Universität Stuttgart

Fachbereich Mathematik

Sylow Numbers and Integral Group Rings

Iris Köster

Universität Stuttgart

Fachbereich Mathematik

Sylow Numbers and Integral Group Rings

Iris Köster

Preprint 2016/001

Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://wWw.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309
(C) Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
${ }^{\text {AT }}$ EX-Style: Winfried Geis, Thomas Merkle

Sylow Numbers and Integral Group Rings

I. Köster

G. Navarro raised in [5] the question whether the character table determines $\left|\mathrm{N}_{G}(P)\right|$ for some Sylow p-subgroup P of G. While the question is still open in general some progress has been recently made, see $\sqrt[3]{ }, \sqrt{6}$.

In this note we want to analyse the situation for groups with two minimal normal subgroups and mention some applications of Proposition 1. Note that we only considers finite groups as Sylow's Theorems only make sense for groups of finite order. By $\operatorname{Syl}_{p}(G)$ we denote the set of all Sylow p-subgroups of G. The set of all prime divisors of $|G|$ is denoted by $\pi(G)$. The Sylow p-number $n_{p}(G)$ is the number of Sylow p-subgroups and $\operatorname{sn}(G)=\left\{n_{p}(G): p \in \pi(G)\right\}$ the set of all Sylow p-numbers of G.

Proposition 1: Let G be a finite group with normal subgroups $M, N \unlhd G$ where $M \cap N=\{1\}$. Then

$$
n_{p}(G)=\frac{n_{p}(G / M) n_{p}(G / N)}{n_{p}(G / M N)}
$$

Proof: Let $P \in \operatorname{Syl}_{p}(G)$. By Hall's formula [2, Theorem 2.1] we obtain

$$
n_{p}(G)=n_{p}(G / M) n_{p}(M) n_{p}\left(\mathrm{~N}_{P M}(P \cap M)\right)
$$

and

$$
n_{p}(G / N)=n_{p}(G / M N) n_{p}(M N / N) n_{p}\left(\mathrm{~N}_{P M N / N}(P N / N \cap M N / N)\right)
$$

After rearranging the given equations we need to prove that

$$
\begin{aligned}
n_{p}(G) & \stackrel{!}{=} \frac{n_{p}(G / M) n_{p}(G / N)}{n_{p}(G / M N)} \\
\Leftrightarrow n_{p}(G / M) n_{p}(M) n_{p}\left(\mathrm{~N}_{P M}(P \cap M)\right) & =n_{p}(G / M) n_{p}(M) n_{p}\left(\mathrm{~N}_{P M N / N}(P N / N \cap M N / N)\right) \\
\Leftrightarrow n_{p}\left(\mathrm{~N}_{P M}(P \cap M)\right) & =n_{p}\left(\mathrm{~N}_{P M N / N}(P N / N \cap M N / N)\right)
\end{aligned}
$$

Now consider the natural surjective group homomorphism $\phi: G \rightarrow G / N$ and the restriction $\tilde{\phi}: \mathrm{N}_{P M}(P \cap M) \rightarrow \mathrm{N}_{P M N / N}(P N / N \cap M N / N)$. Note that $\tilde{\phi}$ is well-defined.

We want to study the $\operatorname{kernel} \operatorname{ker}(\tilde{\phi})$. Let $p \in P$ and $m \in M$ and assume that $p m \in \operatorname{ker}(\tilde{\phi})$, i.e. $p m \in N$. Consider the equation $p m=n$, where $n \in N$. Decompose m (resp. n) in the p-part $m_{p} \in M$ and the p^{\prime}-part $m_{p^{\prime}} \in M$ (resp. n in n_{p} and $n_{p^{\prime}}$). This yields

$$
\begin{aligned}
p m_{p} m_{p^{\prime}}=n_{p} n_{p^{\prime}} & =n_{p^{\prime}} n_{p}, \\
\Leftrightarrow p m_{p} & =n_{p^{\prime}} n_{p} m_{p^{\prime}}^{-1}, \\
M \cap N=\{1\} & \\
\Leftrightarrow m_{p} & =n_{p^{\prime}} m_{p^{\prime}}^{-1} n_{p}, \\
\Leftrightarrow p m_{p} n_{p}^{-1} & =n_{p^{\prime}} m_{p^{\prime}}^{-1} .
\end{aligned}
$$

As the order of $p m_{p} n_{p}^{-1}$ is a p-power, $n_{p^{\prime}} m_{p^{\prime}}^{-1}=1$ and as $M \cap N=\{1\}$ we immediately get $m_{p^{\prime}}=n_{p^{\prime}}=1$. Therefore we have that $p m=p m_{p}=n_{p}$ is a p-element and $\operatorname{ker}(\tilde{\phi})$ is a p-group.

In the last part we need to prove that $\tilde{\phi}$ is surjective.
Assume that $p m N \in \mathrm{~N}_{P M N / N}(P N / N \cap M N / N)$, i.e for each $x N \in P N / N \cap M N / N$ there exists $y N \in P N / N \cap M N / N$ such that

$$
(p m)^{-1} N x N p m N=m^{-1} p^{-1} x p m N=y N .
$$

In particular, as $y N \in P N / N$ there exist a $y \in P$ with $(p m)^{-1} x p m=y n$. Let $p m \in P M$ be an arbitrary preimage of $p m N$ (note that $P M \rightarrow P M N / N$ is surjective). Let $x \in P \cap M$. As $x N \in P N / N \cap M N / N$ and $p m N \in \mathrm{~N}_{P M N / N}(P N / N \cap M N / N)$ there exists $y \in P$ with $y N \in P N / N \cap M N / N$ such that

$$
\begin{aligned}
& \exists n \in N: m^{-1} p^{-1} x p m=y n \\
& \stackrel{M \triangleleft G}{\Leftrightarrow} \underbrace{m^{-1} x^{p} m}_{\in M} \underbrace{n^{-1}}_{\in N}=y
\end{aligned}
$$

As $y \in P \cap M N$ this yields $y_{1} \in P \cap M$ and $y_{2} \in P \cap N$ such that $y=y_{1} y_{2}$ and thus

$$
\begin{aligned}
& y_{1}^{-1} m^{-1} p^{-1} x p m=y_{2} n \stackrel{M \cap N=1}{=} 1 \\
& \Rightarrow(p m)^{-1} x(p m)=y_{1} \in P \cap M
\end{aligned}
$$

This yields that $p m \in \mathrm{~N}_{P M}(P \cap M)$. Therefore $\tilde{\phi}$ is surjective and as $n_{p}\left(\mathrm{~N}_{P M}(P \cap M)\right)=$ $n_{p}\left(\mathrm{~N}_{P M}(P \cap M) / \operatorname{ker}(\tilde{\phi})\right)=n_{p}\left(\mathrm{~N}_{P M N / N}(P N / N \cap M N / N)\right)$ the result holds.

As we are looking for a possible candidate for a counterexample to the claim, that $\mathrm{X}(G)$ determines $\operatorname{sn}(G)$ we obtain the following.

Corollary 2: Suppose G has a minimal nonsolvable normal subgroup N. If G is of minimal order such that $\mathrm{X}(G)$ does not determine $\operatorname{sn}(G)$ then $N \leq G \leq \operatorname{Aut}(N)$.

Proof: By Proposition 1 we can assume that G has exactly one minimal normal subgroup. As $N \cong S^{k}$ with S simple we see that $\mathrm{C}_{G}(N) \cap N=1$. If $\mathrm{C}_{G}(N) \neq 1$ then there is a minimal normal subgroup N of G contained in $\mathrm{C}_{G}(N)$, a contradiction to the fact that G has only N as minimal normal subgroup. So $\mathrm{C}_{G}(N)=1$.
Consider $\varphi: \operatorname{Inn}(G) \rightarrow \operatorname{Aut}(N),\left.\sigma_{g} \mapsto \sigma_{g}\right|_{N}$. As φ is group homomorphism we know that $G \cong G / \mathrm{Z}(G) \cong \operatorname{Inn}(G) \cong \operatorname{im}(\varphi) \leq \operatorname{Aut}(N)$. Thus the claim holds.

At the end we want to prove that the Sylow numbers of groups, where all Sylow p-subgroups are abelian, are determined by $\mathbb{Z} G$. In particular this holds for non- p-solvable groups:

Proposition 3: Assume G is a finite group such that $P \in \operatorname{Syl}_{p}(G)$ is abelian for each $p \in \pi(G)$. Then $\mathbb{Z} G$ determines $n_{p}(G)$ for each p.

Proof of Proposition 3: Let G be a group where all Sylow p-subgroups are abelian for each $p \in \pi(G)$. Note that $\mathbb{Z} G$ determines $\operatorname{Spec}(G)$ and in particular X (G). Assume that G is a minimal counterexample, i.e. there exists at least one Sylow number $n_{p}(G)$ not determined by $\mathbb{Z} G$. Using 1 there are subgroups H, K and S such that
(1) $G=H K S$ and $|G|=|H||K||S|$;
(2) $H \unlhd G$ and $K \leq \mathrm{N}_{G}(S)$;
(3) H and K are solvable and S is semisimple.

Assume that $H=\{1\}$ then $G \cong S \rtimes K$ and by using [4, Theorem 2.1] we see that G is p-solvable for each $p \in \pi(K)$ and $n_{p}(G)$ determined by [6, Theorem B]. If $p \in \pi(S)$ then $n_{p}(G)=n_{p}(S)$ and S is determined up to isomorphism by $\mathrm{X}(G)$.

Assume that $S=\{1\}$ then G is solvable and in particular p-solvable for each $p \in \pi(G)$. Then again $\mathrm{X}(G)$ determines $n_{p}(G)$. Assume that $K=\{1\}$. By [4. Theorem 2.1] G is p-solvable for each $p \in \pi(H)$, i.e. $n_{p}(G)$ is determined by $\mathrm{X}(G)$. If $p \in \pi(S)$ then $n_{p}(G)=n_{p}(S)\left|H: \mathrm{C}_{H}(P)\right|$ for $P \in \operatorname{Syl}_{p}(G)$. As $|H|$ is coprime to p we obtain $\left|x^{G} \cap P\right|=\left|x H^{G / H} \cap P H / H\right|$ for each conjugacy class x^{G} of G. As S is determined up to isomorphism and the p-power maps are given we can use [6, Theorem A].

Thus H, K and S are not trivial. If $p \in \pi(K) \cup \pi(H)$ then G is p-solvable and $n_{p}(G)$ determines. Assume that $p \in \pi(S)$. By Proposition $1 G$ has only one minimal normal subgroup $X \cong C_{q}^{k} \subseteq H$. Consider $\mathrm{C}_{G}(X)$. If $\mathrm{C}_{G}(X) \subseteq X$ then G is p-constrained and by the F^{*}-Theorem we know G is determined up to isomorphism by $\mathbb{Z} G$. Assume $C_{G}(X)>X$. If $\mathrm{C}_{G}(X)$ is solvable then the Fitting subgroup $\mathrm{F}:=\mathrm{F}\left(C_{G}(X)\right)$ is a p-group and $C_{G}(\mathrm{~F}) \subseteq C_{C_{G}(X)}(F) \subseteq \mathrm{F}$, so G is again p-constrained. Now assume $\mathrm{C}_{G}(X)$ is not solvable, thus $\mathrm{C}_{G}(X) \cap \mathrm{E}(G) \neq\{1\}$ where $\mathrm{E}(G)$ denotes the layer of G. By [1] the non-solvable composition factors are isomorphic to $J_{1}, \mathrm{PSL}_{2}\left(2^{f}\right)$ and $\mathrm{PSL}_{2}(q)$ where $q \equiv \pm 3 \bmod 8$. The Schur mulitipliers of these groups are either trivial or 2 . Thus either G has a minimal normal 2-group or a minimal normal nonsolvable subgroup, a contradiction.

References

[1] Aviad M. Broshi, Finite groups whose Sylow subgroups are abelian, J. Algebra 17, $74-82$ (1971)
[2] M. Hall, Jr., On the Number of Sylow Subgroups in a Finite Group, Journal of Algebra 7, 363 - 371 (1967)
[3] W. Kimmerle and I. Köster, Sylow Numbers from Character Tables and Integral Group Rings, preprint (2016)
[4] W. Kimmerle and R. Sandling, Group theoretic and group ring theoretic determination of certain Sylow and Hall subgroups and the resolution of a question of R. Brauer. Journal of Algebra 171, 329 - 346 (1995)
[5] G. Navarro, Problems on characters and Sylow subgroups, Finite Groups 2003: Proceedings of the Gainesville Conference on Finite Groups March 6-12, 2003, Walter de Gruyter, 275 - 282 (2004)
[6] G. Navarro and N. Rizo, A Brauer-Wielandt formula (with an application to character tables), to appear in Proceedings of the American Mathematical Society, DOI: 10.1090/proc/13089 (2016)

Iris Köster
Universität Stuttgart
Institut für Geometrie und Topologie
Arbeitsgruppe Gruppen, Gitter und simpliziale Komplexe
Pfaffenwaldring 57
D-70569 Stuttgart
Germany

Erschienene Preprints ab Nummer 2012-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2016-001 Köster, I.: Sylow Numbers and Integral Group Rings
2015-016 Hang, H.; Steinwart, I.: A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning
2015-015 Steinwart, I.: Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes
2015-014 Muhammad, F.; Steinwart, I.: An SVM-like Approach for Expectile Regression
2015-013 Nava-Yazdani, E.: Splines and geometric mean for data in geodesic spaces
2015-012 Kimmerle, W.; Köster, I.: Sylow Numbers from Character Tables and Group Rings
2015-011 Györfi, L.; Walk, H.: On the asymptotic normality of an estimate of a regression functional
2015-010 Gorodski, C, Kollross, A.: Some remarks on polar actions
2015-009 Apprich, C.; Höllig, K.; Hörner, J.; Reif, U.: Collocation with WEB-Splines
2015-008 Kabil, B.; Rodrigues, M.: Spectral Validation of the Whitham Equations for Periodic Waves of Lattice Dynamical Systems
2015-007 Kollross, A.: Hyperpolar actions on reducible symmetric spaces
2015-006 Schmid, J.; Griesemer, M.: Well-posedness of Non-autonomous Linear Evolution Equations in Uniformly Convex Spaces
2015-005 Hinrichs, A.; Markhasin, L.; Oettershagen, J.; Ullrich, T.: Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions
2015-004 Kutter, M.; Rohde, C.; Sändig, A.-M.: Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with Elasticity
2015-003 Rossi, E.; Schleper, V.: Convergence of a numerical scheme for a mixed hyperbolic-parabolic system in two space dimensions
2015-002 Döring, M.; Györfi, L.; Walk, H.: Exact rate of convergence of kernel-based classification rule
2015-001 Kohler, M.; Müller, F.; Walk, H.: Estimation of a regression function corresponding to latent variables
2014-021 Neusser, J.; Rohde, C.; Schleper, V.: Relaxed Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition
2014-020 Kabil, B.; Rohde, C.: Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension
2014-019 Bilyk, D.; Markhasin, L.: BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension
2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for generators whose commutators are scalar
2014-017 Margolis, L.: A Sylow theorem for the integral group ring of $\operatorname{PSL}(2, q)$
2014-016 Rybak, I.; Magiera, J.; Helmig, R.; Rohde, C.: Multirate time integration for coupled saturated/unsaturated porous medium and free flow systems
2014-015 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: Optimal Grading of the Newest Vertex Bisection and H^{1}-Stability of the L_{2}-Projection
2014-014 Kohler, M.; Krzyżak, A.; Walk, H.: Nonparametric recursive quantile estimation
2014-013 Kohler, M.; Krzyżak, A.; Tent, R.; Walk, H.: Nonparametric quantile estimation using importance sampling
2014-012 Györfi, L.; Ottucsák, G.; Walk, H.: The growth optimal investment strategy is secure, too.
2014-011 Györfi, L.; Walk, H.: Strongly consistent detection for nonparametric hypotheses
2014-010 Köster, I.: Finite Groups with Sylow numbers $\left\{q^{x}, a, b\right\}$
2014-009 Kahnert, D.: Hausdorff Dimension of Rings
2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM

2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties
2014-006 Steinwart, I.; Pasin, C.; Williamson, R.; Zhang, S.: Elicitation and Identification of Properties
2014-005 Schmid, J.; Griesemer, M.: Integration of Non-Autonomous Linear Evolution Equations
2014-004 Markhasin, L.: $\quad L_{2}$ - and $S_{p, q}^{r} B$-discrepancy of (order 2) digital nets
2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness
2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs
2014-001 Giesselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods
2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension
2013-013 Moroianu, A.; Semmelmann, U.: Generalized Killling spinors on Einstein manifolds
2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control Constrained Optimal Control Problems
2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations
2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups
2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase Epitaxy with Elasticity: An Iterative Procedure
2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces
2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate of the minimum mean squared error
2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control Problems with Control Constraints
2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex hyperbolic spaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian

