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Abstract

We compare the Kolmogorov and entropy numbers of compact operators mapping from a
Hilbert space into a Banach space. We then apply these general findings to embeddings between
reproducing kernel Hilbert spaces and L∞(µ). Here we provide a sufficient condition for a gap of
the order n1/2 between the associated interpolation and Kolmogorov n-widths. Finally, we show
that in the multi-dimensional Sobolev case, this gap actually occurs between the Kolmogorov and
approximation widths.

Keywords: Interpolation widths, Kolmogorov widths, Entropy numbers, Reproducing kernel
Hilbert spaces, Sobolev spaces

1 Introduction

Let (X,A, µ) be a measure space and H be a a reproducing kernel Hilbert space (RKHS) over X .
Moreover, assume that the kernel k of H is measurable and that for all p ∈ [2,∞], the map Ik,µ :
H → Lp(µ) defined by Ik,µf := [f ]∼, where [f ]∼ denotes the µ-equivalence class of f in Lp(µ), is
compact. Now consider the linear interpolation n-width of H in L2(µ), see e.g. [16, 15, 14] and the
references mentioned therein, that is

In
(
H,Lp(µ)

)
:= inf

D⊂X,|D|≤n

(∫
X

sup
f∈BH

∣∣f(x)−ADf(x)
∣∣p dµ(x)

)1/p

,

with the usual modification for p =∞. Here, AD : H → H is the bounded linear operator defined by
ADf(x) :=

∑n
i=1 α

∗
i (x)f(xi), where D = (x1, . . . , xn) and α∗(x) ∈ Rn is the unique solution of

α∗(x) = arg min
α∈Rn

∥∥∥ δx − n∑
i=1

αiδxi

∥∥∥2

H′
.

For later use we note that we always have

inf
D⊂X,|D|≤n

sup
f∈BH

‖f −ADf‖Lp(µ) ≤ In
(
H,Lp(µ)

)
(1)
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and equality holds in the extreme case p =∞. Moreover, consider the classical Kolmogorov n-width

dn
(
H,Lp(µ)

)
= inf

Fn⊂Lp(µ)
sup
f∈BH

inf
g∈Fn

‖f − g‖Lp(µ) ,

where the left most infimum runs over all subspaces Fn of Lp(µ) with dimFn ≤ n. Note that the
lower bound of In in (1) measures, how well f can be approximated by a very particular linear and n-
dimensional scheme, whereas dn measures how well f can be approximated by the best n-dimensional
scheme. Consequently, the approximation n-width

an
(
H,Lp(µ)

)
:= inf

A:H→Lp(µ)
sup
f∈BH

‖f −Af‖Lp(µ) ,

where the infimum is taken over all bounded linear operators A : H → Lp(µ) with rankA ≤ n,
satisfies dn(H,Lp(µ)) ≤ an(H,Lp(µ)) ≤ In(H,Lp(µ)).

In the Hilbert space case, that is, p = 2, these quantities are well understood. Indeed, the general
theory of s-numbers [12] shows, see e.g. Section 2, that

dn
(
H,L2(µ)

)
= an

(
H,L2(µ)

)
=
√
λn+1 , (2)

where (λn) denotes the (extended and) ordered sequence of eigenvalues of the integral operator Tk :
L2(µ) → L2(µ) associated with the kernel k. Moreover, if H is a Sobolev space, then In(H,Lp(µ))
shares the asymptotic behavior of (2) and this can actually be achieved by taking quasi-uniform points
D ⊂ X , see [16]. Unfortunately, the situation changes in the other extreme, namely p = ∞. Indeed,
if µ is a finite measure, then (2) immediately yields√

λn+1 ≤
√
µ(X) dn

(
H,L∞(µ)

)
,

while [14, Theorem 3] shows that√√√√ ∞∑
i=n+1

λi ≤
√
µ(X) In

(
H,L∞(µ)

)
, (3)

and in the Sobolev case, this lower bound is matched by an upper bound of the same asymptotic behav-
ior, see [15]. In the case of an algebraic decay of the eigenvalues, it is not hard to see that there is a gap
of the order n−1/2 between the lower bounds for dn(H,L∞(µ)) and In(H,L∞(µ)), and this naturally
raises the question, whether this gap actually occurs between the quantities of interest, that is, between
dn(H,L∞(µ)) and In(H,L∞(µ)). So far, a positive answer only exists for the 1-dimensional Sobolev
case, see [13]. The goal of this note is to provide a positive answer in a more general framework. To be
more precise, we show that for algebraically decaying eigenvalues we have dn(H,L∞(µ)) �

√
λn+1

if and only if the entropy numbers of the embedding Ik,µ : H → L∞(µ) behave like
√
λn+1. Using

(3) this characterization gives a sufficient condition for the existence of the gap. In addition, we present
a result that highlights the role of the eigenfunctions of Tk. For the multi-dimensional Sobolev case
we then show with the help of well-known asymptotics of the entropy and approximation numbers
that the gap n−1/2 actually occurs between dn(H,L∞(µ)) and an(H,L∞(µ)), that is, between ar-
bitrary n-dimensional approximation and linear n-dimensional approximation. In addition, the cases
p ∈ (2,∞) are treated simultaneously.

The rest of this note is organized as follows: In Section 2 we recall the definition of entropy num-
bers and also introduce some examples of s-number scales. Section 3 summarizes the relationship
between entropy numbers and the different s-number scales. In Section 4 two general results com-
paring entropy and Kolmogorov numbers of compact operators are presented and based upon these
results the RKHS situation is investigated in more detail. In Section 5 we then apply these findings to
the multi-dimensional Sobolev case.
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2 Preliminaries: Entropy Numbers, s-Numbers, and Eigenvalues

We write an ≺ bn for two positive sequences (an) and (bn) if there exists a constant c ∈ (0,∞) such
that an ≤ cbn for all n ≥ 1. Similarly, we write an � bn if both an ≺ bn and bn ≺ an. Finally,
a positive sequence is called regular if there exists a constant c ∈ (0,∞) such that an ≤ ca2n and
am ≤ can for all 1 ≤ m ≤ n. Probably the most interesting examples of regular sequences are
an = n−p(1 + lnn)−q for p > 0 and q ∈ R, or p = 0 and q > 0.

Given a Banach space E, we denote its closed unit ball by BE and its dual by E′. Moreover, we
write IF : F → `∞(BF ′) for the canonical embedding and QE : `1(BE) → E for the canonical
surjection. Furthermore, we write E ↪→ F if E ⊂ F and the inclusion map is continuous. Finally, the
adjoint of a bounded linear operator S acting between two Hilbert spaces is denoted by S∗.

Now, let E and F be Banach spaces and T : E → F be a bounded, linear operator. Then the n-th
(dyadic) entropy number of T is defined by

en(T ) := inf
{
ε > 0 : ∃x1, . . . , x2n−1 ∈ F : TBE ⊂

2n−1⋃
i=1

xi + εBF

}
.

Some elementary properties of entropy numbers can be found in [6, Chapter 1]. In particular, we have
en(T ) → 0 if and only if T is compact. Since T is compact if and only if its dual T ′ is compact, this
immediately raises the question how the entropy numbers of T and T ′ are related to each other. This
question, known as the duality problem for entropy numbers has, so far, no complete answer. Partial
answers, however, do exist. The one we will need is the following inequality taken from [3]

1

dp
sup
k≤n

k1/p ek(T ) ≤ sup
k≤n

k1/p ek(T
′) ≤ dp sup

k≤n
k1/p ek(T ) , (4)

which holds for all n ≥ 1 and all compact T : E → F , whenever E or F are B-convex. Here,
dp ∈ (0,∞) is a constant, which depends on p ∈ (0,∞) and the geometry of the involved spaces
E and F , but which is independent of both n and T . Moreover, recall from e.g. [7, Theorem 13.10]
that a Banach space is B-convex if and only if it has non-trivial type. In particular, Hilbert spaces are
B-convex, and so are the spaces Lp(µ) for p ∈ (1,∞) since these spaces have type min{2, p}, see
e.g. [7, Chapter 11]. Moreover, if E or F is a Hilbert space, it was shown in [20] that we may choose
dp = 32 for all p ∈ (0,∞). Finally note that from the inequalities in (4) we can derive the following
equivalences, which hold for all regular sequences (αn) and all compact operators T :

en(T ) ≺ αn ⇐⇒ en(T ′) ≺ αn
en(T ) � αn ⇐⇒ en(T ′) � αn .

For a proof, which is based on a little trick originating from Carl [5], we refer to the proof of [18,
Corollary 1.19] or, in a slightly simplified version, to the proof of [17, Proposition 2].

Besides entropy numbers, we are also interested in some so-called s-numbers. Namely, if T : E →
F is a bounded linear operator, we are interested in the n-th approximation number of T , defined by

an(T ) := inf{ ‖T −A‖ | A : E → F bounded, linear with rankA < n } ,

in the n-th Gelfand number of T defined by

cn(T ) := inf{ ‖TIEE0
‖ : E0 subspace of E with codimE0 < n } ,

where IEE0
denotes the canonical inclusion of E0 into E, and in the n-th Kolmogorov number of T

defined by
dn(T ) := inf{ ‖QFF0

T‖ : F0 subspace of F with dimF0 < n } ,
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where QFF0
denotes the canonical surjection from the Banach space F onto the quotient space F/F0.

Recall from [6, Proposition 2.2.2] that the latter quantity can also be expressed by

dn(T ) = inf
{
ε > 0 : ∃Fε subspace of F with dimFε < n and TBE ⊂ Fε + εBF

}
,

and consequently, we have

dn+1(T ) = inf
Fn⊂F

sup
y∈TBE

inf
z∈Fn

‖y − z‖F ,

where the left most infimum runs over all subspaces Fn of F with dimFn ≤ n. In other words,
dn+1(T ) equals the classical Kolmogorov n-width of the set TBE in F , cf. [9, Chapter 13], and there-
fore we have dn+1(Ik,µ : H → Lp(µ)) = dn(H,Lp(µ)), where H and µ are as in the introduction.
In addition, it is not hard to see that we also have an+1(Ik,µ : H → Lp(µ)) = an(H,Lp(µ)), and
consequently we will consider the operator versions in the remaining parts of this note. Furthermore,
recall e.g. from [6, Theorems 2.3.1 and 2.2.1, and Proposition 2.5.5] that we always have

cn(T ) = an(IFT )

dn(T ) = an(TQE)

dn(T ′) = cn(T ) ,

and for compact T its dual operator T ′ additionally satisfies cn(T ′) = dn(T ), see [6, Proposition
2.5.6]. Moreover, the approximation, Gelfand, and Kolmogorov numbers are s-numbers in the sense
of [12, Definition 2.2.1], and the same is true for the Tikhomirov numbers of T , which are defined by

tn(T ) := an(IFTQE) , n ≥ 1.

In addition, we always have

tn(T ) ≤ cn(T ) ≤ an(T ) ≤
√

2n cn(T )

tn(T ) ≤ dn(T ) ≤ an(T ) ≤
√

2ndn(T ) ,

where we note that in both cases the first two inequalities follow from s-number properties and the
right most inequalities can be found in [6, Propositions 2.4.3 and 2.4.6]. In addition, the factor

√
2n

can be sharpened to 1 +
√
n− 1.

The two chains of inequalities above show that the gap between the asymptotic behavior of (an),
(cn) and (dn) is at most of the order

√
n. It is well-known that this gap is sometimes attained, see

e.g. Section 5, while in other cases the gap vanishes. For example, we have

an(T ) = cn(T ) , (5)

if E is a Hilbert space, see [6, Proposition 2.4.1], or F has the metric extension property, see [6,
Proposition 2.3.3], and

an(T ) = dn(T ) , (6)

if F is a Hilbert space, see [6, Proposition 2.4.4], or E has the metric lifting property, see [6, Propo-
sition 2.2.3]. In this respect recall that the spaces `∞(J) and L∞(µ), where µ is some finite measure,
have the metric extension property, see [6, p. 60] and [7, Theorem 4.14], respectively. Moreover, the
spaces `1(I) have the metric lifting property, see [6, p. 51]. By combining all these relations we further
see that we have tn(T ) = an(T ) if either E = `1(I) and F = `1(J), or E and F are Hilbert spaces.
The latter case also follows from a general result showing that there is only one s-scale for operators
between Hilbert spaces, see e.g. [12, Theorem 2.11.9].

4



Our next goal is to relate the s-numbers introduced above to eigenvalues. To this end, let S : H1 →
H2 be a compact operator acting between two Hilbert spaces. Then S∗S : H1 → H1 is compact,
self-adjoint and positive, and therefore the classical spectral theorem shows that there is an at most
countable family (λi(S

∗S))i∈I of eigenvalues of S∗S, which in addition are non-negative and have
at most one limit point, namely 0. In the following, we always assume that either I = {1, . . . , n} or
I = N, and that the eigenvalues are ordered decreasingly without excluding (geometric) multiplicities.
Then, the singular numbers of S are defined by

si(S) :=

{√
λi(S∗S) = λi(

√
S∗S) if i ∈ I

0 if i ∈ N \ I .

Recall that this gives si(S) = si(S
∗) for all i ≥ 1, and si(T ) = λi(T ) for all i ∈ I if T : H → H is

compact, self-adjoint and positive. Moreover, we have, see e.g. [12, Chapter 2.11]

sn(S) = an(S)

for all n ≥ 1 and all compact operators S : H1 → H2 between Hilbert spaces H1, H2.

3 Carl’s Inequality and some Inverse Versions

In this section we recall some inequalities between s-numbers and entropy numbers. We begin with
Carl’s inequality, which states that for all p ∈ (0,∞), there exists a constant Cp ∈ (0,∞) such that
for all bounded, linear T : E → F and all n ≥ 1, we have

sup
k≤n

k1/pek(T ) ≤ Cp sup
k≤n

k1/pak(T ) . (7)

We refer to [6, Theorem 3.1.1], where it is also shown that a possible value for the constant is CP =
128(32 + 16/p)1/p. Recall from e.g. [6, Chapter 1.3] that entropy numbers are surjective and weakly
injective, and therefore we have

ek(T ) ≤ 2ek(IFTQE) ≤ 2ek(T )

for all bounded, linear T : E → F and all k ≥ 1. In particular, we may replace the approximation
numbers in (7) by the Gelfand, Kolmogorov, or Tikhomirov numbers for the price of an additional
factor of 2 in the constant. Moreover, like for the entropy numbers of T and T ′, we further have

an(T ) ≺ αn =⇒ en(T ) ≺ αn

for all regular sequences (αn) and all bounded linear T : E → F . It is needless to say that the ap-
proximation numbers in this implication may be replaced by the Gelfand, Kolmogorov, or Tikhomirov
numbers.

Let us now recall some inequalities that describe how certain s-numbers are dominated by entropy
numbers. We begin with compact operators S : H1 → H2 acting between two Hilbert spaces. Then
[6, Inequality (3.0.9)] shows

an(S) ≤ 2en(S) (8)

for all n ≥ 1. By an adaptation of the proof of [18, Corollary 1.19] we can then see that (8) in
combination with (7) leads to the following equivalences, which hold for all regular sequences (αn)
and all compact operators S : H1 → H2 acting between two Hilbert spaces:

an(S) ≺ αn ⇐⇒ en(S) ≺ αn (9)

an(S) � αn ⇐⇒ en(S) � αn . (10)
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Again, the approximation numbers in these equivalences may be replaced by the Gelfand, Kol-
mogorov, or Tikhomirov numbers. Finally, let us consider the compact, self-adjoint and positive
operator T : H1 → H1 defined by S∗S. Then we have

si(T ) = λi(T ) = λi(S
∗S) = s2

i (S
∗) (11)

if i ∈ I and si(T ) = 0 = s2
i (S
∗) if i ∈ N \ I . The two equivalences above then lead to

sn(T ) ≺ αn ⇐⇒ en(S∗) ≺
√
αn (12)

sn(T ) � αn ⇐⇒ en(S∗) �
√
αn (13)

for all regular sequences (αn). Note that sn can be replaced by any s-number scale, and in particular
by the approximation, Gelfand, Kolmogorov, and Tikhomirov numbers. Moreover, we may replace
en(S∗) by en(S) using the duality results for entropy numbers mentioned above.

Let us now consider the situation in which only one of the involved spaces is a Hilbert space, that
is, we consider compact operators of the form S : E → H or S : H → F , where H is a Hilbert space
and E or F is an arbitrary Banach space. Then (7) still holds, but in general, we may no longer have
(8). To compare the s-numbers of T to the entropy numbers of T , we thus need a surrogate for (8).
Fortunately, there are a few such results. For example, [11, Lemme 1] shows that there exist constants
A,B ∈ (0,∞) such that for all compact S : E → H and all n ≥ 1 we have

n1/2cn(S) ≤ B
∑
k>An

k−1/2ek(S) . (14)

With the help of this inequality it is easy to show that for all p ∈ (0, 2) there exists another constant
Bp ∈ (0,∞) such that

n1/pcn(S) ≤ Bp sup
k>An

k1/pek(S) (15)

for all compact S : E → H and all n ≥ 1. We refer to the very short proof of [11, Théorème A].
Complementary, [18, Theorem 5.12] shows that for all p ∈ (2,∞) there exists a constantKp ∈ (0,∞)
such that

sup
k≤n

k1/ptk(S) ≤ Kp sup
k≤n

k1/pek(S) . (16)

for all compact operators S : E → H or S : H → F and all n ≥ 1. Last but not least we like to
mention that [5, Theorem 6] showed an inequality of the form (16) with tk replaced by dk or ck for all
p ∈ (0,∞) and all compact S : E → F for which E and F ′ are type 2 spaces.

4 Main Results

The goal of this section is to compare the entropy and Kolmogorov numbers of the embedding Ik,µ :
H → L∞(µ). To this end, our first auxiliary result combines Carl’s inequality with its inversed
versions mentioned in Section 3.

Lemma 4.1. Let H be a Hilbert space, F be a Banach space S : H → F be a compact operator, and
p ∈ (0, 2). Then, the following equivalence holds:

dn(S) ≺ n−1/p ⇐⇒ en(S) ≺ n−1/p . (17)

Moreover, if F has the metric extension property, the equivalence is also true for p ∈ (2,∞), and in
addition, we have

dn(S) � n−1/p ⇐⇒ en(S) � n−1/p . (18)

Finally, if F ′ has type 2, then (17) and (18) hold for all p ∈ (0,∞).
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Proof of Lemma 4.1: Independent of p and F , the implication “⇒” in (17) is a direct consequence of
Carl’s inequality (7). For the proof of the converse implication we first consider the case p ∈ (0, 2).
By (4) we then know that en(S′) ≺ n−1/p, and consequently (15) shows that cn(S′) ≺ n−1/p. Using
cn(S′) = dn(S), which holds for compact operators S, we then obtain the assertion. In the case
p ∈ (2,∞), we conclude by (16) that tn(S) ≺ n−1/p. Moreover, F has the metric extension property,
and therefore we have cn(SQE) = an(SQE) by (5). This leads to

tn(S) = an(IFSQE) = cn(SQE) = an(SQE) = dn(S) ,

and hence we find dn(S) ≺ n−1/p. In addition, (18) follows from combining (7) and (16) as in the
proof of [17, Proposition 2]. Finally, the last assertion can be shown analogously using [5, Theorem
6] instead of (16).

Note that the equivalences obtained in Lemma 4.1 also holds for regular sequences of the form
αn = n−1/p(log n)β , where p satisfies the constraints of Lemma 4.1 and β ∈ R. Indeed, for the
second and third case this can be deduced from (7) and (16), respectively [5, Theorem 6], while in the
first case this follows from (7) , (15), and [12, G.3.2].

Clearly, Lemma 4.1 in particular holds for compact operators S : H → Lp(µ). Our next result
shows that for some spaces Lp(µ) even more information can be obtained.

Theorem 4.2. Let H be a Hilbert space, µ be a finite measure, and p ∈ [2,∞]. Assume that we have
a compact operator S : H → Lp(µ) such that

en
(
S : H → L2(µ)

)
� n−1/α (19)

for some α ∈ (0, 2). Then, for all q ∈ [2, p], the following equivalence hold:

dn
(
S : H → Lq(µ)

)
� n−1/α ⇐⇒ en

(
S : H → Lq(µ)

)
� n−1/α .

Proof of Theorem 4.2: “⇒”: By Lemma 4.1, or more precisely, Carl’s inequality, we already know
that en(S : H → Lq(µ)) ≺ n−1/α. Moreover, using Lq(µ) ↪→ L2(µ) we find

n−1/α � en
(
S : H → L2(µ)

)
≤ ‖ id : Lq(µ)→ L2(µ)‖ en

(
S : H → Lq(µ)

)
,

and thus en(S : H → Lq(µ)) � n−1/α.
“⇐”: By Lemma 4.1, we already know that dn(S : H → Lq(µ)) ≺ n−1/α. Moreover, by (19),

(10), and (6) we obtain dn(S : H → L2(µ)) � n−1/α, and hence we find

n−1/α � dn
(
S : H → L2(µ)

)
≤ ‖ id : Lq(µ)→ L2(µ)‖ dn

(
S : H → Lq(µ)

)
,

that is dn(S : H → Lq(µ)) � n−1/α.

Note that the entropy numbers in condition (19) can be replaced by the Kolmogorov numbers.
Indeed, (10) shows that (19) is equivalent to an(S : H → L2(µ)) � n−1/α, and since we further have
an(S) = dn(S), we see that condition (19) can be replaced by

dn
(
S : H → L2(µ)

)
� n−1/α . (20)

In addition, if H is an RKHS with kernel k and Tk denotes the integral operator associated with k,
then (20), or (19), can be replaced by

λn
(
Tk : L2(µ)→ L2(µ)

)
� n−2/α (21)

with the help of (11). The following corollary summarizes our findings in this situation in view of the
gap discussed in the introduction.
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Corollary 4.3. Let H be an RKHS of a bounded measurable kernel k on (X,A) and µ be a finite
measure on the σ-algebra A. If, in addition, we have

en
(
Ik,µ : H → L2(µ)

)
� en

(
Ik,µ : H → L∞(µ)

)
� n−1/α

for some α ∈ (0, 2), then we have dn(H,L∞(µ)) � n−1/α and n−1/α+1/2 ≺ In(H,L∞(µ)).

Proof of Corollary 4.3: The behavior dn(Ik,µ : H → L∞(µ)) � n−1/α follows from Theorem 4.2.
Moreover, we know λi � i−2/α by (11) and (13), and therefore, (3) shows

n−1/α+1/2 ≺

√√√√ ∞∑
i=n+1

i−2/α ≺

√√√√ ∞∑
i=n+1

λi ≤
√
µ(X) In

(
H,L∞(µ)

)
,

that is, we have shown the second assertion, too.

Our last result in this section shows that in the RKHS case and q = ∞ the asymptotic behavior
en(Ik,µ : H → L∞(µ)) � n−1/α is inherited from certain interpolation spaces betweenH and L2(µ).
For its formulation we need the scale of interpolation spaces of the real method, see e.g. [2, Chapter
5], as well as the notation [H]∼ := {[f ]∼ : f ∈ H}.

Theorem 4.4. Let H be an RKHS of a bounded measurable kernel k on (X,A) and µ be a finite
measure on the σ-algebra A such that A is µ-complete and that

en
(
Ik,µ : H → L2(µ)

)
� n−1/α (22)

for some α ∈ (0, 2). In addition assume that the interpolation space [L2(µ), [H]∼]β,2 is compactly
embedded into L∞(µ) for some β ∈ (α/2, 1] with

en
(
[L2(µ), [H]∼]β,2 ↪→ L∞(µ)

)
≺ n−β/α (23)

Then we have

en
(
[L2(µ), [H]∼]γ,2 ↪→ L∞(µ)

)
� en

(
[L2(µ), [H]∼]γ,2 ↪→ L2(µ)

)
� n−γ/α (24)

for all γ ∈ [β, 1], as well as en(Ik,µ : H → L∞(µ)) � n−1/α.

Before we prove this theorem we note that the interpolation spaces [L2(µ), [H]∼]γ,2 can be identi-
fied as RKHSs provided that the assumptions of Theorem 4.4 are satisfied. For details we refer to the
last part of the following proof.

Proof of Theorem 4.4: We first consider the case β ∈ (α/2, 1). Since γ ≥ β, we then know
[L2(µ), [H]∼]γ,2 ↪→ [L2(µ), [H]∼]β,2 by e.g. [19, Theorems 4.3 and 4.6], and consequently we have
the following diagram of bounded linear embeddings:

[L2(µ), [H]∼]γ,2 L∞(µ)

[L2(µ), [H]∼]β,2

-

@
@
@
@@R �

�
�
���

The multiplicativity of entropy numbers thus yields

e2n

(
[L2(µ), [H]∼]γ,2 ↪→ L∞(µ)

)
≤ en

(
[L2(µ), [H]∼]γ,2 ↪→ [L2(µ), [H]∼]β,2

)
· en
(
[L2(µ), [H]∼]β,2 ↪→ L∞(µ)

)
. (25)
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Now recall from [19, Equation (36) and Theorem 4.6] that

[L2(µ), [H]∼]γ,2 =

{∑
i∈I

aiλ
γ/2
i [ei]∼ : (ai) ∈ `2(I)

}
, (26)

where (λi) is the sequence of eigenvalues of the integral operator Tk : L2(µ) → L2(µ) and
([ei]∼) is a corresponding ONS of eigenfunctions. Moreover, the system (λ

γ/2
i [ei]∼) is an ONB of

[L2(µ), [H]∼]γ,2 with respect to an equivalent Hilbert space norm on [L2(µ), [H]∼]γ,2. Consequently,
we have the following diagram for the embedding [L2(µ), [H]∼]γ,2 ↪→ [L2(µ), [H]∼]β,2:

[L2(µ), [H]∼]γ,2 [L2(µ), [H]∼]β,2

`2(I) `2(I)

-

?

6

-

Φγ Φ−1
β

D
(γ−β)/2
Λ

where Φγ and Φβ are the coordinate mappings and D(γ−β)/2
Λ is the diagonal operator associated to

the sequence (λ
(γ−β)/2
i ). By (22), (11), and (13) we conclude that λ(γ−β)/2

i � i−(γ−β)/α. Using [4,
Proposition 2], which estimates entropy numbers of diagonal operators, and the diagram above, we
thus find

en
(
[L2(µ), [H]∼]γ,2 ↪→ [L2(µ), [H]∼]β,2

)
≺ n−(γ−β)/α .

Combining this with (25), (23), and the fact that µ is a finite measure we obtain

en
(
[L2(µ), [H]∼]γ,2 ↪→ L2(µ)

)
≺ en

(
[L2(µ), [H]∼]γ,2 ↪→ L∞(µ)

)
≺ n−γ/α .

To establish the lower bound, we recall from [19, Proposition 4.2 and Theorems 5.3 and 4.6] that, for
a suitable suitable µ-zero setN , [L2(µ), [H]∼]γ,2 can be identified with the RKHS overX \N , whose
kernel is given by

kγµ(x, x′) :=
∑
i∈I

λγi ei(x)ei(x
′) , x, x′ ∈ X \N .

Since the eigenvalues of the corresponding integral operator are λγi � i−2γ/α, we conclude from (11)
and (13) that en

(
[L2(µ), [H]∼]γ,2 ↪→ L2(µ)

)
� n−γ/α.

Finally, using ran Ik,µ = [H]∼ and Theorem 4.2 the remaining assertions, namely the case β =
γ = 1 as well as the assertion for Ik,µ : H → L∞(µ) can be proven analogously.

Theorem 4.4 essentially states that the property (24) is passed down from the large spaces in the
scale of spaces [L2(µ), [H]∼]s,2 to the smaller ones. Moreover, using the spaces on the right hand side
of (26) instead of the interpolation spaces, it can easily be seen that the result is also true for γ > 1. In
addition, the representation (26) suggests that the eigenfunctions may play a crucial role in determining
whether (24) holds. In this respect note that [10, Lemma 5.1] essentially showed the continuous
embedding [L2(µ), [H]∼]α/2,1 ↪→ L∞(µ) provided that (22) holds and that the eigenfunctions are not
only bounded but uniformly bounded. From this it is easy to conclude that [L2(µ), [H]∼]β,2 ↪→ L∞(µ)
holds for all β ∈ (α/2, 1). In addition, the case [L2(µ), [H]∼]β,2 ↪→ L∞(µ) for β ∈ (0, α/2] can
always be excluded, since [19, Theorem 5.3] shows that such an inclusion would imply

∑
i≥1 λ

β
i <∞

for the eigenvalues of the integral operator Tk, and this summability clearly contradicts (22) by (11)
and (13). Summarizing, we think that understanding when the asymptotic equivalence (24) holds for
some γ close to α/2 is an interesting question for future research.

9



5 An Example: Sobolev Spaces

The goal of this section is to illustrate the consequences of Lemma 4.1 and Theorem 4.2 by applying
them to embeddings of the form id : H → Lp(µ), where H is a Sobolev space, X ⊂ Rd is a suitable
subset, µ is the Lebesgue measure on X , and p ∈ [2,∞].

We begin by recalling some basics on Sobolev spaces. To this end let X ⊂ Rd be a non-empty,
open, and conncected subset satisfying the strong local Lipschitz condition in the sense of [1, p. 83].
For m ≥ 1 being an integer, we denote the classical Sobolev space on X that is defined by weak
derivatives, see e.g. [1, p. 59-60], by Wm(X) := Wm,2(X).

Form > d/2, it is well-known that the embedding id : Wm(X)→ CB(X) is compact, see e.g. [1,
Theorem 6.3] in combination with [1, p. 84]. Therefore, the embeddings id : Wm(X)→ L∞(X) are
compact, and ifX has finite Lebesgue measure, we also obtain the compactness of the the embeddings
id : Wm(X) → Lp(X), where we followed the standard notation Lp(X) := Lp(µ). Note that an
immediate consequence of this is that the approximation and entropy numbers of these embeddings
converge to zero. Let us recall some results from [8] that describe the asymptotic behavior of these
numbers. To this end, note that a consequence of Stein’s extension theorem, see [1, Theorem 5.24] is
that

‖f‖ := inf
{
‖g‖Wm(Rd) : g ∈Wm(Rd) with g|X = f

}
, (27)

where f ∈ Wm(X), defines an equivalent norm on Wm(X). Moreover, if for s ∈ [0,∞) and
p, q,∈ (0,∞] we write Bs

p,q(Rd) and F sp,q(Rd) for the Besov and Triebel-Lizorkin spaces in the sense
of [8, p. 24f], then we have Bm

2,2(Rd) = Fm2,2(Rd) = Wm(Rd) by [8, p. 44 and p. 25]. By (27) we
conclude that the spaces Bm

2,2(X) defined by restrictions as in [8, p. 57] satisfy

Bm
2,2(X) = Wm(X) (28)

up to equivalent norms. Moreover, [8, p. 25] shows that F 0
p,2(Rd) = Lp(Rd), and by [8, p. 44] we find

continuous embeddings B0
p,2(Rd) ↪→ Lp(Rd) ↪→ B0

p,p(Rd) for all p ∈ [2,∞). By (27) we conclude
that

B0
p,2(X) ↪→ Lp(X) ↪→ B0

p,p(X) . (29)

Similarly, recall that we have continuous embeddings B0
∞,1(Rd) ↪→ L∞(Rd) ↪→ B0

∞,∞(Rd), see
e.g. [8, p. 44], and thus we also have the continuous embeddings

B0
∞,1(X) ↪→ L∞(X) ↪→ B0

∞,∞(X) . (30)

Let us now assume thatX is open, connected, and bounded, and that it has aC∞-boundary. Moreover,
we fix some s1, s2 ∈ [0,∞) and p1, p2, q1, q2 ∈ (0,∞] such that s1 − s2 > d

(
1
p1
− 1

p2

)
+

. Then [8,
Theorem 2 on p. 118] shows that

en
(
id : Bs1

p1,q1(X)→ Bs2
p2,q2(X)

)
� n−(s1−s2)/d , (31)

and if we additionally assume that 2 ≤ p1 ≤ p2 ≤ ∞, then [8, p. 119] shows that

an
(
id : Bs1

p1,q1(X)→ Bs2
p2,q2(X)

)
� n−(s1−s2)/d+1/p1−1/p2 . (32)

In particular, for s1 = s, p1 = q1 = 2, s2 = 0, p2 = p ∈ [2,∞], and q2 = q ∈ [1,∞] with
s > d(1

2 −
1
p) we obtain

en
(
id : Bs

2,2(X)→ B0
p,q(X)

)
� n−s/d

an
(
id : Bs

2,2(X)→ B0
p,q(X)

)
� n−s/d+1/2−1/p .
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By (28), (29), and (30) we conclude that

en
(
id : Wm(X)→ Lp(X)

)
� n−m/d (33)

an
(
id : Wm(X)→ Lp(X)

)
� n−m/d+1/2−1/p (34)

for all m ∈ N with m > d(1
2 −

1
p). In other words, the gap between the entropy and approximation

numbers is of the order n1/2−1/p. Note that for the Hilbert space case, i.e. p = 2, the gap vanishes as
already observed in Section 3, while in the other extreme p =∞, the gap is of the order n1/2. Finally,
we see by (27) that these asymptotics still hold, if we only assume that X is an open, connected, and
bounded subset of Rd satisfying the strong local Lipschitz condition.

To illustrate these findings, we now consider the linear interpolation n-width mentioned in the
introduction. To this end, we fix an m ∈ N with m > d/2 and let H = Wm(X) with equivalent
norms. Then (34) shows

n−m/d+1/2−1/p � an+1

(
(id : H → Lp(X)

)
≤ In

(
H,Lp(X)

)
for all p ∈ [2,∞]. Here we note that in the case p = ∞, the lower bound n−m/d+1/2 ≺
In
(
H,L∞(X)

)
already follows from (3). Moreover, (33) in combination with Theorem 4.2 yields

dn
(
id : H → Lp(X)

)
� n−m/d (35)

for all p ∈ [2,∞]. In other words, the gap of 1/2 − 1/p actually occurs between the non-linear
approximation described by dn and the linear approximation described by an. Moreover, the gap is
maximal for p =∞ and vanishes in the other extreme case p = 2.

We like to mention that (35) appears to be new, since it is not contained in the list of known
asymptotics compiled in [21]. In addition, the gap between dn and an is solely derived from the same
gap between en and an, that is, from (33) and (34). In other words, we will observe a gap between dn
and an if and only if there is a gap between en and an. Fortunately, the latter two quantities have been
considered for various other spaces H and measures µ, so that it should be possible to compile a list
of cases, in which the gap occurs.

For convenience, the following corollary summarizes our findings for sufficiently large subspaces
of Wm(X). Together with Theorem 4.4 it particularly applies to kernels of many standard Gaussian
processes, such as the iterated Brownian motion and -bridge, see e.g. the numerical example in [14].

Corollary 5.1. LetX ⊂ Rd be an open, connected, and bounded subset satisfying the strong Lipschitz
condition. Moreover, let H be an RKHS over X with kernel k such that H ↪→ Wm(X) for some
integer m > d/2. Assume, in addition, that

en
(
Ik,µ : H → L2(X)

)
� n−m/d

holds. Then we have

dn
(
H,L∞(µ)

)
� n−m/d and n−m/d+1/2 ≺ In

(
H,L∞(µ)

)
.

In addition, if H = Wm(X) with equivalent norms, then, for all p ∈ [2,∞], we have

dn
(
H,Lp(µ)

)
� n−m/d and n−m/d+1/2−1/p � an

(
H,Lp(µ)

)
.

Proof of Corollary 5.1: We first note that the sequence of estimates

n−m/d � en
(
Ik,µ : H → L2(X)

)
≺ en

(
Ik,µ : H → L∞(X)

)
≺ en

(
Ik,µ : Wm → L∞(X)

)
� n−m/d
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yields en
(
Ik,µ : H → L∞(X)

)
� n−m/d, and therefore Corollary 4.3 shows the first two assertions.

The second set of asymptotic equivalences immediately follows from our findings in the text above
together with the muliplicativity of the approximation numbers.

Acknowledgement. I deeply thank R. Schaback, for pointing me to the question regarding the gap
between Kolmogorov and interpolation widths as well as for his feedback and his patience at the
Shanghai airport. I also thank G. Santin for giving valuable hints.
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