixing coefficients.

In this work, we establish a Bernstein-type inequality for geometrically C-mixing processes, which,
modulo a logarithmic factor and some constants, coincides with the classical one for i.i.d. processes.
Using the techniques developed in [23], we then derive an oracle inequality for generic regularized
empirical risk minimization and C-mixing processes. We further apply this oracle inequality to a state-
of-the-art learning method, namely support vector machines (SVMs) with Gaussian kernels. Here it
turns out that for both, least squares and quantile regression, we can recover the (essentially) optimal
rates recently found for the i.i.d. case, see [21], when the data is generated by a geometrically C-mixing
process. Finally, we establish an oracle inequality for the problem of forecasting an unknown dynamical
system. This oracle will make it possible to extend the purely asymptotic analysis in [41] to learning
rates.

The rest of this work is organized as follows: In Section 2, we recall the notion of (time-reversed)
C-mixing processes. We further illustrate this class of processes by some examples and discuss the
relation between C-mixing and other notions of mixing. As the main result of this work, a Bernstein-type
inequality for geometrically (time-reversed) C-mixing processes will be formulated in Section 3. There,
we also compare our new Bernstein-type inequality to previously established concentration inequalities.
As an application of our Bernstein-type inequality, we will derive the oracle inequality for regularized
risk minimization schemes in Section 4. We additionally derive learning rates for SVMs and an oracle
inequality for forecasting certain dynamical systems. All proofs can be found in the last section.

2 C-mixing processes

In this section we recall two classes of stationary stochastic processes called (time-reversed) C-mixing
processes that have a certain decay of correlations for suitable pairs of functions. We also present some
examples of such processes including certain dynamical systems.

Let us begin by introducing some notations. In the following, (Ω,A, µ) always denotes a probability
space. As usual, we write Lp(µ) for the space of (equivalence classes of) measurable functions f :
Ω → R with finite Lp-norm ‖f‖p. It is well-known that Lp(µ) together with ‖f‖p forms a Banach
space. Moreover, if A′ ⊂ A is a sub-σ-algebra, then L1(A′, µ) denotes the space of all A′-measurable
functions f ∈ L1(µ). In the following, for a Banach space E, we write BE for its closed unit ball.

Given a semi-norm ‖ · ‖ on a vector space E of bounded measurable functions f : Z → R, we define
the C-Norm by

‖f‖C := ‖f‖∞ + ‖f‖ (1)

and denote the space of all bounded C-functions by

C(Z) :=
{
f : Z → R

∣∣ ‖f‖C <∞}. (2)
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Throughout this work, we only consider the semi-norms ‖ · ‖ in (1) that satisfy the inequality∥∥ef∥∥ ≤ ∥∥ef∥∥∞‖f‖ (3)

for all f ∈ C(Z). We are mostly interested in the following examples of semi-norms satisfying (3).

Example 2.1. Let Z be an arbitrary set and suppose that we have ‖f‖ = 0 for all f : Z → R. Then, it is
obviously to see that ‖ef‖ = ‖f‖ = 0. Hence, (3) is satisfied.

Example 2.2. Let Z ⊂ R be an interval. A function f : Z → R is said to have bounded variation on Z if its total
variation ‖f‖BV (Z) is bounded. Denote by BV (Z) the set of all functions of bounded variation. It is well-known
that BV (Z) together with ‖f‖∞ + ‖f‖BV (Z) forms a Banach space. Moreover, we have (3), i.e. we have for all
f ∈ C(Z): ∥∥ef∥∥

BV (Z)
≤
∥∥ef∥∥∞‖f‖BV (Z).

Example 2.3. Let Z be a subset of Rd and Cb(Z) be the set of bounded continuous functions on Z. For f ∈
Cb(Z) and 0 < α ≤ 1 let

‖f‖ := |f |α := sup
z 6=z′

|f(z)− f(z′)|
|z − z′|α

.

Clearly, f is α-Hölder continuous if and only if |f |α < ∞. The collection of bounded, α-Hölder continuous
functions on Z will be denoted by

Cb,α(Z) := {f ∈ Cb(Z) : |f |α <∞}.

Note that, if Z is compact, then Cb,α(Z) together with the norm ‖f‖Cb,α := ‖f‖∞ + |f |α forms a Banach space.
Moreover, the inequality (3) is also valid for f ∈ Cb,α(Z). As usual, we speak of Lipschitz continuous functions
if α = 1 and write Lip(Z) := Cb,1(Z).

Example 2.4. Let Z ⊂ Rd be an open subset. For a continuously differentiable function f : Z → R we write

‖f‖ := sup
z∈Z
|f ′(z)|

and C1(Z) :=
{
f : Z → R | f continuously differentiable and ‖f‖∞ + ‖f‖ <∞

}
. It is well-known, that C1(Z)

is a Banach space with respect to the norm ‖ · ‖∞ + ‖ · ‖ and the chain rule gives∥∥ef∥∥ =
∥∥(ef)′∥∥∞ =

∥∥ef · f ′∥∥∞ ≤ ∥∥ef∥∥∞‖f ′‖∞ =
∥∥ef∥∥∞‖f‖,

for all f ∈ C1(Z), i.e. (3) is satisfied.

Let us now assume that we also have a measurable space (Z,B) and a measurable map χ : Ω → Z.
Then σ(χ) denotes the smallest σ-algebra on Ω for which χ is measurable. Moreover, µχ denotes the
χ-image measure of µ, which is defined by µχ(B) := µ(χ−1(B)), B ∈ B.

LetZ := (Zn)n≥0 be aZ-valued stochastic process on (Ω,A, µ), andAi0 andA∞i+n be the σ-algebras
generated by (Z0, . . . , Zi) and (Zi+n, Zi+n+1, . . .), respectively. The process Z is called stationary if
µ(Zi1+i,...,Zin+i) = µ(Zi1 ,...,Zin ) for all n, i, i1, . . . , in ≥ 1. In this case, we always write P := µZ0 .
Moreover, to define certain dependency coefficients for Z , we denote, for ψ,ϕ ∈ L1(µ) satisfying
ψϕ ∈ L1(µ) the correlation of ψ and ϕ by

cor(ψ,ϕ) :=

∫
Ω
ψ · ϕdµ−

∫
Ω
ψ dµ ·

∫
Ω
ϕdµ .

Several dependency coefficients forZ can be expressed by imposing restrictions on ψ and ϕ. The follow-
ing definition, which is taken from [31], introduces the restrictions on ψ and ϕ we consider throughout
this work.
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Definition 2.5. Let (Ω,A, µ) be a probability space, (Z,B) be a measurable space, Z := (Zi)i≥0 be
a Z-valued, stationary process on Ω, and ‖ · ‖C be defined by (1) for some semi-norm ‖ · ‖. Then, for
n ≥ 0, we define:

(i) the C-mixing coefficients by

φC(Z, n) := sup
{

cor(ψ, h ◦ Zk+n) : k ≥ 0, ψ ∈ BL1(Ak0 ,µ), h ∈ BC(Z)

}
(4)

(ii) the time-reversed C-mixing coefficients by

φC,rev(Z, n) := sup
{

cor(h ◦ Zk, ϕ) : k ≥ 0, h ∈ BC(Z), ϕ ∈ BL1(A∞k+n,µ)

}
. (5)

Let (dn)n≥0 be a strictly positive sequence converging to 0. Then we say that Z is (time-reversed)
C-mixing with rate (dn)n≥0, if we have φC,(rev)(Z, n) ≤ dn for all n ≥ 0. Moreover, if (dn)n≥0 is of the
form

dn := c exp
(
−bnγ

)
, n ≥ 1, (6)

for some constants b > 0, c ≥ 0, and γ > 0, then Z is called geometrically (time-reversed) C-mixing.
Obviously, Z is C-mixing with rate (dn)n≥0, if and only if for all k, n ≥ 0, all ψ ∈ L1(Ak0, µ), and

all h ∈ C(Z), we have

cor(ψ, h ◦ Zk+n) ≤ ‖ψ‖L1(µ)‖h‖C dn, (7)

or similarly, time-reversed C-mixing with rate (dn)n≥0, if and only if for all k, n ≥ 0, all h ∈ C(Z), and
all ϕ ∈ L1(A∞k+n, µ), we have

cor(h ◦ Zk, ϕ) ≤ ‖h‖C‖ϕ‖L1(µ) dn. (8)

In the rest of this section we consider examples of (time-reversed) C-mixing processes. To begin
with, let us assume that Z is a stationary φ-mixing process [25] with rate (dn)n≥0. By [16, Inequality
(1.1)] we then have

cor(ψ,ϕ) ≤ ‖ψ‖L1(µ)‖ϕ‖L∞(µ)dn, n ≥ 1, (9)

for all Ak0-measurable ψ ∈ L1(µ) and all A∞k+n-measurable ϕ ∈ L∞(µ). By taking ‖ · ‖C := ‖ · ‖∞
and ϕ := h ◦ Zk+n, we then see that (7) is satisfied, i.e. Z is C-mixing with rate (dn)n≥0. Finally,
by similar arguments we can deduce that time-reversed φ-mixing processes [12, Section 3.13] are also
time-reversed C-mixing with the same rate. In other words we have found

φL∞(µ)(Z, n) = φ(Z, n) and φL∞(µ),rev(Z, n) = φrev(Z, n).

To deal with processes that are not α-mixing [35], Rio [34] introduced the following relaxation of
φ-mixing coefficients

φ̃(Z, n) := sup
k≥0,
f∈BV1

∥∥E(f(Zk+n)
∣∣Ak0)− Ef(Zk+n)

∥∥
∞ (10)

= sup
{

cor(ψ, h ◦ Zk+n) : k ≥ 0, ψ ∈ BL1(Ak0 ,µ), h ∈ BBV (Z)

}
and an analogous time-reversed coefficient

φ̃rev(Z, n) := sup
k≥0,
f∈BV1

∥∥E(f(Zk)
∣∣A∞k+n

)
− Ef(Zk)

∥∥
∞
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φ-mixing φ̃-mixing C-mixing

Figure 1: Relationship between φ-, φ̃-, and C-mixing processes

= sup
{

cor(h ◦ Zk, ϕ) : k ≥ 0, ϕ ∈ BL1(A∞k+n,µ), h ∈ BBV (Z)

}
,

where the two identities follow from [18, Lemma 4]. In other words we have

φBV (Z)(Z, n) = φ̃(Z, n) and φBV (Z),rev(Z, n) = φ̃rev(Z, n)

Moreover, [17, p. 41] shows that some uniformly expanding maps are φ̃-mixing but not α-mixing. Figure
1 summarizes the relations between φ, φ̃, and C-mixing.

Our next goal is to relate C-mixing to some well-known results on the decay of correlations for
dynamical systems. To this end, recall that (Ω,A, µ, T ) is a dynamical system, if T : Ω → Ω is a
measurable map satisfying µ(T−1(A)) = µ(A) for all A ∈ A. Let us consider the stationary stochastic
process Z := (Zn)n≥0 defined by Zn := Tn for n ≥ 0. Since An+1

n+1 ⊂ Ann for all n ≥ 0, we conclude
that A∞k+n = Ak+n

k+n. Consequently, ϕ is A∞k+n-measurable, if and only if it is Ak+n
k+n-measurable. More-

over Ak+n
k+n is the σ-algebra generated by T k+n, and hence ϕ is Ak+n

k+n-measurable, if and only if it is of
the form ϕ = g ◦ T k+n for some suitable, measurable g : Ω → R. Let us now suppose that ‖ · ‖C(Ω) is
defined by (1) for some semi-norm ‖ · ‖. For h ∈ C(Ω) we then find

cor(h ◦ Zk, ϕ) = cor(h ◦ Zk, g ◦ Zk+n) = cor(h, g ◦ Zn)

=

∫
Ω
h · (g ◦ Tn) dµ−

∫
Ω
h dµ ·

∫
Ω
g dµ

=: corT,n(h, g) .

The next result shows that Z is time-reversed C-mixing even if we only have generic constants C(h, g)
in (8).

Theorem 2.6. Let (Ω,A, µ, T ) be a dynamical system and the stochastic process Z := (Zn)n≥0 be
defined by Zn := Tn for n ≥ 0. Moreover, Let ‖ · ‖C be defined by (1) for some semi-norm ‖ · ‖. Then,
Z is time-reversed C-mixing with rate (dn)n≥0 iff for all h ∈ C(Ω) and all g ∈ L1(µ) there exists a
constant C(h, g) such that

corT,n(h, g) ≤ C(h, g)dn, n ≥ 0.

Thus, we see that Z is time-reversed C-mixing, if corT,n(h, g) converges to zero for all h ∈ C(Ω)
and g ∈ L1(µ) with a rate that is independent of h and g.

For concrete examples, let us first mention that [31] presents some discrete dynamical systems that
are time-reversed geometrically C-mixing such as Lasota-Yorke maps, uni-modal maps, piecewise ex-
panding maps in higher dimension. Here, the involved spaces are either BV (Z) or Lip(Z).
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In dynamical systems where chaos is weak, correlations often decay polynomially, i.e. the correla-
tions satisfy

|corT,n(h, g)| ≤ C(h, g) · n−b , n ≥ 0, (11)

for some constants b > 0 and C(h, g) ≥ 0 depending on the functions h and g. Young [49] developed
a powerful method for studying correlations in systems with weak chaos where correlations decay at a
polynomial rate for bounded g and Hölder continuous h. Her method was applied to billiards with slow
mixing rates, such as Bunimovich billiards, see [6, Theorem 3.5]. For example, modulo some logarithmic
factors [30, 14] obtained (11) with b = 1 and b = 2 for certain forms of Bunimovich billiards and Hölder
continuous h and g. Besides these results, Baladi [5] also compiles a list of “parabolic” or “intermittent”
systems having a polynomial decay.

It is well-known that, if the functions h and g are sufficient smooth, there exist dynamical systems
where chaos is strong enough such that the correlations decay exponentially fast, that is,

|corT,n(h, g)| ≤ C(h, g) · exp
(
−bnγ

)
, n ≥ 0, (12)

for some constants b > 0, γ > 0, and C(h, g) ≥ 0 depending on h and g. Again, Baladi [5] has
listed some simple examples of dynamical systems enjoying (12) for analytic h and g such as the angle
doubling map and the Arnold’s cat map. Moreover, for continuously differentiable h and g, [36, 39]
proved (12) for two closely related classes of systems, more precisely, C1+ε Anosov or the Axiom-A
diffeomorphisms with Gibbs invariant measures and topological Markov chains, which are also known as
subshifts of finite type, see also [11]. These results were then extended by [24, 37] to expanding interval
maps with smooth invariant measures for functions h and g of bounded variation. In the 1990s, similar
results for Hölder continuous h and g were proved for systems with somewhat weaker chaotic behavior
which is characterized by nonuniform hyperbolicity, such as quadratic interval maps, see [48], [27] and
the Hénon map [8], and then extended to chaotic systems with singularities by [28] and specifically to
Sinai billiards in a torus by [48, 13]. For some of these extensions, such as smooth expanding dynamics,
smooth nonuniformly hyperbolic systems, and hyperbolic systems with singularities, we refer to [4] as
well. Recently, for h of bounded variation and bounded g, [29] obtained (12) for a class of piecewise
smooth one-dimensional maps with critical points and singularities. Moreover, [3] has deduced (12) for
h, g ∈ Lip(Z) and a suitable iterate of Poincaré’s first return map T of a large class of singular hyperbolic
flows.

3 A Bernstein-type inequality

In this section, we present the key result of this work, a Bernstein-type inequality for stationary geomet-
rically (time-reversed) C-mixing process.

Theorem 3.1. Let Z := (Zn)n≥0 be a Z-valued stationary geometrically (time-reversed) C-mixing
process on (Ω,A, µ) with rate (dn)n≥0 as in (6), ‖ · ‖C be defined by (1) for some semi-norm ‖ · ‖
satisfying (3), and P := µZ0 . Moreover, let h ∈ C(Z) with EPh = 0 and assume that there exist some
A > 0, B > 0 , and σ ≥ 0 such that ‖h‖ ≤ A, ‖h‖∞ ≤ B, and EPh2 ≤ σ2. Then, for all ε > 0 and all

n ≥ n0 := max

{
min

{
m ≥ 3 : m2 ≥ 808c(3A+B)

B
and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
, (13)

we have

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h ◦ Zi ≥ ε
})
≤ 2 exp

(
− nε2

8(log n)
2
γ (σ2 + εB/3)

)
, (14)
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or alternatively, for all n ≥ n0 and τ > 0, we have

µ

{ω ∈ Ω :
1

n

n∑
i=1

h(Zi(ω)) ≥

√
8(log n)

2
γ σ2τ

n
+

8(log n)
2
γBτ

3n

} ≤ 2e−τ . (15)

Note that besides the additional logarithmic factor 4(log n)
2
γ and the constant 2 in front of the expo-

nential, (14) coincides with Bernstein’s classical inequality for i.i.d. processes.
In the remainder of this section, we compare Theorem 3.1 with some other concentration inequalities

for non-i.i.d. processes Z . Here, Z is real-valued and h is the identity map if not specified otherwise.

Example 3.2. Theorem 2.3 in [4] shows that smooth expanding systems on [0, 1] have exponential decay of
correlations (7). Moreover, if, for such expanding systems, the transformation T is Lipschitz continuous and
satisfies the conditions at the end of Section 4 in [18] and the ergodic measure µ satisfies [18, condition (4.8)], then
[18, Theorem 2] shows that for all ε ≥ 0 and n ≥ 1, the left-hand side of (14) is bounded by

exp

(
−ε

2n

C

)
where C is some constant independent of n. The same result has been proved in [15, Theorem III.1] as well.
Obviously, this is a Hoeffding-type bound instead of a Bernstein-type one. Hence, it is always larger than ours if
the denominator of the exponent in (14) is smaller than C.

Example 3.3. For dynamical systems with exponentially decreasing φ̃-coefficients, see [47, condition (3.1)],
[47, Theorem 3.1] provides a Bernstein-type inequality for 1-Lipschitz functions h : Z → [−1/2, 1/2] w.r.t. some
metric d on Z, in which the left-hand side of (14) is bounded by

exp

(
− Cε2n

σ2 + ε log f(n)

)
(16)

for some constant C independent of n and f(n) being some function monotonically increasing in n. Note that
modulo the logarithmic factor log f(n) the bound (16) is the same as the one for i.i.d. processes. Moreover, if f(n)
grows polynomially, cf. [47, Section 3.3], then (16) has the same asymptotic behaviour as our bound. However,
geometrically C-mixing is weaker than Condition (3.1) in [47]: Indeed, the required exponential form of Condition
(3.1) in [47], i.e.

sup
k≥0

φ̃(Ak0 ,Zk+2n−1
k+n ) := sup

k≥0
sup
f∈Fn

∥∥E(f(Zk+2n−1
k+n )

∣∣Ak0)− Ef(Zk+2n−1
k+n )

∥∥
∞ ≤ c · e

−bn

for some c, b > 0 and all n ≥ 1, where Zk+2n−1
k+n := (Zk+n, . . . , Zk+2n−1) and Fn is the set of 1-Lipschitz

functions f : Zn → [− 1
2 ,

1
2 ] w.r.t. the metric dn(x, y) := 1

n

∑n
i=1 d(xi, yi), implies

sup
k≥0

sup
f∈F

∥∥E(f(Zk+n)
∣∣Ak0)− Ef(Zk+n)

∥∥
∞ ≤ c · ne

−bn ≤ c · e−b̃n

for some c, b̃ > 0 and all n ≥ 1, where F is the set of 1-Lipschitz functions f : Z → [− 1
2 ,

1
2 ] w.r.t. the metric

d. In other words, processes satisfying Condition (3.1) in [47] are φ̃-mixing, see (10), which is stronger than
geometrically C-mixing, see again Figure 1. Moreover, our result holds for all γ > 0, while [47] only considers
the case γ = 1.

Example 3.4. For anα-mixing sequence of centered and bounded random variables satisfyingα(n) ≤ c exp(−bnγ)
for some constants b > 0, c ≥ 0, and γ > 0, [33, Theorem 4.3] bounds the left-hand side of (14) by

(1 + 4e−2c) exp

(
− 3ε2n(γ)

6σ2 + 2εB

)
with n(γ) � n

γ
γ+1 (17)

for all n ≥ 1 and all ε > 0. In general, this bound and our result are not comparable, since not every α-
mixing process satisfies (7) and conversely, not every process satisfying (7) is necessarily α-mixing, see Figure 2.
Nevertheless, for φ-mixing processes, it is easily seen that this bound is always worse than ours for a fixed γ > 0,
if n is large enough.

7



φ-mixingα-mixing C-mixing

Figure 2: Relationship between α-, φ-, and C-mixing processes

Example 3.5. For an α-mixing stationary sequence of centered and bounded random variables satisfying α(n) ≤
exp(−2cn) for some c > 0, [32, Theorem 2] bounds the left-hand side of (14) by

exp

(
− Cε2n

v2 + εB(log n)2 + n−1B2

)
, (18)

where C > 0 is some constant and

v2 := σ2 + 2
∑

2≤i≤n

|cov(X1, Xi)| . (19)

By applying the covariance inequality for α-mixing processes, see [16, the corollary to Lemma 2.1], we obtain
v2 ≤ Cδ‖X1‖22+δ for an arbitrary δ > 0 and a constant Cδ only depending on δ. If the additional δ > 0 is ignored,
(18) has therefore the same asymptotic behavior as our bound. In general, however, the additional δ does influence
the asymptotic behavior. For example, the oracle inequality we obtain in the next section would be slower by a
factor of nξ, where ξ > 0 is arbitrary, if we used (18) instead. Finally, note that in general the bound (18) and ours
are not comparable, see again Figure 2.

In particular, Inequality (18) can be applied to geometrically φ-mixing processes with γ = 1. By using the
covariance inequality (1.1) for φ-mixing processes in [16], we can bound v2 defined as in (19) by Cσ2 with some
constant C independent of n. Modulo the term n−1B in the denominator, the bound (18) coincides with ours for
geometrically φ-mixing processes with γ = 1. However, our bound also holds for such processes with γ ∈ (0, 1).

Example 3.6. For stationary, geometrically α-mixing Markov chains with centered and bounded random vari-
ables, [1] bounds the left-hand side of (14) by

exp

(
− nε2

σ̃2 + εB log n

)
, (20)

where σ̃2 = limn→∞
1
nVar

∑n
i=1Xi. By a similar argument as in Example 3.5 we obtain

Var

n∑
i=1

Xi = nσ2 + 2
∑

1≤i<j≤n

|cov(Xi, Xj)| ≤ nσ2 + C̃δn‖X1‖22+δ

for an arbitrary δ > 0 and a constant C̃δ depending only on δ. Consequently we conclude that modulo some
arbitrary small number δ > 0 and the logarithmic factor log n instead of (log n)2, the bound (20) coincides with
ours. Again, this bound and our result are not comparable, see Figure 2.

Example 3.7. For stationary, weakly dependent processes of centered and bounded random variables with
|cov(X1, Xn)| ≤ c · exp(−bn) for some c, b > 0 and all n ≥ 1, [26, Theorem 2.1] bounds the left-hand side
of (14) by

exp

(
− ε2n

C1 + C2ε5/3n2/3

)
(21)

where C1 is some constant depending on c and b, and C2 is some constant depending on c, b, and B. Note that the
denominator in (21) is at least C1, and therefore the bound (21) is more of Hoeffding type.
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4 Applications to Statistical Learning

In this section, we apply the Bernstein inequality from the last section to deduce oracle inequalities for
some widely used learning methods and observations generated by a geometrically C-mixing processes.
More precisely, in Subsection 4.1, we recall some basic concepts of statistical learning and formulate
an oracle inequality for learning methods that are based on (regularized) empirical risk minimization.
Then, in the Subsection 4.2, we illustrate this oracle inequality by deriving the learning rates for SVMs.
Finally, in Subsection 4.3, we present an oracle inequality for forecasting of dynamical systems.

4.1 Oracle inequality for CR-ERMs

In this section, let X always be a measurable space if not mentioned otherwise and Y ⊂ R always be a
closed subset. Recall that in the (supervised) statistical learning, our aim is to find a function f : X → R
such that for (x, y) ∈ X × Y the value f(x) is a good prediction of y at x. To evaluate the quality of
such functions f , we need a loss function L : X × Y × R→ [0,∞) that is measurable. Following [42,
Definition 2.22], we say that a loss L can be clipped at M > 0, if, for all (x, y, t) ∈ X×Y ×R, we have

L(x, y, Ût ) ≤ L(x, y, t), (22)

where Ût denotes the clipped value of t at ±M , that is Ût := t if t ∈ [−M,M ], Ût := −M if t < −M ,Ût := M if t > M . Various often used loss functions can be clipped. For example, if Y := {−1, 1} and L
is a convex, margin-based loss represented by ϕ : R→ [0,∞), that is L(y, t) = ϕ(yt) for all y ∈ Y and
t ∈ R, then L can be clipped, if and only if ϕ has a global minimum, see [42, Lemma 2.23]. In particular,
the hinge loss, the least squares loss for classification, and the squared hinge loss can be clipped, but the
logistic loss for classification and the AdaBoost loss cannot be clipped. Moreover, if Y := [−M,M ]
and L is a convex, distance-based loss represented by some ψ : R → [0,∞), that is L(y, t) = ψ(y − t)
for all y ∈ Y and t ∈ R, then L can be clipped whenever ψ(0) = 0, see again [42, Lemma 2.23]. In
particular, the least squares loss

L(y, t) = (y − t)2 (23)

and the τ -pinball loss

Lτ (y, t) := ψ(y − t) =

{
−(1− τ)(y − t), if y − t < 0

τ(y − t), if y − t ≥ 0
(24)

used for quantile regression can be clipped, if the space of labels Y is bounded.
Now we summarize assumptions on the loss function L that will be used throughout this work.

Assumption 4.1. The loss function L : X×Y ×R→ [0,∞) can be clipped at some M > 0. Moreover,
it is both bounded in the sense of L(x, y, t) ≤ 1 and locally Lipschitz continuous, that is,

|L(x, y, t)− L(x, y, t′)| ≤ |t− t′| . (25)

Here both inequalites are supposed to hold for all (x, y) ∈ X × Y and t, t′ ∈ [−M,M ]. Note that the
former assumption can typically be enforced by scaling.

Given a loss function L and an f : X → R, we often use the notation L ◦ f for the function
(x, y) 7→ L(x, y, f(x)). Our major goal is to have a small average loss for future unseen observations
(x, y). This leads to the following definition, see also [42, Definitions 2.2 & 2.3].
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Definition 4.2. Let L : X × Y × R → [0,∞) be a loss function and P be a probability measure on
X × Y . Then, for a measurable function f : X → R the L-risk is defined by

RL,P (f) :=

∫
X×Y

L(x, y, f(x)) dP (x, y).

Moreover, the minimal L-risk

R∗L,P := inf{RL,P (f)|f : X → R measurable}

is called the Bayes risk with respect to P and L. In addition, a measurable function f∗L,P : X → R
satisfyingRL,P (f∗L,P ) = R∗L,P is called a Bayes decision function.

Informally, the goal of learning from a training set D ∈ (X × Y )n is to find a decision function fD
such thatRL,P (fD) is close to the minimal riskR∗L,P . Our next goal is to formalize this idea. We begin
with the following definition.

Definition 4.3. Let X be a set and Y ⊂ R be a closed subset. A learning method L on X × Y maps
every set D ∈ (X × Y )n, n ≥ 1, to a function fD : X → R.

Let us now describe the learning algorithms we are interested in. To this end, we assume that we
have a hypothesis set F consisting of bounded measurable functions f : X → R, which is pre-compact
with respect to the supremum norm ‖ · ‖∞. Since F can be infinite, we need to recall the following,
classical concept, which will enable us to approximate infinite F by finite subsets.

Definition 4.4. Let (T, d) be a metric space and ε > 0. We call S ⊂ T an ε-net of T if for all t ∈ T
there exists an s ∈ S with d(s, t) ≤ ε. Moreover, the ε-covering number of T is defined by

N (T, d, ε) := inf

{
n ≥ 1 : ∃s1, . . . , sn ∈ T such that T ⊂

n⋃
i=1

Bd(si, ε)

}
,

where inf ∅ := ∞ and Bd(s, ε) := {t ∈ T : d(t, s) ≤ ε} denotes the closed ball with center s ∈ T and
radius ε.

Note that our hypothesis set F is assumed to be pre-compact, and hence for all ε > 0, the covering
number N (F , ‖ · ‖∞, ε) is finite.

In order to introduce our generic learning algorithms, we write

D :=
(
(X1, Y1), . . . , (Xn, Yn)

)
:= (Z1, . . . , Zn) ∈ (X × Y )n

for a training set of length n that is distributed according to the first n components of the X × Y -
valued process Z = (Zi)i≥1. Furthermore, we write Dn := 1

n

∑n
i=1 δ(Xi,Yi), where δ(Xi,Yi) denotes the

(random) Dirac measure at (Xi, Yi). In other words, Dn is the empirical measure associated to the data
set D. Finally, the risk of a function f : X → R with respect to this measure

RL,Dn(f) =
1

n

n∑
i=1

L(Xi, Yi, f(Xi))

is called the empirical L-risk.
With these preparations we can now introduce the class of learning methods we are interested in, see

also [42, Definition 7.18].
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Definition 4.5. Let L : X × Y × R → [0,∞) be a loss that can be clipped at some M > 0, F be a
hypothesis set, that is, a set of measurable functions f : X → R, with 0 ∈ F , and Υ be a regularizer
on F , that is, a function Υ : F → [0,∞) with Υ(0) = 0. Then, for δ ≥ 0, a learning method whose
decision functions fDn,Υ ∈ F satisfy

Υ(fDn,Υ) +RL,Dn( ÛfDn,Υ) ≤ inf
f∈F

(Υ(f) +RL,Dn(f)) + δ (26)

for all n ≥ 1 and Dn ∈ (X × Y )n is called δ-approximate clipped regularized empirical risk minimiza-
tion (δ-CR-ERM) with respect to L, F , and Υ.

Moreover, in the case δ = 0, we simply speak of clipped regularized empirical risk minimization
(CR-ERM).

Note that on the right-hand side of (26) the unclipped loss is considered, and hence CR-ERMs do
not necessarily minimize the regularized clipped empirical risk Υ(·) +RL,Dn(Û·). Moreover, in general
CR-ERMs do not minimize the regularized risk Υ(·) +RL,Dn(·) either, because on the left-hand side of
(26) the clipped function is considered. However, if we have a minimizer of the unclipped regularized
risk, then it automatically satisfies (26). As an example of CR-ERMs, SVMs will be discussed in Section
4.2.

Before we present the oracle inequality for δ-CR-ERMs, we need to introduce a few more notations.
Let F be a hypothesis set in the sense of Definition 4.5. For

r∗ := inf
f∈F

Υ(f) +RL,P ( Ûf )−R∗L,P (27)

and r > r∗, we write

Fr :=
{
f ∈ F : Υ(f) +RL,P ( Ûf )−R∗L,P ≤ r

}
. (28)

Then we have r∗ ≤ 1, since L(x, y, 0) ≤ 1, 0 ∈ F , and Υ(0) = 0. Furthermore, we assume that we
have a monotonic decreasing sequence (Ar)r∈(0,1] such that

‖L ◦ Ûf‖ ≤ Ar for all f ∈ Fr and r ∈ (0, 1] , (29)

where ‖ · ‖ is a semi-norm satisfying (3). Because of the definition (28), it is easily to conclude that
‖L◦ Ûf‖ ≤ A1 for all f ∈ Fr and r ∈ (0, 1]. Finally, we assume that there exists a function ϕ : (0,∞)→
(0,∞) and a p ∈ (0, 1] such that, for all r > 0 and ε > 0, we have

lnN (Fr, ‖ · ‖∞, ε) ≤ ϕ(ε)rp. (30)

Note that there are actually many hypothesis sets satisfying Assumption (30), see [23, Section 4] for
some examples.

Now the oracle inequality for CR-ERMs reads as follows:

Theorem 4.6. Let Z := (Zn)n≥0 be a Z-valued stationary geometrically (time-reversed) C-mixing
process on (Ω,A, µ) with rate (dn)n≥0 as in (6), ‖ · ‖C be defined by (1) for some semi-norm ‖ · ‖
satisfying (3), and P := µZ0 . Moreover, let L be a loss satisfying Assumption 4.1. In addition, assume
that there exist a Bayes decision function f∗L,P and constants ϑ ∈ [0, 1] and V ≥ 1 such that

EP (L ◦ Ûf − L ◦ f∗L,P )2 ≤ V ·
(
EP (L ◦ Ûf − L ◦ f∗L,P )

)ϑ
, f ∈ F , (31)

where F is a hypothesis set with 0 ∈ F . We define r∗, Fr, and Ar by (27), (28), and (29), respectively
and assume that (30) is satisfied. Finally, let Υ : F → [0,∞) be a regularizer with Υ(0) = 0, f0 ∈ F
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be a fixed function, and A0, A
∗ ≥ 0, B0 ≥ 1 be constants such that ‖L ◦ f0‖ ≤ A0, ‖L ◦ Ûf0‖ ≤ A0,

‖L ◦ f∗L,P ‖ ≤ A∗ and ‖L ◦ f0‖∞ ≤ B0. Then, for all fixed ε > 0, δ ≥ 0, τ ≥ 1, and

n ≥ n∗0 := max

{
min

{
m ≥ 3 : m2 ≥ K and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
(32)

with K = 1212c(4A0 +A∗ +A1 + 1), and r ∈ (0, 1] satisfying

r ≥ max


(
cV (log n)

2
γ (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑ

,
20(log n)

2
γB0τ

n
, r∗

 (33)

with cV := 512(12V + 1)/3, every learning method defined by (26) satisfies with probability µ not less
than 1− 16e−τ :

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P < 2Υ(f0) + 4RL,P (f0)− 4R∗L,P + 4r + 5ε+ 2δ. (34)

Let us briefly discuss the variance bound (31). For example, if Y = [−M,M ] and L is the least
squares loss, then it is well-known that (31) is satisfied for V := 16M2 and ϑ = 1, see e.g. [42, Example
7.3]. Moreover, under some assumptions on the distribution P , [43] established a variance bound of
the form (31) for the pinball loss used for quantile regression. In addition, for the hinge loss, (31) is
satisfied for ϑ := q/(q + 1), if Tsybakov’s noise assumption [46] holds for q, see [42, Theorem 8.24].
Finally, based on [9], [40] established a variance bound with ϑ = 1 for the earlier mentioned clippable
modifications of strictly convex, twice continuously differentiable margin-based loss functions.

One might wonder, why the constants A0 and B0 are necessary in Theorem 4.6, since it appears to
add further complexity. However, a closer look reveals that the constants A1 and B are the bounds for
functions of the form L ◦ Ûf , while A0 and B0 are valid for the function L ◦ f0 for an unclipped f0 ∈ F .
Since we do not assume that all f ∈ F satisfy Ûf = f , we conclude that in general A0 and B0 are
necessary.

The following lemma shows that the required bounds on ‖L ◦ f‖ do hold for specific loss functions,
if C = Lip and the involved functions f ∈ F are Lipschitz, too.

Lemma 4.7. Let (X, d) be a metric space, Y ⊂ [−M,M ] with M > 0. Moreover, let f : X → R be a
bounded, Lipschitz continuous function. Then the following statements hold true:

(i) For the least square loss L, see (23), we have

|L ◦ f |1 ≤ 2
√

2 (M + ‖f‖∞) (1 + |f |1).

(ii) For the τ -pinball loss L, see (24), we have

|L ◦ f |1 ≤
√

2(1 + |f |1).

4.2 Learning rates for SVMs

Let us begin by briefly recalling SVMs, see [42] for details. To this end, let X be a measurable space,
Y := [−1, 1] and k be a measurable (reproducing) kernel on X with reproducing kernel Hilbert space
(RKHS) H . Given a regularization parameter λ > 0 and a convex loss L, SVMs find the unique solution

fDn,λ = arg min
f∈H

(
λ‖f‖2H +RL,Dn(f)

)
. (35)
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In particular, SVMs using the least-squares loss (23) are called least-squares SVMs (LS-SVMs), while
SVMs using the τ -pinball loss (24) are called SVMs for quantile regression.

Note that SVM decision functions (35) satisfy (26) for the regularizer Υ := λ‖ · ‖2H and δ := 0. In
other words, SVMs are CR-ERMs. Consequently we can use the oracle inequality in Theorem 4.6 to
derive the learning rates for SVMs.

Assumption 4.1 implies that

λ‖fDn,λ‖2H ≤ λ‖fDn,λ‖2H +RL,Dn(f) = min
f∈H

(
λ‖f‖2H +RL,Dn(f)

)
≤ RL,Dn(0) ≤ 1.

In other words, for a fix λ > 0, we have

fDn,λ ∈ λ−1/2BH , (36)

where BH denotes the closed unit ball of the RKHS H .
In the following, we are mainly interested in the commonly used Gaussian RBF kernels kσ : X ×

X → R defined by

kσ(x, x′) := exp

(
−‖x− x

′‖22
σ2

)
, x, x′ ∈ X,

whereX ⊂ Rd is a nonempty subset and σ > 0 is a free parameter called the width. We writeHσ for the
corresponding RKHSs, which are described in some detail in [44]. The entropy numbers for Gaussian
kernels [42, Theorem 6.27] and the equivalence of covering and entropy numbers [42, Lemma 6.21]
yield that

lnN (BHσ , ‖ · ‖∞, ε) ≤ aσ−dε−2p, ε > 0, (37)

for some constants a > 0 and p ∈ (0, 1).
Because of (36), we can choose the hypothesis set as F = λ−1/2BHσ . Then the definition (28)

implies that Fr ⊂ r1/2λ−1/2BHσ and consequently we have

lnN (Fr, ‖ · ‖∞, ε) ≤ aσ−dλ−pε−2prp,

and thus, for the function ϕ in Theorem 4.6, we can choose

ϕ(ε) := aσ−dλ−pε−2p. (38)

Now, with some additional assumptions below, we can use the oracle inequality in Theorem 4.6 to
derive the learning rates for the SVMs using Gaussian kernels. In the following, Bt

2s,∞ denotes the usual
Besov space with the smoothness parameter t, more details see [21, Section 2].

Theorem 4.8 (Least Square Regression with Gaussian Kernels). Let Y := [−M,M ] for M > 0, and
P be a distribution on Rd × Y such that X := suppPX ⊂ B`d2

is a bounded domain with µ(∂X) = 0,
where B`d2 denotes the closed unit ball of d-dimensional Euclidean space `d2. Furthermore, let PX be
absolutely continuous w.r.t. the Lebesgue measure µ on X with associated density g : Rd → R such
that g ∈ Lq(X) for some q ≥ 1. Moreover, let f∗L,P : Rd → R be a Bayes decision function such that
f∗L,P ∈ L2(Rd)∩Lip(Rd) as well as f∗L,P ∈ Bt

2s,∞ for some t ≥ 1 and s ≥ 1 with 1
q + 1

s = 1. Then, for
all ξ > 0, the LS-SVM using Gaussian RKHS Hσ and

λn = n−1 and σn = n−
1

2t+d , (39)

learns with rate

n−
2t

2t+d
+ξ . (40)
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It turns out that, modulo the arbitrarily small ξ > 0, these learning rates are optimal, see e.g. [45,
Theorem 13] or [22, Theorem 3.2].

To achieve these rates, however, we need to set λn and σn as in (39), which in turn requires us
to know t. Since in practice we usually do not know these values nor their existence, we can use the
training/validation approach TV-SVM, see e.g. [42, Chapters 6.5, 7.4, 8.2], to achieve the same rates
adaptively, i.e. without knowing t. To this end, let Λ := (Λn) and Σ := (Σn) be sequences of finite
subsets Λn,Σn ⊂ (0, 1] such that Λn is an εn-net of (0, 1] and Σn is an δn-net of (0, 1] with εn ≤ n−1

and δn ≤ n−
1

2+d . Furthermore, assume that the cardinalities |Λn| and |Σn| grow polynomially in n. For
a data set D := ((x1, y1) , . . . , (xn, yn)), we define

D1 := ((x1, y1) , . . . , (xm, ym))

D2 := ((xm+1, ym+1) , . . . , (xn, yn))

where m :=
⌊
n
2

⌋
+ 1 and n ≥ 4. We will use D1 as a training set by computing the SVM decision

functions

fD1,λ,σ := arg min
f∈Hσ

λ ‖f‖2Hσ +RL,D1 (f) , (λ, σ) ∈ Λn × Σn

and use D2 to determine (λ, σ) by choosing a (λD2 , σD2) ∈ Λn × Σn such that

RL,D2

( ÛfD1,λD2
,σD2

)
= min

(λ,σ)∈Λn×Σn
RL,D2

( ÛfD1,λ,σ

)
.

Then, analogous to the proof of Theorem 3.3 in [21] we can show that for all ζ > 0 and ξ > 0, the
TV-SVM producing the decision functions fD1,λD2

,σD2
with the above learning rates (40).

The following remark discusses learning rates for SVMs for quantile regression. For more informa-
tion on such SVMs we refer to [21, Section 4].

Remark 4.9 (Quantile Regression with Gaussian Kernels). Let Y := [−1, 1], and P be a distribution on
Rd × Y such that X := suppPX ⊂ B`d2

be a domain. Furthermore, we assume that, for PX -almost all
x ∈ X , the conditional measure P (·|x) is absolutely continuous w.r.t. the Lebesgue measure on Y and
the conditional density h(·, x) of P (·|x) is bounded from 0 and∞, see also [21, Example 4.5]. Moreover,
let PX be absolutely continuous w.r.t. the Lebesgue measure on X with associated density g ∈ Lu(X)
for some u ≥ 1. For τ ∈ (0, 1), let f∗τ,P : Rd → R be a conditional τ -quantile function that satisfies
f∗τ,P ∈ L2(Rd) ∩ Lip(Rd). In addition, we assume that f∗τ,P ∈ Bt

2s,∞ for some t ≥ 1 and s ≥ 1 such
that 1

s + 1
u = 1. Then [43, Theorem 2.8] yields a variance bound of the form

EP (Lτ ◦ Ûf − Lτ ◦ f∗τ,P )2 ≤ V · EP (Lτ ◦ Ûf − Lτ ◦ f∗τ,P ) ,

for all f : X → R, where V is a suitable constant and Lτ is the τ -pinball loss. Similar arguments to
Theorem 4.8 shows that the essentially optimal learning rate (40) can be achieved as well. Note that the
rate (40) is for the excess Lτ -risk, but since [43, Theorem 2.7] shows

‖ Ûf − f∗τ,P ‖2L2(PX) ≤ c
(
RLτ ,P( Ûf )−R∗Lτ ,P

)
for some constant c > 0 and all f : X → R, we actually obtain the same rates for ‖ Ûf − f∗τ,P ‖2L2(PX).
Last but not least, optimality and adaptivity can be discussed along the lines of LS-SVMs.
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4.3 Forecasting of dynamical systems

In this section, we proceed with the study of the forecasting problem of dynamical systems considered
in [41]. First, let us recall some basic notations and assumptions. Let Ω be a compact subset of Rd,
(Ω,A, µ, T ) be a dynamical system, and S0 ∈ Ω be a random variable describing the true but unknown
state at time 0. Moreover, for E > 0, assume that all observations of the stochastic process described
by the sequence T := (Tn)n≥0 are additively corrupted by some i.i.d., [−E,E]d-valued noise process
E = (εn)n≥0 defined on the probability space (Θ, C, ν) which is (stochastically) independent of T . It
follows that all possible observations of the system at time n ≥ 0 are of the form

Xn = Tn(S0) + εn. (41)

In other words, the process that generates the noisy observations (41) is (Tn(S0)+εn)n≥0. In particular,
a sequence of observations (X0, . . . , Xn) generated by this process is of the form (41) for a conjoint
initial state S0.

Now, given an observation of the process T := (Tn)n≥0 at some arbitrary time, our goal is to forecast
the next observable state. To do so, we will use the training set

Dn = ((X0, X1) , . . . , (Xn−1, Xn))

=
(
(S0 + ε0, T (S0) + ε1) , . . . ,

(
Tn−1(S0) + εn−1, T

n(S0) + εn
))

whose input/output pairs are consecutive observable states. In other words, our goal is to use Dn to build
a forecaster

fDn
: Rd → Rd

whose average forecasting performance on future noisy observations is as small as possible. In order to
render this goal, we will use the forecaster

fDn
:=
(
f
D

(1)
n
, . . . , f

D
(d)
n

)
, (42)

where f
D

(j)
n

is the forecaster obtained by using the training set

D(j)
n := ((X0, πj(X1)), . . . , (Xn−1, πj(Xn)))

which is obtained by projecting the output variable of Dn onto its jth-coordinate via the coordinate
projection πj : Rd → R.

In other words, we build the forecaster fDn by training separately d different decision functions
on the training sets D

(1)
n , . . . ,D

(d)
n . These problems can be considered as the (supervised) statistical

learning problems formulated in Subsection 4.1 with the help of the following Notations.
ForE > 0 and a fixed j ∈ {1, . . . , d}, we writeX := K+[−E,E]d, Y := πj(X) and Z := X×Y .

Moreover, we define the X×Y -valued process Z = (Zn)n≥0 = (Xn, Yn)n≥0 on (K×Θ,B⊗C, µ⊗ν)
by Xn := Tn + εn and Yn := πj(T

n+1 + εn+1). In addition, we write P := (µ⊗ ν)(X0,Y0). Obviously,
if the stochastic process T is C-mixing and the noise process E is i.i.d, then the stochastic processes

Z = (Xn, Yn)n≥0 = (Tn(S0) + εn, πj(T
n+1(S0) + εn+1))n≥0

is C-mixing as well.
To formulate the oracle inequality for our original d-dimensional problem, we need to introduce the

following concepts. Firstly, for the decision function f : Rd → Rd, it is necessary to introduce a loss
function L : Rd → [0,∞) such that

L (Xi − f(Xi−1)) = L
(
T i(S0) + εi − f(T i−1(S0) + εi−1)

)
15



gives a value for the discrepancy between the forecast f(T i−1(S0) + εi−1) and the observation of the
next state T i(S0) + εi. We say that a loss L : Rd → [0,∞) can be clipped at M > 0, if, for all
t = (t1, . . . , td) ∈ Rd, we have L(Ût ) ≤ L(t), where Ût = (Ût1, . . . , Ûtd) denotes the clipped value of t at
{±M}d. Moreover, the loss function L : Rd → [0,∞) is called separable, if there exists a distance-
based loss L : X × Y × R → [0,∞) such that its representing function ψ : R → [0,∞) has a unique
global minimum at 0 and satisfies

L(r) = ψ(r1) + · · ·+ ψ(rd), r = (r1, . . . , rd) ∈ Rd. (43)

In our problem-setting, the average forecasting performance is given by the L-risk

RL,P (f) :=

∫∫
L (T (x) + ε1 − f(x+ ε0)) ν(dε)µ(dx), (44)

where ε = (εi)i≥0 and P := ν ⊗ µ. Naturally, the smaller the risk, the better the forecaster is. Hence,
we ideally would like to have a forecaster f∗L,P : Rd → Rd that attains the minimal L-risk

R∗L,P := inf
{
RL,P (f)|f : Rd → Rd measurable

}
. (45)

The assumption (43) then impliesRL,P (f) =
∑d

j=1RL,P (fDn
(j)) and

RL,Dn(fDn
) =

d∑
j=1

R
L,D

(j)
n

(f
D

(j)
n

) ,

where Dn, D
(j)
n are the empirical measures associated to Dn, D(j)

n respectively.
Finally, let L : Rd → [0,∞) be a clippable loss and F be a hypothesis set with 0 ∈ F . A regularizer

Υ on Fd, that is, a function Υ : Fd → [0,∞), is also said to be separable, if there exists a regularizer Υ
on F with Υ(0) = 0 such that Υ(f) =

∑d
j=1 Υ(fj) for f = (f1, . . . , fd). Then, for δ ≥ 0, a learning

method whose decision functions fDn,Υ ∈ F
d satisfy

Υ(fDn,Υ) +RL,Dn(ÛfDn,Υ) < inf
f∈Fd

(Υ(f) +RL,Dn(f)) + dδ (46)

for all n ≥ 1 and Dn ∈ (X × Y )dn is called dδ-approximate clipped regularized empirical risk mini-
mization (dδ-CR-ERM) with respect to L, Fd, and Υ.

With all these preparations above, the oracle inequality for geometrically C-mixing dynamical sys-
tems with i.i.d noise processes, can be stated as following:

Theorem 4.10. Let Ω ⊂ Rd be compact and (Ω,A, µ, T ) be a dynamical system. Suppose that the
stationary stochastic process T := (Tn)n≥0 is geometrically time-reversed C-mixing and E = (εn)n≥0

is some i.i.d. noise process defined on (Θ, C, ν) which is independent of T . Furthermore, let L : Rd →
[0,∞) be a clippable and separable loss function with the corresponding loss function L : X×Y ×R→
[0,∞) satisfying the properties described as in Theorem 4.6. Finally, let Υ : Fd → [0,∞) be a
separable regularizer. Then, for all fixed f0 = (f0, . . . , f0), ε > 0, δ ≥ 0, τ ≥ 1, n ≥ n0 as in Theorem
4.6, and r ∈ (0, 1] satisfying (33), every learning method defined by (46) satisfies with probability µ⊗ ν
not less than 1− 16e−τ :

Υ(fDn,Υ) +RL,P (ÛfDn,Υ)−R∗L,P < 2Υ(f0) + 4RL,P (f0)− 4R∗L,P + 4dr + 5dε+ 2dδ. (47)

Again, this general oracle inequality can be applied to SVMs. We omit the details for the sake of
brevity and only mention that such applications would lead to learning rates and not only consistency as
in [41].
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5 Proofs

5.1 Proofs of Section 2

Proof of Example 2.2. Consider the collection Π of ordered n+ 1-ples of points z0 < z1 < . . . < zn ∈
Z, where n is an arbitrary natural number. The total variation of a function f : I → R is given by

‖f‖BV (Z) := sup
(z0,z1,...,zn)∈Π

n∑
i=1

|f(zi)− f(zi−1)|.

Let us now assume that we have an 1 ≤ i ≤ n with f(zi−1) ≤ f(zi). Moreover, for t ≤ 0, it is not
difficult to verify that |1− et| ≤ |t|. This implies∣∣∣ef(zi) − ef(zi−1)

∣∣∣ = ef(zi)
∣∣∣1− ef(zi−1)−f(zi)

∣∣∣ ≤ ∥∥ef∥∥∞|f(zi)− f(zi−1)| .

By interchanging the roles of f(zi) and f(zi−1) we find the same estimate in the case of f(zi−1) ≥ f(zi).
Consequently we obtain

n∑
i=1

|ef(zi) − ef(zi−1)| ≤
∥∥ef∥∥∞ n∑

i=1

|f(zi)− f(zi−1)|

for all collection Π. Taking the supremum we get ‖ef‖BV ≤ ‖ef‖∞‖f‖BV , i.e. (3) is satisfied.

Proof of Example 2.3. Given a function f ∈ Cb,α(Z), we assume that f(z) ≥ f(z′). Again, by using
|1− et| ≤ |t|, t ≤ 0, we obtain∣∣∣ef(z) − ef(z′)

∣∣∣ = ef(z)
∣∣∣1− ef(z′)−f(z)

∣∣∣ ≤ ∥∥ef∥∥∞|f(z′)− f(z)| ≤
∥∥ef∥∥∞|f |α|z − z′|α.

By interchanging the roles of f(z) and f(z′) we find the same estimate in the case of f(z′) ≥ f(z).
Consequently we obtain ‖ef‖ ≤ ‖ef‖∞|f |α, i.e. (3) is satisfied.

Proof of Theorem 2.6. (⇒) The proof is straightforward.
(⇐) For p, q ∈ [1,∞] with 1/p + 1/q = 1, let E1 and E2 be Banach spaces that are continuously em-
bedded into Lp(µ) and Lq(µ), respectively, and let F be a Banach space that is continuously embedded
into `∞. Analysis similar to that in the proof of [41, Theorem 5.1] shows that if, for all n ≥ 0, and all
h ∈ E1, g ∈ E2, the correlation sequence satisfies

corT,n(h, g) ∈ F,

then there exists a constant c ∈ [0,∞) such that

‖corT,n(h, g)‖F ≤ c · ‖h‖E1‖g‖E2 , h ∈ E1, g ∈ E2. (48)

In particular, (48) holds for E1 = C(Ω) and E2 = L1(µ) and the assertion is proved.

5.2 Proofs of Section 3

The following lemma, which may be of independent interest, supplies the key to the proof of Theorem
3.1.
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Lemma 5.1. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing process on the
probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0 . Moreover, for f : Z → [0,∞), suppose
that f ∈ C(Z) and write fn := f ◦ Zn. Finally, assume that we have natural numbers k and l satisfying

2l · ‖f‖C · dk ≤ ‖f‖L1(P ). (49)

Then we have

Eµ
l∏

j=0

fjk ≤ 2‖f‖l+1
L1(P ).

Proof of Lemma 5.1. We divide the proof into two parts.
(i) Suppose that the correlation inequality (7) holds. Obviously the case f = 0 P -a.s. is trivial. For
f 6= 0, we define

Dl :=

∣∣∣∣∣∣Eµ
l∏

j=0

fjk −
l∏

j=0

Eµfjk

∣∣∣∣∣∣ . (50)

Then we have

Dl ≤

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk

 flk − Eµ
l−1∏
j=0

fjk Eµflk

∣∣∣∣∣∣+

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l∏

j=0

Eµfjk

∣∣∣∣∣∣
=

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk

 flk − Eµ
l−1∏
j=0

fjk Eµflk

∣∣∣∣∣∣+

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l−1∏
j=0

Eµfjk Eµflk

∣∣∣∣∣∣ .
Since the stochastic process Z is stationary, the decay of correlations (7) together with ψ :=

∏l−1
j=0 fjk,

h := f , and the assumption f ≥ 0 yields∣∣∣∣∣Eµ
l−1∏
j=0

fjk

 flk − Eµ
l−1∏
j=0

fjk Eµflk

∣∣∣∣∣ ≤ ∥∥∥
l−1∏
j=0

fjk

∥∥∥
L1(µ)

‖f‖C dk =
∣∣∣Eµ l−1∏

j=0

fjk

∣∣∣‖f‖C dk
≤

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣∣+
l−1∏
j=0

Eµfjk

 ‖f‖C dk
=
(
Dl−1 + ‖f‖lL1(P )

)
‖f‖C dk.

Moreover, for the second term, we find∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk Eµflk −
l−1∏
j=0

Eµfjk Eµflk

∣∣∣∣∣∣ = ‖f‖L1(P )

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣∣ = ‖f‖L1(P )Dl−1.

These estimates together imply that

Dl ≤
(
Dl−1 + ‖f‖lL1(P )

)
‖f‖C dk + ‖f‖L1(P )Dl−1

=
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl−1 + ‖f‖C‖f‖lL1(P ) dk. (51)

In the following, we will show by induction that the latter estimate implies

Dl ≤ ‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l − ‖f‖lL1(P )

)
. (52)
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When l = 1, (52) is true because of (7). Now let l ≥ 1 be given and suppose (52) is true for l. Then (51)
and (52) imply

Dl+1 ≤
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl + ‖f‖C‖f‖l+1

L1(P ) dk

≤
(
‖f‖L1(P ) + ‖f‖C dk

) (
‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l − ‖f‖lL1(P )

))
+ ‖f‖C‖f‖l+1

L1(P ) dk

= ‖f‖L1(P )

((
‖f‖L1(P ) + ‖f‖C dk

)l+1 − ‖f‖l+1
L1(P )

)
.

Thus, (52) holds for l+ 1, and the proof of the induction step is complete. By the principle of induction,
(52) is thus true for all l ≥ 1.

Using the binomial formula, we obtain

Dl ≤ ‖f‖L1(P )

(
l∑

i=0

(
l

i

)
‖f‖l−iL1(P ) (‖f‖C dk)i − ‖f‖lL1(P )

)
.

For i = 0, . . . , l we now set

ai :=

(
l

i

)
‖f‖l−iL1(P ) (‖f‖C dk)i .

The assumption (49) implies for i = 0, . . . , l − 1

ai+1

ai
=

(
l

i+1

)
‖f‖l−i−1

L1(P ) (‖f‖C dk)i+1(
l
i

)
‖f‖l−iL1(P ) (‖f‖C dk)i

=

l!
(i+1)!(l−i−1)!

l!
i!(l−i)!

‖f‖C dk
‖f‖L1(P )

=
l − i
i+ 1

‖f‖C dk
‖f‖L1(P )

≤ l · ‖f‖C
‖f‖L1(P )

· dk ≤
1

2
.

This gives ai ≤ 2−ia0 for all i = 0, . . . , l and consequently we have

l∑
i=0

ai = a0 +
l∑

i=1

ai ≤ a0 +
l∑

i=1

2−ia0 = a0 ·

(
l∑

i=1

2−i

)
≤ 2a0.

This implies

Dl ≤ ‖f‖L1(P )

(
l∑

i=0

ai − ‖f‖lL1(P )

)
≤ ‖f‖L1(P )

(
2a0 − ‖f‖lL1(P )

)
= ‖f‖L1(P )

(
2‖f‖lL1(P ) − ‖f‖

l
L1(P )

)
= ‖f‖l+1

L1(P ).

Using the definition of Dl we thus obtain

Eµ
l∏

j=0

fjk ≤ 2‖f‖l+1
L1(P ).

(ii) Suppose that the correlation inequality (8) holds.
Again, the case f = 0 P -a.s. is trivial. For f 6= 0, we estimateDl defined as in (50) in a slightly different
way from above:

Dl ≤

∣∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣∣+

∣∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk −
l∏

j=0

Eµfjk

∣∣∣∣∣∣
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=

∣∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣∣+

∣∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk − Eµf0

l∏
j=1

Eµfjk

∣∣∣∣∣∣ .
Since the stochastic process Z is stationary, the decay of correlations (8) together with h := f , φ :=∏l
j=1 fjk, and the assumption f ≥ 0 yields∣∣∣∣∣∣Eµf0

l∏
j=1

fjk − Eµf0Eµ
l∏

j=1

fjk

∣∣∣∣∣∣ ≤ ‖f‖C
∥∥∥ l∏
j=1

fjk

∥∥∥
L1(µ)

dk

= ‖f‖C
∣∣∣Eµ l∏

j=1

fjk

∣∣∣ dk = ‖f‖C
∣∣∣Eµ l−1∏

j=0

fjk

∣∣∣ dk
≤ ‖f‖C

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣∣+

l−1∏
j=0

Eµfjk

 dk

= ‖f‖C
(
Dl−1 + ‖f‖lL1(P )

)
dk.

Moreover, for the second term, since the stochastic process Z is stationary, we find∣∣∣∣∣∣Eµf0Eµ
l∏

j=1

fjk − Eµf0

l∏
j=1

Eµfjk

∣∣∣∣∣∣ = ‖f‖L1(P )

∣∣∣∣∣∣Eµ
l∏

j=1

fjk −
l∏

j=1

Eµfjk

∣∣∣∣∣∣
= ‖f‖L1(P )

∣∣∣∣∣∣Eµ
l−1∏
j=0

fjk −
l−1∏
j=0

Eµfjk

∣∣∣∣∣∣
= ‖f‖L1(P )Dl−1.

Combining the above estimates, we get

Dl ≤ ‖f‖C
(
Dl−1 + ‖f‖lL1(P )

)
dk + ‖f‖L1(P )Dl−1

=
(
‖f‖L1(P ) + ‖f‖C dk

)
Dl−1 + ‖f‖C‖f‖lL1(P ) dk.

This estimate coincides with (51). The rest of the argument is the same as in (i), and the assertion is
proved.

To prove Theorem 3.1, we need to introduce some notations. In the following, for t ∈ R, btc is the
largest integer n satisfying n ≤ t, and similarly, dte is the smallest integer n satisfying n ≥ t. We write
hi := h ◦ Zi and

Sn =
n∑
i=1

hi =
n∑
i=1

h ◦ Zi.

We now recall the so-called blocking method. To this end, we partition the set {1, 2, . . . , n} into k
blocks. Each block will contain approximatively l := bn/kc terms. Let r := n − k · l < k denote the
remainder when we divide n by k.

We now construct k blocks as follows. Define Ii, the indexes of terms in the i-th block, as

Ii =

{
{i, i+ k, . . . , i+ (l + 1)k}, if 1 ≤ i ≤ r,
{i, i+ k, . . . , i+ lk}, if r + 1 ≤ i ≤ k.
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Note that the number of the terms satisfies

|Ii| =

{
l + 1, for 1 ≤ i ≤ r,
l, for r + 1 ≤ i ≤ k.

In other words, the first r blocks each contain l + 1 terms, while the last (k − r) blocks each contain l
terms. Moreover, we have

k∑
i=1

|Ii| =
r∑
i=1

|Ii|+
k∑

i=r+1

|Ii| = r(l + 1) + (k − r)l = n. (53)

Furthermore, for i = 1, 2, . . . , k, we define the i-th block sum as

gi =
∑
j∈Ii

hj (54)

such that

Sn =
k∑
i=1

gi. (55)

Finally, for i = 1, 2, . . . , k, define

pi :=
|Ii|
n
. (56)

It follows from (53) that

k∑
i=1

pi =
1

n

k∑
i=1

|Ii| = 1.

The following three lemmas will derive the upper bounds for the expected value of the exponentials
of Sn.

Lemma 5.2. Let Z := (Zn)n≥0 be a Z-valued stationary stochastic process on the probability space
(Ω,A, µ) and P := µZ0 . Moreover, let k and l be defined as above, and for a bounded h : Z → R we
define gi and Sn by (54) and (55), respectively. Then, for all t > 0, we have

Eµ exp

(
t
Sn
n

)
≤

k∑
i=1

piEµ exp

(
t
gi
|Ii|

)
.

Proof of Lemma 5.2. It is well-known that the exponential function is convex. Jensen’s inequality to-
gether with

∑k
i=1 pi = 1, (55), and (56) yields

Eµ exp

(
t
Sn
n

)
= Eµ exp

(
k∑
i=1

tpi
gi
|Ii|

)
≤

k∑
i=1

piEµ exp

(
t
gi
|Ii|

)
.
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Lemma 5.3. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing process on the
probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0 . Moreover, for h : Z → [0,∞), we write
hn := h ◦ Zn. Finally, let k and l be defined as above. Then, for all t > 0 satisfying

e
t
|Ii|

h ∈ C(Z) and 2l · ‖e
t
|Ii|

h‖C · dk ≤ ‖e
t
|Ii|

h‖L1(P ), (57)

we have

Eµ exp

(
t
gi
|Ii|

)
≤ 2

(
EP exp

(
t
h

|Ii|

))|Ii|
.

Proof of Lemma 5.3. The ith block sum gi in (54) depends only on hi+jk with j ranging from 0 through
|Ii| − 1. Since Z is stationary, Lemma 5.1 with f := exp( t

|Ii|h) then yields

Eµ exp

(
t
gi
|Ii|

)
= Eµ exp

 t

|Ii|

|Ii|−1∑
j=0

hi+jk

 = Eµ exp

 t

|Ii|

|Ii|−1∑
j=0

hjk


= Eµ

|Ii|−1∏
j=0

exp

(
t

|Ii|
hjk

)
≤ 2

(
EP exp

(
t
h

|Ii|

))|Ii|
.

Lemma 5.4. Let Z := (Zn)n≥0 be a Z-valued stationary (time-reversed) C-mixing process on the
probability space (Ω,A, µ) with rate (dn)n≥0, and P := µZ0 . Moreover, for h : Z → [0,∞), we write
hn := h ◦ Zn and suppose that EPh = 0, ‖h‖ ≤ A, ‖h‖∞ ≤ B, and EPh2 ≤ σ2 for some A > 0,
B > 0 and σ ≥ 0. Finally, let k and l be defined as above. Then, for all i = 1, . . . , k, and all t > 0
satisfying 0 < t < 3l/B and (57), we have

Eµ exp

(
t
gi
|Ii|

)
≤ 2 exp

(
t2σ2

2(l − tB/3)

)
.

Proof of Lemma 5.4. Because of ‖h‖∞ ≤ B and 2 · 3j−2 ≤ j!, we obtain

exp

(
t

|Ii|
h

)
= 1 +

t

|Ii|
h+

∞∑
j=2

(
t

|Ii|

)j hj
j!

≤ 1 +
t

|Ii|
h+

∞∑
j=2

(
t

|Ii|

)j h2Bj−2

2 · 3j−2

= 1 +
t

|Ii|
h+

1

2

(
t

|Ii|

)2

h2
∞∑
j=2

(
tB

3|Ii|

)j−2

= 1 +
t

|Ii|
h+

1

2

(
t

|Ii|

)2

h2 1

1− tB/(3|Ii|)

if tB/(3|Ii|) < 1. This, together with EPh = 0, 1 + x ≤ ex, and l ≤ |Ii| ≤ l + 1, implies(
EP exp

(
t
h

|Ii|

))|Ii|
≤

(
1 +

1

2

(
t

|Ii|

)2

σ2 1

1− tB/(3|Ii|)

)|Ii|

≤

(
exp

(
1

2

(
t

|Ii|

)2

σ2 1

1− tB/(3|Ii|)

))|Ii|
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= exp

(
t2σ2

2(|Ii| − tB/3)

)
≤ exp

(
t2σ2

2(l − tB/3)

)
, (58)

since the assumed tB/(3l) < 1 implies tB/(3|Ii|) < 1. Lemma 5.3 then yields

Eµ exp

(
t
gi
|Ii|

)
≤ 2 exp

(
t2σ2

2(l − tB/3)

)
.

Proof of Theorem 3.1. For k and l as above we define

t :=
lε

σ2 + εB/3
. (59)

Then we have

t

|Ii|
≤ t

l
=

ε

σ2 + εB/3
≤ ε

εB/3
=

3

B
. (60)

In particular, this t satisfies 0 < t < 3l/B. Moreover, we find∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
∞
≤ exp

(
3

B
·B
)

= e3. (61)

Then, the assumption (3) together with the bounds (61) and (60) implies∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥ ≤ ∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
∞

∥∥∥∥ t

|Ii|
h

∥∥∥∥ ≤ e3 · t

|Ii|
‖h‖ ≤ 3e3A

B
. (62)

Since −B ≤ h ≤ B, we further find∥∥∥∥exp

(
t

|Ii|
h

)∥∥∥∥
L1(P )

= EP exp

(
t

|Ii|
h

)
≥ exp

(
3

B
· (−B)

)
= e−3. (63)

Now we choose k := b(log n)
2
γ c+1, which implies k ≥ (log n)

2
γ . On the other hand, since (log n)

2
γ ≥ 1

for n ≥ n0 ≥ 3, we have k ≤ 2(log n)
2
γ . This implies

l =
n− r
k
≥ n

k
− 1 ≥ 1

2

n

(log n)
2
γ

− 1 ≥ 1

4

n

(log n)
2
γ

, (64)

since we have n ≥ 4(log n)
2
γ for n ≥ n0. Now, by (61), (62), (63), (6), and (13) we obtain

l · ‖e
t
|Ii|

h‖C
‖e

t
|Ii|

h‖L1(P )

· dk ≤ l ·
‖e

t
|Ii|

h‖∞ + ‖e
t
|Ii|

h‖

‖e
t
|Ii|

h‖L1(P )

· c · exp (−bkγ)

≤ n ·
e3 + 3e3A

B

e−3
· c · exp

(
−b(log n)2

)
≤ n · 404c(3A+B)

B
· exp

(
−b log n · 3

b

)
≤ n · n

2

2
· n−3 =

1

2
,
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i.e., the assumption (57) is valid.
Summarizing, the value of t defined as in (59) satisfies 0 < t < 3l/B and the assumption (57). In

other words, all the requirements on t in Lemma 5.4 are satisfied.
Now, for this t, by using Markov’s inequality, Lemma 5.2, and Lemma 5.4, we obtain for any ε > 0,

P

(
Sn
n
> ε

)
= P

(
exp

(
t
Sn
n

)
> exp (tε)

)
≤ exp (−tε)Eµ exp

(
t
Sn
n

)
≤ exp (−tε)

k∑
i=1

piEµ exp

(
t
gi
|Ii|

)

≤ exp (−tε) · 2 exp

(
t2σ2

2(l − tB/3)

) k∑
i=1

pi

= 2 exp

(
−tε+

t2σ2

2(l − tB/3)

)
. (65)

Substituting the definition of t into the exponent of inequality (65), we get

−tε+
t2σ2

2(l − tB/3)
= − lε2

σ2 + εB/3
+

l2ε2

(σ2 + εB/3)2 ·
σ2

2
(
l − lεB/3

σ2+εB/3

)
= − lε2

σ2 + εB/3
+

lε2

σ2 + εB/3
· σ2

2 (σ2 + εB/3− εB/3)

=
−lε2

2 (σ2 + εB/3)
,

hence

P
(

1

n
Sn > ε

)
≤ 2 exp

(
− −lε2

2 (σ2 + εB/3)

)
.

Using the estimate (64), we thus obtain

P
(

1

n
Sn > ε

)
≤ 2 exp

(
− nε2

8(log n)
2
γ (σ2 + εB/3)

)
,

for all n ≥ n0 and ε > 0. Setting τ := nε2

8(logn)
2
γ (σ2+εB/3)

, we then have

µ

({
ω ∈ Ω :

1

n

n∑
i=1

h(Zi(ω)) ≥ ε

})
≤ 2e−τ , n ≥ n0.

Simple transformations and estimations then yield

µ

ω ∈ Ω :
1

n

n∑
i=1

h(Zi(ω)) ≥

√
8(log n)

2
γ τσ2

n
+

8(log n)
2
γBτ

3n


 ≤ 2e−τ

for all n ≥ n0 and τ > 0.
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5.3 Proofs of Section 4

Proof of Lemma 4.7. (i) For the least square loss (23), by using a+ b ≤ (2(a2 + b2))1/2, we obtain

|L(x, y, f(x))− L(x′, y′, f(x′))| = |(y − f(x))2 − (y′ − f(x′))2|
= |y − f(x) + y′ − f(x′)| · |y − f(x)− y′ + f(x′)|
≤
(
|y + y′|+ |f(x) + f(x′)|

) (
|y − y′|+ |f(x)− f(x′)|

)
≤ 2 (M + ‖f‖∞)

(
|y − y′|+ |f |1|x− x′|

)
≤ 2 (M + ‖f‖∞) (1 + |f |1)

(
|y − y′|+ |x− x′|

)
≤ 2
√

2 (M + ‖f‖∞) (1 + |f |1)‖(x, y)− (x′, y′)‖2

for all (x, y), (x′, y′) ∈ X × Y , that is, we have proved the assertion.
(ii) Let L be the the τ -pinball loss (24) and define

D := L(x, y, f(x))− L(x′, y′, f(x′)).

We divide the proof into the following four cases. If y ≥ f(x) and y′ ≥ f(x′), we have

|D| = |τ(y − f(x))− τ(y′ − f(x′))| = τ |(y − y′)− (f(x)− f(x′))|.

If y < f(x) and y′ < f(x′), in an exactly similar way we obtain

|D| = (1− τ)|(y − y′)− (f(x)− f(x′))|.

Moreover, in case of y ≥ f(x) and y′ < f(x′), we get

|D| = |τ(y − f(x)) + (1− τ)(y′ − f(x′))| ≤ |(y − f(x)) + (f(x′)− y′)|.

Similar arguments to the case y < f(x) and y′ ≥ f(x′) show that

|D| = | − (1− τ)(y − f(x))− τ(y′ − f(x′))| ≤ |(y − f(x)) + (f(x′)− y′)|.

Summarizing, for all (x, y), (x′, y′) ∈ X × Y , we have

|L(x, y, f(x))− L(x′, y′, f(x′))| ≤ |(y − y′)− (f(x)− f(x′))| ≤ |y − y′|+ |f(x)− f(x′)|.

The rest of the argument is similar to that of part (i), and the assertion is proved.

For our proof of Theorem 4.6 we need the following simple and well-known lemma (see e.g. [42,
Lemma 7.1]):

Lemma 5.5. For q ∈ (1,∞), define q′ ∈ (1,∞) by 1/q + 1/q′ = 1. Then, for all a, b ≥ 0, we have
(qa)2/q(q′b)2/q′ ≤ (a+ b)2 and ab ≤ aq/q + bq

′
/q′.

Apart from the semi-norm bounds involving A0, A1, and A∗ and some constants, for example, the
constant n0 and the constants on the right side of the oracle inequality, the proof of Theorem 4.6 is almost
identical to the proof of [23, Theorem 3.1]. For this reason, a few parts of the proof will be omitted.

Proof of Theorem 4.6. Main Decomposition. For f : X → R we define hf := L ◦ f − L ◦ f∗L,P . By
the definition of fDn,Υ, we then have

Υ(fDn,Υ) + EDnhÛfDn,Υ ≤ Υ(f0) + EDnhf0 + δ,
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and consequently we obtain

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P
= Υ(fDn,Υ) + EPhÛfDn,Υ
≤ Υ(f0) + EDnhf0 − EDnhÛfDn,Υ + EPhÛfDn,Υ + δ

= (Υ(f0) + EPhf0) + (EDnhf0 − EPhf0) + (EPhÛfDn,Υ − EDnhÛfDn,Υ) + δ. (66)

Estimating the First Stochastic Term. Let us first bound the term EDnhf0 − EPhf0 . To this end,
we further split this difference into

EDnhf0 − EPhf0 =
(
EDn(hf0 − hÛf0

)− EP (hf0 − hÛf0
)
)

+ (EDnhÛf0
− EPhÛf0

). (67)

Now L ◦ f0 − L ◦ Ûf0 ≥ 0 implies hf0 − hÛf0
= L ◦ f0 − L ◦ Ûf0 ∈ [0, B0], and hence we obtain

EP
(

(hf0 − hÛf0
)− EP (hf0 − hÛf0

)
)2
≤ EP (hf0 − hÛf0

)2 ≤ B0EP (hf0 − hÛf0
).

Moreover, we find

‖hf0 − hÛf0
‖ = ‖(L ◦ f0 − L ◦ f∗L,P )− (L ◦ Ûf0 − L ◦ f∗L,P )‖

= ‖L ◦ f0 − L ◦ Ûf0‖ ≤ ‖L ◦ f0‖+ ‖L ◦ Ûf0‖ ≤ 2A0.

Inequality (15) applied to h := (hf0 − hÛf0
)− EP (hf0 − hÛf0

) thus shows that for

n ≥ n∗0 ≥ max

{
min

{
m ≥ 3 : m2 ≥ 808c(6A0 +B0)

B0
and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
,

we have

EDn(hf0 − hÛf0
)− EP (hf0 − hÛf0

) ≤

√√√√8(log n)
2
γ τB0EP (hf0 − hÛf0

)

n
+

8(log n)
2
γB0τ

3n

with probability µ not less than 1− 2e−τ . Moreover, using
√
ab ≤ a

2 + b
2 , we find√

8(log n)
2
γ n−1τB0EP (hf0 − hÛf0

) ≤ EP (hf0 − hÛf0
) + 2(log n)

2
γ n−1B0τ,

and consequently we have with probability µ not less than 1− 2e−τ that

EDn(hf0 − hÛf0
)− EP (hf0 − hÛf0

) ≤ EP (hf0 − hÛf0
) +

14(log n)
2
γB0τ

3n
. (68)

In order to bound the remaining term in (67), that is EDnhÛf0
−EPhÛf0

, we first observe that the assumed
L(x, y, t) ≤ 1 for all (x, y) ∈ X × Y and t, t′ ∈ [−M,M ] implies ‖hÛf0

‖∞ ≤ 1, and hence we have
‖hÛf0

− EPhÛf0
‖∞ ≤ 2. Furthermore, we have

‖hf0‖ = ‖L ◦ f0 − L ◦ f∗L,P ‖ ≤ ‖L ◦ f0‖+ ‖L ◦ f∗L,P ‖ ≤ A0 +A∗.
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Moreover, (31) yields

EP (hÛf0
− EPhÛf0

)2 ≤ EPh2Ûf0
≤ V (EPhÛf0

)ϑ.

In addition, if ϑ ∈ (0, 1], the second inequality in Lemma 5.5 implies for q := 2
2−ϑ , q′ := 2

ϑ , a :=

((log n)
2
γ n−123−ϑϑϑV τ)1/2, and b := (2ϑ−1EPhÛf0

)ϑ/2, that√√√√8(log n)
2
γ V τ(EPhÛf0

)ϑ

n
≤
(

1− ϑ

2

)(
23−ϑϑϑ(log n)

2
γ V τ

n

) 1
2−ϑ

+ EPhÛf0

≤

(
8(log n)

2
γ V τ

n

) 1
2−ϑ

+ EPhÛf0
.

Since EPhÛf0
≥ 0, this inequality also holds for ϑ = 0, and hence (15) shows that for

n ≥ n∗0 ≥ max

{
min

{
m ≥ 3 : m2 ≥ 808c(3A0 + 3A∗ + 2)

2
and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
,

we have

EDnhÛf0
− EPhÛf0

< EPhÛf0
+

(
8(log n)

2
γ V τ

n

) 1
2−ϑ

+
16(log n)

2
γ τ

3n
(69)

with probability µ not less than 1− 2e−τ . By combining this estimate with (68) and (67), we now obtain
that with probability µ not less than 1− 4e−τ we have

EDnhf0 − EPhf0 < EPhf0 +

(
8(log n)

2
γ V τ

n

) 1
2−ϑ

+
16(log n)

2
γ τ

3n
+

14(log n)
2
γB0τ

3n
, (70)

since 1 ≤ B0, i.e., we have established a bound on the second term in (66).
Estimating the Second Stochastic Term. For the third term in (66) let us first consider the case

n/(log n)
2
γ < 8(τ+ϕ(ε/2)2prp). Combining (70) with (66) and using 1 ≤ B0, 1 ≤ V , and EPhÛfDn,Υ−

EDnhÛfDn,Υ ≤ 2, then we find

Υ(fDn,Υ) +RL,P ( ÛfDn,Υ)−R∗L,P

≤ Υ(f0) + 2EPhf0 +

(
8(log n)

2
γ V τ

n

) 1
2−ϑ

+
16(log n)

2
γ τ

3n
+

14(log n)
2
γB0τ

3n

+ (EPhÛfDn,Υ − EDnhÛfDn,Υ) + δ

≤ Υ(f0) + 2EPhf0 +

(
8(log n)

2
γ V (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑ

+
10(log n)

2
γB0τ

n

+ 2

(
8(log n)

2
γ V (τ + ϕ(ε/2)2prp)

n

) 1
2−ϑ

+ δ

≤ 2Υ(f0) + 4EPhf0 + 3

(
24(log n)

2
γ V (τ + ϕ(ε/2)2prp)

3n

) 1
2−ϑ

+
10(log n)

2
γB0τ

n
+ 2δ
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≤ 2Υ(f0) + 4EPhf0 + 4r + 2δ

with probability µ not less than 1 − 4e−τ . It thus remains to consider the case n/(log n)
2
γ ≥ 8(τ +

ϕ(ε/2)2prp).
Introduction of the Quotients. To establish a non-trivial bound on the term EPhÛfD − EDnhÛfD in

(66), we define functions

gf,r :=
EPhÛf − hÛf

Υ(f) + EPhÛf + r
, f ∈ F , r > r∗.

For f ∈ Fr, we have ‖EPhÛf − hÛf‖∞ ≤ 2. Furthermore, for f ∈ Fr and k ≥ 0 with 2kr ≤ 1, by the
assumption (29) we find

‖hÛf‖ = ‖L ◦ Ûf − L ◦ f∗L,P ‖ ≤ ‖L ◦ Ûf‖+ ‖L ◦ f∗L,P ‖ ≤ A2kr +A∗ ≤ A1 +A∗.

Moreover, for f ∈ Fr, the variance bound (31) implies

EP (hÛf − EPhÛf )2 ≤ EPh2Ûf ≤ V (EPhÛf )ϑ ≤ V rϑ. (71)

Peeling. This part is completely identical to the part Peeling on page 135 of our work [23]. Hence
we have neglected some steps of the derivations. In case of uncertainty one may refer to [23] for details.

For a fixed r ∈ (r∗, 1], letK be the largest integer satisfying 2Kr ≤ 1. Then we can get the following
disjoint partition of the function set F1:

F1 ⊂ Fr ∪
K+1⋃
k=1

(F2kr\F2k−1r) . (72)

We further write Cε,r,0 for a minimal ε-net of Fr and Cε,r,k for minimal ε-nets of F2kr\F2k−1r, 1 ≤
k ≤ K + 1, respectively. Then the union of these nets Cε,1 :=

⋃K+1
k=0 Cε,r,k is an ε-net of the set F1.

Moreover, we define

C̃ε,r,k :=
k⋃
l=0

Cε,r,l, 0 ≤ k ≤ K + 1. (73)

Then we have Cε,1 =
⋃K+1
k=0 C̃ε,r,k. Moreover, the cardinality of C̃ε,r,k can be estimated by

|C̃ε,r,k| ≤ (k + 1) exp
(
ϕ(ε/2)2kprp

)
, 0 ≤ k ≤ K + 1. (74)

Then, peeling by [23, Theorem 5.2] implies

µ

(
sup
f∈Cε,1

EDngf,r >
1

4

)
≤ 2

K+1∑
k=1

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 2k−3r

)
. (75)

Estimating the Error Probabilities on the “Spheres”. Our next goal is to estimate all the error
probabilities on the right-hand side of (75). By our construction, we have C̃ε,r,k ⊂ F2kr. This, together
with (14), (71), the union bound and the estimates of the covering numbers (74), implies that for

n ≥ n∗0 ≥ max

{
min

{
m ≥ 3 : m2 ≥ 808c(3A1 + 3A∗ + 2)

2
and

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
,
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we have

µ

(
sup

f∈C̃ε,r,k
EDn(EPhÛf − hÛf ) > 2k−3r

)

≤ 2|C̃ε,r,k| exp

(
− n

8(log n)
2
γ

· (2k−3r)2

V (2kr)ϑ + 2(2k−3r)/3

)

≤ 2(k + 1) exp
(
ϕ(ε/2)2kprp

)
· exp

(
− n

8(log n)
2
γ

· 3(2k−1r)2

96V (2k−1r)ϑ + 8(2k−1r)

)
, (76)

since ϑ ∈ [0, 1]. For k ≥ 1, we denote the right-hand side of this estimate by pk(r), that is

pk(r) := 2(k + 1) exp
(
ϕ(ε/2)2kprp

)
· exp

(
− n

8(log n)
2
γ

· 3(2k−1r)2

96V (2k−1r)ϑ + 8(2k−1r)

)
. (77)

Then, as derived in [23], we can obtain

qk(r) :=
pk+1(r)

pk(r)
≤ 2 exp

(
ϕ(ε/2)2kp+1rp

)
· exp

(
− n

8(log n)
2
γ

· 3(2k−1r)2

96V (2k−1r)ϑ + 8(2k−1r)

)
,

and our assumption 2kr ≤ 1, 0 ≤ k ≤ K implies

qk(r) ≤ 2 exp
(
ϕ(ε/2)2kp+1rp

)
· exp

(
− n

8(log n)
2
γ

· 3(2k−1r)2

96V (2k−1r)ϑ + 8(2k−1r)ϑ

)

≤ 2 exp

(
2(k−1)p · 4rpϕ(ε/2)− 2(k−1)(2−ϑ) · 3nr2−ϑ

64(12V + 1)(log n)
2
γ

)
.

Since p ∈ (0, 1], k ≥ 1 and ϑ ∈ [0, 1], we have 2(k−1)p ≤ 2(k−1)(2−ϑ). Then the first assumption in (33),
namely,

r ≥

(
512(12V + 1)(log n)

2
γ (τ + ϕ(ε/2)2prp)

3n

) 1
2−ϑ

implies that 3nr2−ϑ ≥ 512(12V + 1)(log n)
2
γϕ(ε/2)rp. By using 2(k−1)(2−ϑ) ≥ 1, we find

qk(r) ≤ 2 exp

(
− 3nr2−ϑ

128(12V + 1)(log n)
2
γ

)
.

Moreover, since τ ≥ 1, the first assumption in (33) implies also 3nr2−ϑ ≥ 4 · 128(12V + 1)(log n)
2
γ .

Hence we have qk(r) ≤ 2e−4, that is,

pk+1(r) ≤ 2e−4pk(r) for all k ≥ 1. (78)

Summing all the Error Probabilities. Now, combining (75) with (76), (77), and (78), we obtain

µ

(
sup
f∈Cε,1

EDngf,r >
1

4

)
≤ 2

K+1∑
k=1

pk(r) ≤ 3p1(r)
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= 12 exp (ϕ(ε/2)2prp) · exp

(
− n

8(log n)
2
γ

· 3r2

96V rϑ + 8r

)

≤ 12 exp (ϕ(ε/2)2prp) · exp

(
− 3nr2−ϑ

64(12V + 1)(log n)
2
γ

)
,

where in the last step we used r ∈ (0, 1] and ϑ ∈ [0, 1]. Then once again the first assumption in (33)
gives 3nr2−ϑ ≥ 64(12V + 1)(log n)

2
γ (τ + ϕ(ε/2)2prp) and a simple transformation thus yields

µ

(
Dn ∈ (X × Y )n : sup

f∈Cε,1
EDngf,r ≤

1

4

)
≥ 1− 12e−τ .

The rest of the argument is completely analogous to the proof of [23, Theorem 3.1] and the assertion is
proved.

Proof of Theorem 4.8. For the least-square loss, the variance bound (31) is valid with ϑ = 1, hence the
condition (33) is satisfied if

r ≥ max

{(
cV 21+3pa

) 1
1−p σ

− d
1−pλ

− p
1−p

(
n

(log n)
2
γ

) 1
1−p

ε
− 2p

1−p ,
2cV (log n)

2
γ τ

n
,
20B0(log n)

2
γ τ

n
, r∗

}
.

(79)

Furthermore, [21, Section 2] shows that there exists a constant c > 0 such that for all σ ∈ (0, 1], there is
an f0 ∈ Hσ with ‖f0‖∞ ≤ c, ‖f0‖2Hσ ≤ cσ

−d, and

RL,P (f0)−R∗L,P ≤ cσ2t .

Moreover, [41, Lemma 5.5] shows every function f in Hσ is Lipschitz continuous with

|f |1 ≤
√

2σ−1‖f‖Hσ(X) ,

and this implies

| Ûf0|1 ≤ |f0|1 ≤
√

2σ−1‖f0‖Hσ(X) ≤
√

2cσ−1.

Moreover, there exists a constant C∗ < ∞ such that |f∗L,P |1 ≤ C∗, since we have assumed that f∗L,P ∈
Lip(Rd). Then, Lemma 4.7 (i) yields

4A0 +A1 +A∗ + 1 = 2
√

2 (M + ‖f‖∞)

(
4 + 4|f0|1 + 1 + sup

f∈F1

|f |1 + 1 + |f∗L,P |1 + 1

)
+ 1

≤ 2
√

2 (M + ‖f‖∞)

(
7 + 4

√
2cσ−1 + sup

r≤1

√
2σ−1λ−1/2r1/2 + C∗

)
+ 1

= 2
√

2 (M + ‖f‖∞)
(

7 + 5
√

2cσ−1λ−1/2 + C∗
)

+ 1

≤ 2Cσ−1λ−1/2 ≤ 2Cn

for all σ, λ ∈ (0, 1] with λσ2 ≥ n−2, where C is a constant independent of n, λ, and σ. For

n ≥ max

{
2C,min

{
m ≥ 3 :

m

(logm)
2
γ

≥ 4

}
, e

3
b

}
,
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the oracle inequality (34) thus implies

λ‖fDn,λ‖2Hσ +RL,P ( ÛfDn,λ)−R∗L,P
≤ 4λ‖f0‖2Hσ + 4RL,P (f0)− 4R∗L,P + 4r + 5ε

≤ C1

λσ−d + σ2t + σ
− d

1−pλ
− p

1−p

(
n

(log n)
2
γ

) 1
1−p

ε
− 2p

1−p τ + ε

 ,

where C1 is a constant independent of n, λ, σ, τ , and ε. Here, λ, σ, and n need satisfy the additional
requirement σ, λ ∈ (0, 1] with λσ2 ≥ n−2. Now, optimizing over ε by using [42, Lemma A.1.5], we get

λ‖fDn,λ‖2Hσ +RL,P ( ÛfDn,λ)−R∗L,P ≤ C2

λσ−d + σ2t + σ
− d

1+pλ
− p

1+p

(
n

(log n)
2
γ

) 1
1+p

τ

 , (80)

where C2 is a constant independent of n, λ, and σ. By applying [42, Lemma A.1.6], we can optimize the
right-hand side of (80) over λ and σ, then we see that for all ξ > 0 we can find p, ζ ∈ (0, 1) sufficiently
close to 0 such that the LS-SVM using Gaussian RKHS Hσ and λn = n−1, σn = n−

1
2t+d learns with

rate n−
2t

2t+d
+ξ, since the requirement λnσ2

n ≥ n−2 is automatically satisfied by the assumed t ≥ 1.

Proof of Theorem 4.10. Theorem 4.6 yields

Υ(f
D

(j)
n ,Υ

) + EPhÛf
D

(j)
n ,Υ

≤ 2Υ(f0) + 4EPhf0 + 4r + 5ε+ 2δ

with probability µ⊗ ν not less than 1− 16e−τ . Using (43) and the definition (42) we then easily obtain
the assertion.
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2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for
Control Constrained Optimal Control Problems

2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive
Equations

2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds
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