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Sylow Numbers and Integral Group
Rings

I. Köster

G. Navarro raised in [5] the question whether the character table determines |NG(P )| for some
Sylow p-subgroup P of G. While the question is still open in general some progress has been
recently made, see [3], [6].

In this note we want to analyse the situation for groups with two minimal normal subgroups
and mention some applications of Proposition 1. Note that we only considers finite groups as
Sylow’s Theorems only make sense for groups of finite order. By Sylp(G) we denote the set of
all Sylow p-subgroups of G. The set of all prime divisors of |G| is denoted by π(G). The Sylow
p-number np(G) is the number of Sylow p-subgroups and sn(G) = {np(G) : p ∈ π(G) } the set of
all Sylow p-numbers of G.

Proposition 1: Let G be a finite group with normal subgroups M,NEG where M ∩ N = {1}.
Then

np(G) =
np(G/M)np(G/N)

np(G/MN)
.

Proof: Let P ∈ Sylp(G). By Hall’s formula [2, Theorem 2.1] we obtain

np(G) = np(G/M)np(M)np(NPM (P ∩M))

and

np(G/N) = np(G/MN)np(MN/N)np(NPMN/N (PN/N ∩MN/N))

After rearranging the given equations we need to prove that

np(G)
!
=
np(G/M)np(G/N)

np(G/MN)

⇔ np(G/M)np(M)np(NPM (P ∩M)) = np(G/M)np(M)np(NPMN/N (PN/N ∩MN/N))

⇔ np(NPM (P ∩M)) = np(NPMN/N (PN/N ∩MN/N))

Now consider the natural surjective group homomorphism φ : G → G/N and the restriction

φ̃ : NPM (P ∩M)→ NPMN/N (PN/N ∩MN/N). Note that φ̃ is well-defined.

We want to study the kernel ker(φ̃). Let p ∈ P and m ∈M and assume that pm ∈ ker(φ̃), i.e.
pm ∈ N . Consider the equation pm = n, where n ∈ N . Decompose m (resp. n) in the p-part
mp ∈M and the p′-part mp′ ∈M (resp. n in np and np′). This yields

pmpmp′ = npnp′ = np′np,

⇔ pmp = np′npm
−1
p′ ,

M∩N={1}⇔ pmp = np′m−1p′ np,

⇔ pmpn
−1
p = np′m−1p′ .
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As the order of pmpn
−1
p is a p-power, np′m−1p′ = 1 and as M ∩ N = {1} we immediately get

mp′ = np′ = 1. Therefore we have that pm = pmp = np is a p-element and ker(φ̃) is a p-group.

In the last part we need to prove that φ̃ is surjective.
Assume that pmN ∈ NPMN/N (PN/N ∩MN/N), i.e for each xN ∈ PN/N ∩MN/N there exists
yN ∈ PN/N ∩MN/N such that

(pm)−1NxNpmN = m−1p−1xpmN = yN.

In particular, as yN ∈ PN/N there exist a y ∈ P with (pm)−1xpm = yn. Let pm ∈ PM
be an arbitrary preimage of pmN (note that PM → PMN/N is surjective). Let x ∈ P ∩M .
As xN ∈ PN/N ∩ MN/N and pmN ∈ NPMN/N (PN/N ∩ MN/N) there exists y ∈ P with
yN ∈ PN/N ∩MN/N such that

∃n ∈ N : m−1p−1xpm = yn

MEG⇔ m−1xpm︸ ︷︷ ︸
∈M

n−1︸︷︷︸
∈N

= y

As y ∈ P ∩MN this yields y1 ∈ P ∩M and y2 ∈ P ∩N such that y = y1y2 and thus

y−11 m−1p−1xpm = y2n
M∩N=1

= 1

⇒ (pm)−1x(pm) = y1 ∈ P ∩M.

This yields that pm ∈ NPM (P ∩ M). Therefore φ̃ is surjective and as np(NPM (P ∩ M)) =

np(NPM (P ∩M)/ ker(φ̃)) = np(NPMN/N (PN/N ∩MN/N)) the result holds.

As we are looking for a possible candidate for a counterexample to the claim, that X(G) deter-
mines sn(G) we obtain the following.

Corollary 2: Suppose G has a minimal nonsolvable normal subgroup N . If G is of minimal order
such that X(G) does not determine sn(G) then N ≤ G ≤ Aut(N).

Proof: By Proposition 1 we can assume that G has exactly one minimal normal subgroup. As
N ∼= Sk with S simple we see that CG(N)∩N = 1. If CG(N) 6= 1 then there is a minimal normal
subgroup N of G contained in CG(N), a contradiction to the fact that G has only N as minimal
normal subgroup. So CG(N) = 1.
Consider ϕ : Inn(G) → Aut(N), σg 7→ σg|N . As ϕ is group homomorphism we know that
G ∼= G/Z(G) ∼= Inn(G) ∼= im(ϕ) ≤ Aut(N). Thus the claim holds.

At the end we want to prove that the Sylow numbers of groups, where all Sylow p-subgroups
are abelian, are determined by ZG. In particular this holds for non-p-solvable groups:

Proposition 3: Assume G is a finite group such that P ∈ Sylp(G) is abelian for each p ∈ π(G).
Then ZG determines np(G) for each p.

Proof of Proposition 3: Let G be a group where all Sylow p-subgroups are abelian for each
p ∈ π(G). Note that ZG determines Spec(G) and in particular X(G). Assume that G is a minimal
counterexample, i.e. there exists at least one Sylow number np(G) not determined by ZG. Using [1]
there are subgroups H, K and S such that

(1) G = HKS and |G| = |H||K||S|;
(2) HEG and K ≤ NG(S);
(3) H and K are solvable and S is semisimple.

Assume that H = {1} then G ∼= S oK and by using [4, Theorem 2.1] we see that G is p-solvable
for each p ∈ π(K) and np(G) determined by [6, Theorem B]. If p ∈ π(S) then np(G) = np(S) and
S is determined up to isomorphism by X(G).
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Assume that S = {1} then G is solvable and in particular p-solvable for each p ∈ π(G). Then
again X(G) determines np(G). Assume that K = {1}. By [4, Theorem 2.1] G is p-solvable for
each p ∈ π(H), i.e. np(G) is determined by X(G). If p ∈ π(S) then np(G) = np(S)|H : CH(P )| for

P ∈ Sylp(G). As |H| is coprime to p we obtain |xG ∩ P | = |xHG/H ∩ PH/H| for each conjugacy

class xG of G. As S is determined up to isomorphism and the p-power maps are given we can
use [6, Theorem A].

Thus H, K and S are not trivial. If p ∈ π(K)∪π(H) then G is p-solvable and np(G) determines.
Assume that p ∈ π(S). By Proposition 1 G has only one minimal normal subgroup X ∼= Ck

q ⊆ H.
Consider CG(X). If CG(X) ⊆ X then G is p-constrained and by the F ∗-Theorem we know G is
determined up to isomorphism by ZG. Assume CG(X) > X. If CG(X) is solvable then the Fitting
subgroup F := F(CG(X)) is a p-group and CG(F) ⊆ CCG(X)(F ) ⊆ F, so G is again p-constrained.
Now assume CG(X) is not solvable, thus CG(X)∩E(G) 6= {1} where E(G) denotes the layer of G.
By [1] the non-solvable composition factors are isomorphic to J1, PSL2(2f ) and PSL2(q) where
q ≡ ±3 mod 8. The Schur mulitipliers of these groups are either trivial or 2. Thus either G has
a minimal normal 2-group or a minimal normal nonsolvable subgroup, a contradiction.
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2015-002 Döring, M.; Györfi, L.; Walk, H.: Exact rate of convergence of kernel-based
classification rule

2015-001 Kohler, M.; Müller, F.; Walk, H.: Estimation of a regression function corresponding
to latent variables

2014-021 Neusser, J.; Rohde, C.; Schleper, V.: Relaxed Navier-Stokes-Korteweg Equations
for Compressible Two-Phase Flow with Phase Transition

2014-020 Kabil, B.; Rohde, C.: Persistence of undercompressive phase boundaries for
isothermal Euler equations including configurational forces and surface tension

2014-019 Bilyk, D.; Markhasin, L.: BMO and exponential Orlicz space estimates of the
discrepancy function in arbitrary dimension

2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for
generators whose commutators are scalar

2014-017 Margolis, L.: A Sylow theorem for the integral group ring of PSL(2, q)
2014-016 Rybak, I.; Magiera, J.; Helmig, R.; Rohde, C.: Multirate time integration for coupled

saturated/unsaturated porous medium and free flow systems
2014-015 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: Optimal Grading of the Newest Vertex

Bisection and H1-Stability of the L2-Projection
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