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NUMERICAL SCHEMES FOR THE COUPLING OF COMPRESSIBLE AND

INCOMPRESSIBLE FLUIDS IN SEVERAL SPACE DIMENSIONS

JOCHEN NEUSSER† AND VERONIKA SCHLEPER‡

Abstract. We present a numerical scheme for immiscible two-phase flows with one compressible and one

incompressible phase. Special emphasis lies in the discussion of the coupling strategy for compressible and in-

compressible Euler equations to simulate inviscid liquid-vapour flows. To reduce the computational effort further,

we also introduce two approximate coupling strategies. The resulting schemes are compared numerically to a fully

compressible scheme and show good agreement with these standard algorithm at lower numerical costs.
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2 JOCHEN NEUSSER, VERONIKA SCHLEPER

1. Introduction. We consider a setting of two compressible, immiscible and isothermal

fluids in a domain Ω ∈ R
d(d = 1, 2, 3). The two fluids are separated by a sharp interface Γ

that does not contain mass. We refer to the fluid with the higher density as liquid and to that

with the lower density as gas. If viscosity is neglected, the dynamics of the two fluids can be

described by the compressible Euler equations

∂tρg +∇ · (ρgvg) = 0,

∂t(ρgvg) +∇ · (ρgvg ⊗ vg) +∇pg(ρg) = 0,
x ∈ Ωg(t),(1.1)

∂tρl +∇ · (ρlvl) = 0,

∂t(ρlvl) +∇ · (ρlvl ⊗ vl) +∇pl(ρl) = 0,
x ∈ Ωl(t).(1.2)

The coupling between the liquid phase and the gas phase is modelled by the modified Rankine-

Hugoniot jump conditions

(vg − vl) · n = 0,
pl(ρl)− pg(ρg) = (d− 1)σκ,

x ∈ Γ(t),(1.3)

and a kinetic relation

vg · n = γ(t), x ∈ Γ(t).(1.4)

Here, ρg is the density of the gas, vg is its velocity and pg(ρg) is the pressure law, while

ρl, vl and pl denote the analogous quantities for the liquid. γ(t) is the normal velocity of

the interface Γ(t) and n(t) is the normal vector of Γ(t) pointing into the liquid region. The

kinetic relation (1.4) and the coupling conditions (1.3) ensure that the gas and the liquid have

the same speed across the interface and they prevent any mass exchange between the two

fluids. Note that we make use of the Young-Laplace law [5] to take surface tension into

account in (1.3)2. Here κ is the curvature of the interface and σ > 0 is the (given) surface

tension.

The different behaviours of the gas phase and the liquid phase are taken into account by

the equations of state pg, pl. We assume the liquid to be only weakly compressible and we

model its behaviour by the Tait equation

(1.5) pTait(ρl) = k0

((

ρl
ρ0

)γ

− 1

)

+ p0,

where k0 depends on the Mach number and determines the compressibility of the fluid, ρ0
and p0 are density and pressure of the fluid at reference temperature at reference configuration

and γ > 0 is a constant exponent. On the other hand we describe the gas by the ideal gas law

(1.6) pideal(ρg) = a2ρg,

where a2 is the adiabatic gas constant. The model (1.1)-(1.6) is a standard model for the

description of two compressible immiscible fluids [15, 16, 23, 22, 19, 24], but it has a disad-

vantage from the numerical point of view. The equation of state for the liquid (1.5) is very

stiff and the speed of sound in the liquid region is very high. Numerically, this results in

severe time step restrictions due to the CFL-condition. A different approach can be found in

[28] where two incompressible fluids are considered. However, this approach neglects some
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important properties of the two fluids. For the case that density changes in the gas phase

cannot be neglected, Klein and Munz proposed a compressible/incompressible coupling, that

is based on the introduction of multiple pressure variables [27],[21],[26].

Another way to circumvent the timestep restrictions is to perform the compressible to

incompressible limit only for the liquid and obtain a coupled system that is given by

∂tρg +∇ · (ρgvg) = 0,
∂t(ρgvg) +∇ · (ρgvg ⊗ vg) +∇pg(ρg) = 0,

x ∈ Ωg(t),(1.7)

∇ · vl = 0,
∂t(vl) +∇ · (vl ⊗ vl) +

1
ρl
∇pl = 0,

x ∈ Ωl(t),(1.8)

vg · n = γ(t) , x ∈ Γ(t),(1.9)

(vg − vl) · n = 0,
pl − pg(ρg) = (d− 1)σκ,

x ∈ Γ(t).(1.10)

We recall that (1.1)-(1.4) and (1.7)-(1.9) are known to be well posed at least in one space

dimension, see [3],[10]. In the case of smooth solutions, there exist various well posedness

results in higher space dimensions [20, 32, 33]

In this paper we develop a numerical algorithm for the coupled system (1.7)-(1.10). Up to

our knowledge, such a scheme has not been proposed before. This contribution is structured

as follows.

Section 2 explains the properties of the exact Riemann solver at the phase boundary, that

is needed to construct physically correct solutions.

Section 3 contains the main outcome of this paper. We briefly introduce the numerical

algorithms for the bulk phases, that are standard and can for example be found in [1, 31].

Then we give a detailed explanation of the coupling strategy we use at the phase boundary.

This strategy is a modification of the fractional step scheme of Bell, Colella and Glaz [2].

Note that we rely on the ideas of the more recent paper [1]. We give analytical proof, that this

coupling is well-defined.

In Section 4 we compare the resulting schemes numerically to a fully compressible

scheme. The results show good agreement with this standard algorithm at lower numerical

costs.

2. The Exact Riemann Solver. Consider again the fully compressible system (1.1)-

(1.4). In order to understand the coupling of the two fluids in the bulk phases across the

interface we choose d = 1 for simplicity. At the interface, we need a thorough investigation

of the wave structure in order to construct physically correct solutions. To this end, note

that the speed of sound in the gas/liquid phase is defined as ci(ρ) :=
√

pi(ρi) for i = g, l.
The eigenvalues and eigenvectors of the Jacobian of the one dimensional compressible Euler

equations (1.7) are given by

(2.1)

λ1 = vi − ci(ρi), r1 =

(

−1
−vi + ci(ρi)

)

,

λ2 = vi + ci(ρi), r2 =

(

1
vi + ci(ρi)

)

.
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for i = g, l. Using the notation ui := (ρi, vi), the corresponding one-wave curve through a

given left state u−i is defined by

(2.2)

L1
i (σ1;u

−

i ) := u1i (σ1) =



























(

(1− σ1)ρ
−

i

v−i −
∫ (1−σ1)ρ

−

i

ρ−

i

ci(r)
r dr

)

, σ1 ≥ 0





(1− σ1)ρ
−

i

v−i −
√

(

1
ρ−

i

− 1
ρ1
i (σ1)

)

·
(

p(ρ1i (σ1))− p(ρ−i )
)



 , σ1 < 0

Analogously, the (backward) two-wave curve through a given right state u+i is defined by

(2.3)

L2
i (σ2;u

+
i ) := u2i (σ2) =



























(

(1 + σ2)ρ
+
i

v+i +
∫ (1+σ2)ρ

+

i

ρ+

i

ci(r)
r dr

)

, σ2 ≥ 0





(1 + σ2)ρ
+
i

v+i −
√

(

1
ρ+

i

− 1
ρ2
i
(σ2)

)

·
(

p(ρ2i (σ2))− p(ρ+i )
)



 , σ2 < 0

The detailed derivation of these wave curves can be found in [11]. Figure 1 illustrates the

wave structure and the geometric solution to the Riemann problem at the interface. Without

FIG. 1. Illustration of the wave structure (left) and the geometric solution (right) of a Riemann problem at the

interface.

loss of generality, let the interface be given at x = 0 with the gas phase u−g in R
− and

the liquid phase u+l in R
+. We consider the Riemann problem in the gas phase with initial

conditions

(2.4) u0 =

{

u−g , x ∈ R
−,

u+l , x ∈ R
+.

In order to solve the Riemann problem, we have to find σ1, σ2 defined in equations (2.2),(2.3)

such that

(2.5)
v1g(σ1) = v2l (σ2),
pg(ρ

1
g(σ1)) = pl(ρ

2
l (σ2)).

The unique solvability of this Riemann problem at least locally is well-known in the literature

and can be checked by the inverse function theorem. We refer to [10] for detailed analytical

results.
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We now consider the Riemann problem at the interfaceΓ for the compressible-incompressible

system (1.7)-(1.10).

In contrast to the coupling between two compressible fluids, we cannot use the approach

we outlined above, since the Riemann problem at the interface will not lead to the right

solution because of the special structure of Riemann problems. The fact that the liquid part in

the Riemann problem fills the whole halfspace R+ implies that the incompressible phase has

infinite mass. Therefore, any incoming wave of the compressible phase will be completely

reflected by the incompressible fluid phase. Thus, the local Riemann problem cannot give the

physically right solution in the context of coupled compressible-incompressible flows with

finite liquid mass. Instead, we have to consider the whole liquid phase explicitly in order to

impose the finite mass of the incompressible phase.

In one space dimension, the velocity of the liquid is constant and can be obtained by the

ordinary differential equation

(2.6) vl(t) =
p−g (t)− p+g (t)

Lρl
,

where L is the length of the droplet and p−g (p+g ) are the values left (right) of the liquid.

In two space dimensions, on has to solve the fully coupled problem, that is given by the

incompressible constraint

∇ · vl = 0,

and the coupling conditions

(2.7)
vg(σ) = vl,
pg(ρg(σ)) = pl,

where ρg(σ),vg(σ) are obtained from the Lax curves (2.2),(2.3). Note that some difficulties

for this coupling arise in two and three space dimensions. If we for example consider a liquid

droplet that is surrounded by gas, the interface condition has to be fulfilled for all x ∈ Γ
simultaneously (cf. Figure 2). We have to determine the boundary states to the left and right

of the interface Γ(t) such that the incompressibility condition ∇ · vl = 0 is fulfilled in Ωl

and such that the new boundary states in the gas phase are admissible for the compressible

model. This task is not trivial and we refer to Section 3.2.3 for a detailed solution strategy on

the discrete level.

3. The Numerical Algorithm for the Coupled System. In this section we present a

numerical scheme to solve the coupled compressible/incompressible system (1.7)-(1.10).

We make some simplifications concerning the geometry and discretization of the domain

Ω because we want to focus on the treatment of the incompressible/compressible coupling.

We assume that we have a rectangular domain Ω that is discretized by Cartesian mesh with

rectangular cells Bi,j (cf. Figure 2 for an example of such a domain). Furthermore, we

assume that each cellBi,j is either contained in the compressible regionΩg (Fig. 2 white/light

grey) or in the incompressible region Ωl (Fig. 2 dark grey). This means that the phase

boundary (cf. Fig. 2 bold line) is given by a finite set of edges. We define B = {Bi,j |Bi,j ∈
Ω} as the discrete version of Ω and

Bl = {Bi,j|(i, j) ∈ Il}, Bg = {Bi,j|(i, j) ∈ Ig},

as the discrete versions of Ωl, Ωg respectively. Here Il is the list of all cell indices in the

in liquid phase and Ig is the list of all cell indices in the in gas phase. Additionally, we
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FIG. 2. Discretization of the domain Ω in two space dimensions. A liquid droplet (light grey) is separated from

the gas phase by a sharp interface (bold line).

denote the list of all nodes in the liquid region by Inodes
l (Fig. 2 black dots). The light grey

rectangles in Figure 2 mark the elements of the compressible phase that are needed for the

interface treatment.

In the following sections, we specify in detail the bulk phase algorithms for the compressible

and incompressible phases.

3.1. Discretization of the compressible Euler equations. In this section, we give a

brief overview of the numerical scheme for the compressible Euler equations. The steps

of the scheme are standard but are presented for the sake of completeness. Note that we

set u = ug in this section to avoid overloaded notations. We are concerned with solving

numerically the general initial boundary value problem

(3.1)

ut + f(u)x + g(u)y = 0 , x ∈ Ωg

u(x, 0) = u0(x) , x ∈ Ωg

u(x, t) = ub(t) , x ∈ ∂Ωg

with x = (x, y)T , u = (ρ, ρu, ρv)T , f = (ρu, ρu2 + p, ρuv)T and g = (ρv, ρuv, ρv2 + p).
We use the explicit conservative formula

(3.2) un+1
i,j = un

i,j −
∆t

∆x
[fi+ 1

2
,j − fi− 1

2
,j ]−

∆t

∆y
[gi,j+ 1

2
− gi,j− 1

2
], (i, j) ∈ Ig

where the numerical fluxes fi+ 1
2
,j , gi,j+ 1

2
are the HLL fluxes by Harten, Lax and van Leer

[18], see also [31]. Using the Roe averaged values [29]

(3.3) ρ̃i+ 1
2
,j =

√
ρi,jρi+1,j , ũi+ 1

2
,j =

√
ρi,jui,j +

√
ρi+1,jui+1,j√

ρi,j +
√
ρi+1,j

to compute the speeds on both sides of the interface

(3.4) S− = ũi+ 1
2
,j −

√

p′(ρ̃i+ 1
2
,j), S+ = ũi+ 1

2
,j +

√

p′(ρ̃i+ 1
2
,j),
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we obtain the HLL numerical flux

(3.5) fi+ 1
2
,j =























f(ui,j), if 0 ≤ S−,

S+f(ui,j)− S−f(u+) + S−S+(ui+1,j − ui,j)

S+ − S−
, if S− < 0 < S+,

f(ui+1,j), if 0 ≥ S+,

An analogous result can be obtained for gi,j+ 1
2

by considering the Riemann problem in y-

direction.

This method is an explicit finite volume scheme and it requires a time step restriction.

The standard stability analysis shows that we must require

(3.6) ∆t = σc min
i,j

(

∆x

(|ũi+ 1
2
,j |+ p(ρ̃i+ 1

2
,j))

,
∆y

(|ṽi,j+ 1
2
|+ p(ρ̃i,j+ 1

2
))

)

,

where σc < 1 is the CFL number.

We complete the discretization with the description of the boundary conditions. HereBI

denotes a cell in the compressible domain that is separated from a boundary cell BO by the

interface Γ. Figure 3 displays the situation for a vertical boundary. We prescribe values uO in

BI BO

Γ

ρ
I  =  ρO

uI  = -uO

vI  =  vO

 n

FIG. 3. A compressible cell BI (grey) is separated from a boundary cell BO (white) by the interface Γ (bold

red line). The boundary conditions are given by a reflecting wall (a)).

these boundary cells to enforce the boundary conditions. Denoting by n the outward normal

vector and by t the tangential vector, the different boundary conditions and the corresponding

boundary cell values are given by

a) Reflecting wall: v(x) · n = 0, x ∈ ∂Ωg

ρO = ρI , vO · n = −vI · n, vO · t = vI · t.

b) Inflow: u = uinflow(x), x ∈ ∂Ωg

u = uinflow.

c) Outflow:

uO = uI .

d) Compressible-incompressible interface:

pO = pInc, vO · n = vInc · n, vO · t = vI · t.

ρInc, vInc are obtained from the algorithm for the incompressible equations, that

is presented in Section 3.2.3. This is a modification of the ghost-fluid method by

Fedkiw et al. [14].
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3.2. Discretization of the incompressible Euler equations. In this section, we propose

an algorithm for the incompressible Euler equations (1.8), that incorporates the compressible-

incompressible coupling conditions (1.10).

Ideally we would like to compute

(3.7)

vn+1 − vn

∆t
+ [∇ · (v ⊗ v)]n+1 +

1

ρl
∇pn+1 = 0,

∇ · vn+1 = 0.

Therefore, we use a modification of the fractional step scheme, that was introduced by Bell,

Colella and Glaz [2]. There are various other numerical methods available for the incompress-

ible Euler equations, for example the projection method that was first brought up by Chorin

[7, 6]. Primitive-variable methods that rely on a staggered grids can be found in [17, 25]. The

streamline diffusion method was introduced in [4] and uses space-time finite elements.

Our scheme relies particularly on the ideas of the more recent paper [1] and consists of two

steps that we recall here for convenience. Note that the second step will be modified below to

account for the coupling with the compressible phase. In the first step we solve the convec-

tion equation (3.8) at time level tn+
1
2 without enforcing the incompressibility constraint. The

second step is a projection that takes the coupling between the compressible and the incom-

pressible fluid into account and imposes the incompressibility constraint. For the convection

step we solve

(3.8)
vn+ 1

2 − vn

∆t
+ [∇ · (v ⊗ v)]n = 0

for the intermediate velocity

v∗ :=
vn+ 1

2 − vn

∆t
.

The convection terms at tn+
1
2 are explicitly computed from the velocity data at tn using a

first order upwind scheme. The resulting velocity field v∗ is in general not divergence free.

The projection step decomposes the result of the first step into an approximately divergence-

free vector field and a discrete gradient of a scalar potential. They correspond to the update

for the velocity and to the new approximation for the pressure, respectively. Denoting by P
the projection operator, we obtain vn+1, pn+1 by

(3.9)

vn+1 − vn

∆t
= P (v∗) ,

1

ρl
∇pn+1 = (I − P) (v∗) .

3.2.1. Discretization of the convection step. In this section we recall the algorithm

for the convection step that was proposed in [1]. In contrast to them, we use a first order

finite volume upwind scheme for the inviscid Burgers equation (3.8). This is sufficient in the

present context since the coupling of the compressible and incompressible fluid will also be

only first order accurate. Here vn
i,j represents the value of the velocity field in cell Bij at time

tn. Note that we present the results in this section for convenience and one can find a more

detailed explanation in [1]. We have

(3.10)
vn+ 1

2 − vn

∆t
+ h(vn)x +K(vn)y = 0
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with h(vn) = (unun, unvn), K(vn) = (unvn, vnvn).
In order to obtain a discrete scheme, we first define the normal advective velocity

(3.11) uadvi+ 1
2
,j =







uni,j if uni,j > 0, uni,j + uni+1,j > 0,
0 if uni,j ≤ 0, uni+1,j ≥ 0
uni+1,j otherwise

We now upwind vn
i+ 1

2
,j

based on uadv
i+ 1

2
,j

:

(3.12) vn
i+ 1

2
,j =











vn
i,j if uadv

i+ 1
2
,j
> 0,

1
2 (v

n
i,j + vn

i+1,j) if uadv
i+ 1

2
,j
= 0,

vn
i+1,j otherwise

After constructing vi− 1
2
,j , vi,j+ 1

2
, vi,j− 1

2
in a similar manner, we use these upwind values

to compute the numerical fluxes:

(3.13)
Hn

i+ 1
2
,j
= (un

i+ 1
2
,j
un
i+ 1

2
,j
, un

i+ 1
2
,j
vn
i+ 1

2
,j
)T ,

Kn
i,j+ 1

2

= (un
i,j+ 1

2

vn
i,j+ 1

2

, vn
i,j+ 1

2

vn
i,j+ 1

2

)T .

It remains to define the boundary values, that come from the compressible/incompressible

coupling. Without any loss of generality, we assume that Bi,j is an incompressible cell and

Bi+1,j is a compressible cell. We set

(3.14) vn
i+1,j =

(

uni+1,j

vni,j

)

.

Here uni+1,j is the velocity in the compressible cell that we computed in the previous time

step.

With these fluxes we can define the upwind scheme

(3.15)
v
n+ 1

2

i,j − vn
i,j

∆t
+

Hn
i+ 1

2
,j
−Hn

i− 1
2
,j

∆x
+

Kn
i,j+ 1

2

−Kn
i,j− 1

2

∆y
= 0. (i, j) ∈ Il

The Godunov method is an explicit finite volume scheme, and requires the time step

restriction.

(3.16) ∆t = σinc min
ij

(

∆x

|uij |
,
∆y

|vij |

)

,

where σinc < 1 is the CFL number. Note that this time step restriction is severely weaker

than the time step restriction in the compressible phase (3.6), since it does not involve the

speed of sound.

3.2.2. Discretization of the projection step. In the previous step we computed the in-

termediate velocity v∗. We already mentioned that this vector field is not in general diver-

gence free. In the projection step, we again rely on the ideas of [1]. We recall the basic

concepts of this step here to fix the ideas. In the next section, this step will be modified to

include the coupling of compressible and incompressible phase. We decompose v∗ into a

discrete divergence-free vector field and a gradient field. This decomposition is based on a

finite element formulation for the pressure p.
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We denote by Vr,s
h the space of element wise defined polynomials of degree r in x-

direction and s in y-direction:

(3.17) Vr,s
h =

{

φh

∣

∣

∣ φh|Bi,j
∈ P

r,s(Bi,j), ∀(i, j) ∈ Il
}

,

where P
r,s(Bi,j) is the space of polynomials of degree r in x-direction and s in y-direction

on the cell Bi,j .

We consider the scalar pressure field p to be a continuous bilinear function over each

cell, i.e., the pressure is in

(3.18) Sh = V1,1
h ∩ C0(Ωl).

We define Ψ as the standard basis for Sh, namely

(3.19) Ψ =
{

ψi+ 1
2
,j+ 1

2
(x)
∣

∣

∣
ψi+ 1

2
,j+ 1

2
(xi′+ 1

2
,j′+ 1

2
) = δii′δjj′ , ∀(i, j), (i′, j′) ∈ Inodes

l

}

.

Here xi± 1
2
,j± 1

2
are defined at the nodes of the cell Bi,j .

For the velocity space we define

(3.20) Vh = V0,1
h × V1,0

h ,

thus u is piecewise constant in x and a discontinuous linear function in y in each cell and v is

piecewise constant in y and a discontinuous linear function in x in each cell.

Note that v∗, computed in the previous step, is given by cell averages, while the velocity

space Vh is larger and allows not only piecewise constant functions, but also functions with

linear variations. This allows us to define the projection step. See [1] for more details.

Thus we are able define a decomposition of Vh into two orthogonal components

(3.21) Vh = Vh ⊕V⊥
h

where Vh represents the cell average and V⊥
h represents the orthogonal linear variation. In

particular, for each v ∈ Vh we define the cell average by

vi,j =
1

|Bi,j |

∫

Bi,j

vdx

and the orthogonal linear variation by

v⊥
i,j = vi,j − vi,j .

A similar decomposition of ∇p can be defined for all p ∈ Sh by

(3.22) (∇p)i,j = (∇p)i,j + (∇p)⊥i,j .

With these preparations, we can define the projection step in (3.9).

We only demand the new velocity field vn+1 to be weakly divergence free in (3.7).

Therefore we define a vector field vd ∈ Vh to be weakly divergence free if

(3.23)

∫

Ω

vd · ∇ψdx = 0, ∀ψ ∈ Sh.

We use this definitions to introduce a decomposition of the vector field v∗ ∈ Vh onto a

gradient ∇pn+1 and weakly divergence-free field vd. We rewrite (3.7)1 by using (3.8) and

then apply the divergence operator to obtain

(3.24) ∇vd = ∇v∗ − 1

ρl
∆pn+1.
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Then we write (3.24) in its weak form, do partial integration and obtain

(3.25)

∫

Ω

(v∗ − vd) · ∇ψdx +

∫

∂Ω

(vd − v∗) · (ψn)ds

=
1

ρl

∫

Ω

∇pn+1 · ∇ψdx− 1

ρl

∫

∂Ω

∇pn+1 · (ψn)ds
∀ψ ∈ Sh.

As we want vd to be weakly divergence-free, we have to solve

(3.26)

∫

Ω

v∗ · ∇ψi+ 1
2
,j+ 1

2
dx+

∫

∂Ω

(vd − v∗) · (ψi+ 1
2
,j+ 1

2
n)ds

=
1

ρl

∫

Ω

∇pn+1 · ∇ψi+ 1
2
,j+ 1

2
dx− 1

ρl

∫

∂Ω

∇pn+1 · (ψi+ 1
2
,j+ 1

2
n)ds

∀ψi+ 1
2
,j+ 1

2

for

pn+1(x) =
∑

i,j

pn+1
i+ 1

2
,j+ 1

2

ψi+ 1
2
,j+ 1

2
(x).

Here the ψi+ 1
2
,j+ 1

2
are the standard basis functions for Sh as defined above.

Note that the projection is applied to the vector field v∗ instead of v∗, so we make the

implicit assumption that v⊥,∗ = 0. With the updated pn+1 we compute

(3.27) vd = v∗ − 1

ρl
∇pn+1

as the approximation of (vn+1 − vn)/∆t in (3.9). The vector field vd is only approximately

divergence free; i.e.,

∫

Ω

vd · ∇ψdx 6= 0. The quantity that is weakly divergence free is

vd = v∗ − 1

ρl
pn+1.

However, it can be shown that we have Dvn+1 = O(∆x), where the discrete divergenceDv

is defined as

(Dv)i+ 1
2
,j+ 1

2
= − 1

|ψ|Ω

∫

Ω

v · ∇ψi+ 1
2
,j+ 1

2
dx

with |ψ|Ω =

∫

Ω

ψi+ 1
2
,j+ 1

2
dx, see [1].

To accomplish this, we rewrite the result of the decomposition (3.9) as

(3.28)

v∗ − vn

∆t
=

v∗ − vn

∆t
− 1

ρl
pn+1

Dvn+1 = 0.

where we implicitly assume Dvn = 0. Since Dvn+1 = −Dv⊥,n, we can estimate how

errors behave by examining the behaviour of v⊥,n. Therefore we break (3.28) into its com-

ponent pieces in :

(3.29)
vn+1 − vn

∆t
+

v⊥,n+1 − vn

∆t
=

v∗ − vn

dt
− 1

ρl
∇pn+1.
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By using the definition of Vh given by (3.21), we obtain

vn+1 = vn +∆t

(

v∗ − vn

∆t
− 1

ρl
∇pn+1

)

and

v⊥,n+1 = v⊥,n −∆t(∇pn+1)⊥ ≈ v⊥,n −∆t(∇pn)⊥ −∆t2(∇pnt )⊥.

As long as the pressure p remains sufficiently smooth in space and time, v⊥ is well behaved

and scales with ∆t = σinc∆x. Thus Dvn = 0 guarantees that vn+1 = O(∆x) as long as

the CFL condition is enforced.

3.2.3. Implementation of the coupling projection. It remains to include the coupling

between the two fluids into the projection scheme (3.26). This coupling is the key ingredi-

ent to our numerical scheme and it relies on the choice of the approximate Riemann solver.

In Section 2 we introduced the exact Riemann solver and we use this solver to outline the

solution strategy at the phase boundary. We want to point out that this solver can be re-

placed by an approximate one. We refer to the end of this section for further explanations

and examples for approximate solvers in this context. In order to solve the coupling correctly,

the boundary states ρn+1
g , vn+1

g · n,vn+1
l · n and pn+1

l have to fulfil the interface condi-

tions (1.10) simultaneously. Therefore we have to determine these boundary states such that

(ρn+1
g ,vn+1

g ·n) = L1
g(σ; (ρ

n
g ,v

n
g ·n)) for some σ and vn+1

g ·n = vn+1
l ·n, pn+1

l = pg(ρ
n+1
g ).

Before we show formally that this is possible, we outline the discretization for the projection

(3.30)

∫

Ω

v∗ · ∇ψi+ 1
2
,j+ 1

2
dx+

∫

∂Ω

(vd − v∗) · (ψi+ 1
2
,j+ 1

2
n)ds

=
1

ρl

∫

Ω

∇pn+1 · ∇ψi+ 1
2
,j+ 1

2
dx− 1

ρl

∫

∂Ω

∇pn+1 · (ψi+ 1
2
,j+ 1

2
n)ds

We now take a closer look at the interface between two liquid cells Bl
i,j , B

l
i,j+1 and two

gas cells Bg
i+1,j , B

g
i+1,j+1 to describe how the interface coupling works in detail. There-

fore we consider the situation that is illustrated in Figure 3.2.3. The coupling for vn+1 is

straightforward as vn+1 is constant along cell boundaries. We obtain after a brief calculation

(3.31)

∫

Γ

(vd − v∗) · (ψi+ 1
2
,j+ 1

2
n) ds =

∆y

2∆t
(un+1

i,j+1(σi+ 1
2
,j+ 1

2
)− u∗i,j+1

+un+1
i+1,j+1(σi+ 1

2
,j+ 3

2
)− u∗i+1,j+1).

The coupling for pn+1 is not so straightforward as pn+1
i+ 1

2
,j+ 1

2

is defined at cell nodes and is

not constant along cell boundaries. We incorporate the interface condition by setting

(3.32) pn+1
i+ 1

2
,j+ 1

2

= p(ρn+1
i,j+1(σi+ 1

2
,j+ 1

2
)).

in the third term in (3.30). This is the standard treatment for Dirichlet boundary conditions in

elliptic equations.

In other words, we substitute the interface quantities vn+1, pn+1 by the one parameter

families L1
g(σ; ρ

n
g ,v

n
g · n). Note that this substitution does not chance the number of un-

knowns in (3.30).

At inner cell nodes we set pn+1
i+ 1

2
,j+ 1

2

= σi+ 1
2
,j+ 1

2
to have a consistent notation in the

next steps.
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FIG. 4. Coupling between the incompressible (yellow) and compressible domain (white) across the interface

(bold red).

We put the discretizations for vd,v∗, pn+1 together and obtain the solution operator

O(σ), that is defined as

(3.33)

O(σ) =
1

ρl

∫

Ωl

∇pn+1(σ) · ∇ψi+ 1
2
,j+ 1

2
dx

−
∫

Ωl

v∗ · ∇ψi+ 1
2
,j+ 1

2
dx

−
∫

Γ

(vd − v∗)(σ) · (ψi+ 1
2
,j+ 1

2
n) ds,

∀(i+ 1/2, j + 1/2) ∈ Inodes
l

We have to check if (3.33) is locally solvable, in order to proof that the interface coupling for

our scheme is well defined.

THEOREM 3.1. Let O : RM → R
M be defined as in (3.33). Then O(σ) satisfies

(3.34) det [ Dσ1
O(0) Dσ2

O(0) . . . DσN
O(0) ] 6= 0.

Proof: Without any loss of generality, we assume that the nodesK := (i+1/2, j+1/2) ∈
Inodes
l are sorted in the following way. The first M nodes K1, . . . ,KM are the boundary

nodes in clockwise order and the remaining N − M nodes KM+1, . . . ,KN are the inner

nodes. We want to point out, that for a free droplet without wall contact the number of

boundary edges corresponds to the number of boundary nodes. We take a closer look at the

structure of the solution operator (3.33) and see that the second term does not depend on σ
and so we do not have to take it into consideration for the computation of the determinant.

The first term can be rewritten as

1

ρl

∫

Ωl

∇pn+1(σ) · ∇ψKdx =
1

ρl
MPn+1(σ)
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with M the mass matrix defined as

(3.35) mk,l :=







δk,l xKk
∈ Γ

∫

Ωl

∇ψKk
· ∇ψKl

dx otherwise

and Pn+1(σ) defined as

(3.36) Pn+1(σ) = (p(ρn+1
g,1 (σ1)), p(ρ

n+1
g,2 (σ2)), . . . , p(ρ

n+1
g,M (σM )), σM+1, . . . , σN )T .

Note that M can be written as

(3.37) M =

(

1 0

M1 M2

)

where 1 is the M ×M unity matrix and M1 ∈ R
(N−M)×M , M2 ∈ R

(N−M)×(N−M). We

abbreviate the third term as V(σ) and obtain similar to (3.31):

(3.38)

∆tV(σ) = 1
2 ( (|Γ1|vn+1

g,1 (σ1) · n1 + |ΓM |vn+1
g,M (σM ) · nM + c̃1),

(|Γ2|vn+1
g,2 (σ2) · n2 + |Γ1|vn+1

g,1 (σ1)n1 + c̃2),
. . . ,
(|ΓM |vn+1

g,M (σM )nM + |ΓM−1|vn+1
g,M−1(σM−1)nM−1 + c̃M ),

0, . . . , 0).

We multiply (3.33) with ∆t and obtain

(3.39) ∆t∇σ ·O(0) = ∆tM∇σ ·P(σ) +∇σ ·V(σ).

A short computation (for ∆x = ∆y) yields

(3.40)

∇σ ·P(0) =

(

A 0
0 1

)

∇σ ·Vd(0) =

(

B 0
0 0

)

with

(3.41)

A =
1

ρl



















a1 0 · · · · · · 0

0 a2
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 aM



















, B =
∆x

2

















b1 0 · · · 0 bM
b1 b2 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 bM−1 bM

















and 1 the (N − M) × (N − M) unity matrix. The values aK , bK , K = 1, . . . ,M are

computed by the derivatives of the lax curves

(3.42)

(

aK
bK

)

= ∂σK
Lg
i (0, ρg,K ,vg,K) =

(

ρ0g,K
(−1)ia

)

, i = 1, 2.
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We can easily see that A has full rank and so has M. After these preparations we can write

(3.39) as

(3.43)

∆t∇σ ·O(0) = ∆tM

(

A 0
0 1

)

+

(

B 0

0 0

)

=

(

∆tA+B 0

∆tM1A ∆tM2

)

.

To compute the determinant of ∆t∇σ ·O(σ) we use the following result for the determinant

of a matrix

D =

(

D1 D2

D3 D4

)

formed by 4 block matrices. If D4 is invertible we have

(3.44) det(D) = det(D4) · det(D1 −D2D
−1
4 D3).

In our case we compute for ∆t sufficiently small

(3.45) ∆t∇σ ·O(0) = ∆t · det(M2) · det(∆tA+B)

As the mass matrixM has full rank so does M2 and it remains to proof that det(∆tA+B) 6=
0. A short computation yields

(3.46)

det(∆tA+B) = −
(

a∆x

2

)M

+
∏

K∈Inodes
l

(

a∆x

2
+

∆t

ρl
ρ0g,K

)

=

(

a∆x

2

)M−1
∆t

ρl

∑

K∈Inodes
l

ρ0l,K +O(∆t2)

6= 0

The last line is true for ∆t small enough because ρ0l,K > 0 for all K ∈ Il.
REMARK 3.2. This result holds also for a droplet with wall contact. For each boundary

edge of a cellBI at the wall, we add a weakly compressible ghost cell BO outside the domain

with values

vn
O · n = −vn

I · n, pnO = pnI .

The pressure inside the weakly compressible domain is governed by the Tait equation. With

the help of this ghost cell ansatz, we are able to obtain a similar result as in Theorem 3.1.

COROLLARY 3.1. O satisfies the conditions of the inverse function theorem [12, Thm

C.8] and thus O has a unique solution in 0.

The coupling (3.31),(3.32) exactly fulfils the interface conditions (1.10) across each in-

terface. From now on we refer to this nonlinear compressible/incompressible coupling as

(NCIC). Unfortunately, we have to solve a coupled system of non-linear equations. The so-

lution of this system requires a high computational effort at each time step of the algorithm.

Another difficulty arises, if the wave curves L1,L2 are not given in a closed algebraic ex-

pression, as it is often the case for the real gases. These difficulties can be resolved by two

different approaches.

1. Linearized compressible/incompressible coupling (LCIC)
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We want to present the approximation via linearised wave curves as an example for the

solution strategy with approximate Riemann solvers. More examples and detailed explana-

tions can be found in [13]

The key idea is to replace the wave curves L1,L2 by the tangent curves L̄1, L̄2 around

the initial states u−,u+, respectively. If we consider the ideal gas law in (2.2),(2.3), these

linearised wave curves are given by

(3.47) L̄1 =

(

ρ−

v− · n

)

+ σ

(

ρ−

−a

)

, L̄2 =

(

ρ+

v+ · n

)

+ σ

(

ρ+

a

)

We use these curves to compute vn+1, pn+1 in equations (3.31),(3.32). Note that now we

only have to solve a linear system instead of a non-linear one. We can easily check, that

this system is well defined, if we look at equations (3.36)-(3.38). In order to compute ∇σ ·
P(0),∇σ ·V(0), we need the values ∂σL̄1(0), ∂σL̄2(0). As L̄1, L̄2 are the tangent curves

in u−, u+, we have L̄i(0) = Li(0), (i = 1, 2). Another benefit of this approach comes from

the face that we only need to evaluate the pressure and sound speed once per time step. Note

that this coupling does not provide the exact solution to the Riemann problem. However,

if the jump in the initial data is not too large, we expect the scheme to provide sufficient

accuracy.

2. Explicit in-time compressible/incompressible coupling (ECIC)

Instead of computing the boundary values using the wave curves, we prescribe the com-

pressible values un
g as boundary values for vn+1

l , pn+1
l . This leads to a smaller linear system

as the boundary values do not depend on σ. We can regard this system as an elliptic system for

pn+1 with Dirichlet boundary data. There are various existence and uniqueness results for this

system (c.f. [8]). Now we use the boundary values vn+1
l , pn+1

l to compute the boundary val-

ues for vn+1
g , pn+1

g at the next time level. Note that this solution strategy violates the coupling

conditionvn+1
l ·n = vn+1

g ·n, pn+1
l = pn+1

g and instead fulfils vn+1
l ·n = vn

g ·n, pn+1
l = png .

Figure 5 illustrates the different steps for this coupling. Note that standard schemes for the

ρng , v
n
g

convection step +3
KS

compressible Euler equations

v
n+1/2
l

projection step

��

pn+1
g ,vn+1

g
ks

interface coupling
pn+1
l , vn+1

l

FIG. 5. Different steps of the explicit in-time compressible/incompressible coupling.

incompressible Euler equations only use velocity boundary conditions. However, due to the

nonphysical pressure inside the droplet, the backward coupling pn+1
g = pn+1

l did not work

for our scheme. With the coupling we outlined above, our numerical experiments showed the

expected results.

We refer to Section 4 for further details and for numerical comparison of the different

solution strategies.

4. Numerical Experiments. In the following we present two numerical tests in two

space dimensions to show that the incompressible/compressible system is a good approxima-

tion of the compressible/compressible system. The numerical solutions are computed with

the numerical schemes (NCIC), (LCIC), (ECIC) that we presented in Section 3. We compare

the results for these numerical schemes with a scheme for the fully compressible problem

(CCC).
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4.1. Planar Interface. We consider a rectangular ”droplet” that is surrounded by gas in

the domain Ω = [0, 6]× [0, 1]. This setting corresponds to the initial conditions

(4.1)

(

ρg(0,x)
vg(0,x)

)

=



































1.5
0
0



 , x ∈ [0, 2), y ∈ [0, 1],





1.0
0
0



 , x ∈ (3, 6), y ∈ [0, 1],

(

ρl(0,x)
vl(0,x)

)

=





500
0
0



 , x ∈ [2, 3], y ∈ [0, 1].

The initial conditions are constructed such that the setting corresponds to a situation where

a shock wave, carrying a pressure jump of 0.5 hits the droplet at t = 0. Furthermore we

discretize Ω with ∆x = ∆y = 0.125 and choose a = 1 in the ideal gas law (1.6) and k =
5000/7, ρ0 = 500, γ = 7, p0 = 1 in the Tait equation (1.5), respectively. Note that this test

case is a 2D expansion of a 1D example, that we took from [30]. An analytical convergence

result covering this test case can be found in [9]. We keep the right domain boundary as

outflow boundary whereas the other 3 boundaries are assumed to be solid walls. This setting

yields several rarefaction and shock waves hitting the droplet during the computation time

up to T = 600. Figure 6 shows the evolution of the interface location for three different

FIG. 6. Comparison of the interface location for three different couplings: CCC (dashed dotted line), NCIC

(solid line) and ECIC (dashed line). NCIC and ECIC are visually indistinguishable.

numerical schemes. We compare the fully compressible model (1.1)-(1.3) and the mixed

model (1.7)-(1.10) with the implicit discretization as well as with the explicit discretization.

We can see that the solutions are close, but the amplitude for the compressible/incompressible

models decreases with increasing computation time, whereas the oszillation frequencies for

the three schemes are in very good agreement. This behaviour can be explained by the fact,

that we have a weakly compressible liquid for the CCC and an incompressible one for both

the NCIC and ECIC.
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In Table 1 we report the CPU time for the solution of this test case. One can see the

number of time steps is reduced by the use of the coupled model. However the implicit

interface discretization is computationally very expensive so that the advantage is only small.

In contrast, the CPU time for the explicit coupled model is reduced drastically. Note that the

performance of the coupled models compared to the fully compressible model depends on

the ratio of the compressible and weakly compressible speeds of sound. If this ratio is large,

the time saving is large as well.

tc tc/tc,CCC time-steps

CCC 2323 1.0 28232

NCIC 1751 0.7538 8999

ECIC 672 0.2893 8999
TABLE 1

Comparison of the different models with respect to the computational effort: CPU time (tc) and number of time

steps.

4.2. Droplet. In this test case we consider the interaction of a spherical droplet with a

compressible shock. The purpose of this test is to compare the performance of the coupled

equations for different coupling mechanisms. We make some simplifications, because we

want to focus on the coupling between the two fluids. Firstly, we assume that we have a weak

shock which is neither able to deform nor to accelerate the droplet significantly. This means

that we have a fixed phase boundary and do not need to track the position of the interface in

each time step. This is reasonable, because the densities of gas and liquid differ by a factor of

1000. Secondly, we neglect surface tension effects. As we have a spherical droplet with fixed

radius R, the curvature is just a constant number in the coupling condition (1.10)2 and we set

κ = 0 for simplicity. Thirdly, we recall that the interface is aligned with the cell boundaries.

Therefore we can associate each cell with the liquid or the gas phase, respectively.

The equation of state for the gas phase is given by the ideal gas law (1.6) with parameter

γ = 1.4. The behaviour of the liquid inside the droplet is modelled by the Tait equation (1.5)

with parameters γ = 7.15, k0 = 3310, ρ0 = 1000, p0 = 1.0. The initial conditions for a

droplet radius R = 0.00175 and a shock position xs = (−0.002, 0) are:

(4.2)

(

ρl(0,x)
vl(0,x)

)

=





1000
0
0



 , x ∈ BR(0),

(

ρg(0,x)
vg(0,x)

)

=



































1
0
0



 , x ∈ [−0.006, 0.002]× [−0.006, 0.006] \BR(0),





1.0
− log 1.5

0



 , x ∈ (0.002, 0.006]× [−0.006, 0.006] \BR(0).

The domain is discretized with equidistant cells with grid width ∆x = ∆y = 0.00005 and

we compute the solutions up to a computation time T = 0.0025s. We keep the right domain

boundary as inflow boundary and left as outflow boundary, whereas the other 2 boundaries

are assumed to be solid walls.

We compare the results for the fully compressible model and for the three different cou-

pled models that we introduced in Section 3.2.3. Figure 7 shows the results at different time
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(a) NCIC: t=0.0005 s (b) NCIC: t=0.001 s (c) NCIC: t=0.0015 s

(d) LCIC: t=0.0005 s (e) LCIC: t=0.001 s (f) LCIC: t=0.0015 s

(g) ECIC: t=0.0005 s (h) ECIC: t=0.001 s (i) ECIC: t=0.0015 s

(j) CCC: t=0.0005 s (k) CCC: t=0.001 s (l) CCC: t=0.0015 s

FIG. 7. Pressure distribution for the three different couplings of the compressible-incompressible Euler equations

levels with respect to the pressure p. The four different solutions reproduce the expected

physical behaviour. The incoming shock is partly reflected of the droplet surface whereas

the other part enters the liquid. The shock wave propagates faster inside the droplet because

of the larger speed of sound. Inside the droplet, the pressure of the fully compressible sys-

tem differs from the pressures for the coupled systems, whereas the pressures in the gaseous

domain are similar for all for systems. This statement is undermined by Figure 4.2, where

the pressure for two neighbouring boundary cells both in the liquid and the gaseous domain

at the point of the interface where the shock wave first hits the droplet is plotted over time.

We observe that the pressures for the coupled systems inside the droplet are smaller than the

pressure for the compressible system for all times. The solutions for the implicit coupled
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FIG. 8. Pressure evolution over time for the different schemes for two neighbouring cells in the liquid domain

(left) and the gaseous domain (right) at the point of the interface where the shock wave first hits the droplet.

system and the linear implicit coupled system are very close, whereas the explicit solution

underestimates the pressure due to the violation of the interface conditions. In the gaseous

domain, the pressures of the coupled systems are larger at the beginning of the simulation, but

converge to the pressure of the compressible system as t increases. This means that the shock

is stronger reflected by the droplet for the coupled system than it is for the fully compressible

system. This behaviour is in agreement with the properties of the different models. In the

fully compressible model, the droplet is weakly compressible a larger part of the shock can

enter the liquid domain. In the coupled model the droplet is incompressible and a larger part

of the shock is reflected.

We conclude this section with the comparison of the CPU times for the different cou-

pled systems and and for different grid widths. Table 2 allows several conclusions for this

0.001 0.0005 0.00025

tc tc/tc,CCC tc tc/tc,CCC tc tc/tc,CCC

CCC 181.2 1.0 993 1.0 4850 1.0

NCIC 13.6 0.0751 138 0.1390 4224 0.8709

LCIC 9.8 0.0541 115 0.1158 2416 0.4981

ECIC 12.9 0.0712 125 0.1259 2370 0.4887
TABLE 2

Comparison of the different models with respect to the CPU time (tc).

test case. First, the numerical schemes for the incompressible-compressible system are com-

putationally more efficient that the scheme for the fully compressible system. This was the

main reason for the proposition of the new scheme and we see that the scheme shows the

desired behaviour. However, the difference in the CPU-time for the compressible and the

implicit scheme decreases as the gridwidth does. This can be easily explained if we take

a closer look at the properties of the two schemes. The time steps for both schemes scale

with ∆t ≈ O(∆x). The number of interface edges scales with O(∆x−1) and the number of

cells in the incompressible droplet scales with O(∆x−2). This means that for the fully com-

pressible system we have to solve O(∆x−1) non linear equations at each time step . For the

implicit scheme we have to solve a non linear system with O(∆x−2) equations. The solution

of this non linear system makes the implicit scheme inefficient for small grid widths. Thus we

can identify different ranges of application for the two different schemes. If we want to have
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finely resolved solution and have enough CPU-time available, we choose the fully compress-

ible scheme. If we are interested in fast results or the number of cells in the incompressible

phase is small compared to the number of interface edges, we choose the implicit scheme.

Secondly, Table 2 shows that the linear implicit and the explicit scheme are faster that the

implicit scheme. For both schemes we only have to solve a linear system at each time step.

For larger grid widths, the difference is not so large and we choose the exact coupling that is

provided by the implicit scheme. For small grid widths, the two schemes provide the solution

much faster. As the two approximate solvers need approximately the same CPU-time we

recommend to use the linear implicit solver, because the compressible and the incompressible

cells are coupled at the same time level.
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