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Abstract: In this paper we present a simple partitioning based technique
to refine the statistical analysis of classification algorithms. The core of our
idea is to divide the input space into two parts such that the first part
contains a suitable vicinity around the decision boundary, while the second
part is sufficiently far away from the decision boundary. Using a set of
margin conditions we are then able to control the classification error on
both parts separately. By balancing out these two error terms we obtain
a refined error analysis in a final step. We apply this general idea to the
histogram rule and show that even for this simple method we obtain, under
certain assumptions, better rates than the ones known for support vector
machines, for certain plug-in classifiers, and for a recently analysed tree
based adaptive-partitioning ansatz.
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1. Introduction

Given a dataset D := ((xi, yi), . . . , (xn, yn)) of observations drawn in an i.i.d.
fashion from a probability measure P on X × Y , where X ⊂ Rd and Y :=
{−1, 1}, the learning goal of binary classification is to find a decision function
fD : X → {−1, 1} such that for new data (x, y) we have fD(x) = y with high
probability.

The problem of classification is, apart from regression, one of the most con-
sidered problems in learning theory and many classical learning methods have
been presented in the literature such as histogram rules, nearest neighbor meth-
ods or moving window rules. A general reference for these methods is [4]. Several
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more recent methods use trees to build a classifier, for example the random for-
est algorithm, introduced in [3], makes a prediction by a majority vote over a
collection of random forest trees. Another example is the tree based adaptive-
partitioning algorithm, presented in [2]. Here, a classifier is picked by empirical
risk minimization over a nested sequence (Sm)m≥1 of families of sets which con-
sists of dyadic or decorated trees. An example of a non-tree based algorithm is
described in [1]. Here, the final classifier is found by empirical risk minimization
over a suitable grid of plug-in rules. Another non-tree based algorithm is, for ex-
ample, the support vector machine (SVM), which solves a regularized empirical
risk minimization problem over a reproducing kernel Hilbert space H. For more
details on statistical properties of SVM for classification we refer the reader to
[7, Chapter 8].

In this paper we discuss a partitioning based technique to analyse the sta-
tistical properties of classification algorithms. In particular we show for the
histogram rule that under certain assumptions this technique leads to rates,
which are faster than the rates obtained in [2],[3], and [7]. To be more precise,
we divide the input space X into two overlapping regions that are adjustable
by a parameter r in such a way that one set, which we will denote by Ar,
contains points near the decision boundary, whereas the other set Br contains
those that are sufficiently bounded far away from the decision boundary. We
examine the excess risks over these two sets separately by using an oracle in-
equality for empirical risk minimizers on both parts. It turns out that under a
suitable assumption, which describes the location of critical noise, we have no
approximation error as well as an optimal variance bound on Br, which in turn
leads to an O(n−1) behaviour of the excess risk on Br. However, this bound
still depends on the parameter r, namely it increases for r → 0. In contrast our
bound on the risk on Ar decreases for r → 0. By balancing out these two risks
with respect to r we obtain a refined bound on X under additional assumptions
describing the concentration of mass around the decision boundary.

A more detailed discussion on this technique and the statistical result are
presented in Section 3. Moreover a comparison of the resulting learning rates to
the known ones for the SVM and the tree based adaptive-partitioning algorithm
described in [2] can be find at the end of Section 3. We note that all proofs are
deferred to Section 4.

2. General assumptions

To describe our learning goal we consider in the following the classification loss
L := Lclass(y, t) : Y × R → [0,∞), defined by L(y, t) := 1(−∞,0](y · signt) for
y ∈ Y, t ∈ R, where 1(−∞,0] denotes the indicator function on (−∞, 0]. We define
the risk of a measurable estimator f : X → R by

RL,P (f) :=

∫
X×Y

L(y, f(x)) dP (x, y)



I. Blaschzyk and I. Steinwart/Classification Rates under Refined Margin Conditions 3

and the empirical risk by

RL,D(f) :=
1

n

n∑
i=1

L(yi, f(xi)),

where D := 1
n

∑n
i=1 δ(xi,yi) denotes the Dirac measure in (xi, yi). The smallest

possible risk

R∗L,P := inf
f : X→R

RL,P (f)

is called the Bayes risk, and a measurable function f∗L,P : X → R so that
RL,P (f∗L,P ) = R∗L,P holds is called Bayes decision function. Recall that the
Bayes decision function f∗L,P for the classification loss is given by sign(2P (y =
1|x)− 1) for x ∈ X, where P ( · |x) is the conditional probability on Y given x.
Let us now briefly describe a particular histogram rule. To this end, let A =
(Aj)j≥1 be a partition of Rd into cubes of side length s ∈ (0, 1] andX := [−1, 1]

d
.

For x ∈ X we denote by A(x) the unique cell of A with x ∈ A(x) and call the
map hP,s : X → Y defined by

hP,s(x) :=

{
−1 if fP,s(x) < 0,

1 if fP,s(x) ≥ 0,
(1)

where fP,s(x) := P (A(x) × {1}) − P (A(x) × {−1}), infinite sample histogram
rule. For a dataset D we further write

fD,s :=
1

n

n∑
i=1

1{yi=+1}1A(x)(xi)−
1

n

n∑
i=1

1{yi=−1}1A(x)(xi).

Thus, the empirical histogram is defined by hD,s := signfD,s. We define the set
F by

F :=

 ∑
Aj∩[−1,1]d 6=∅

cj1Aj : cj ∈ {−1, 1}

 .

Then, it is easy to show that the empirical histogram rule hD,s is an empirical
risk minimizer over F for the classification loss, that means

RL,D(hD,s) = inf
f∈F
RL,D(f).

Since we aim in a further step to examine the risk on subsets of X consisting of
cells, we have to specify the loss on those subsets. Therefore, we define for an
arbitrary index set J ⊂ { 1, . . . ,m } the set

TJ :=
⋃
j∈J

Aj (2)
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and the related loss LTJ : X × Y × R→ [0,∞) by

LTJ (x, y, t) := 1⋃
j∈J Aj

(x)Lclass(y, t). (3)

Furthermore, we define the risk over T by

RLTJ ,P (f) :=

∫
X×Y

LTJ (x, y, f(x)) dP (x, y).

As mentioned in the introduction, we have to make assumptions on P to ob-
tain rates. Therefore we recall some notions from [7, Chapter 8], which describe
the behaviour of P in the vicinity of the decision boundary. To this end, let
η : X → [0, 1], defined by η(x) := P (y = 1|x), x ∈ X be a version of the poste-
rior probability of P , that means that the probability measures P ( · |x) form a
regular conditional probability of P. We write

X1 := {x ∈ X : η(x) > 1/2 },
X−1 := {x ∈ X : η(x) < 1/2 }.

Then, the function ∆η : X → [0,∞] defined by

∆η(x) :=


d(x,X1) ifx ∈ X−1,

d(x,X−1) ifx ∈ X1,

0 otherwise,

(4)

where d(x,A) := infx′∈A d(x, x′), is called distance to the decision boundary.
This helps us to describe the mass of the marginal distribution PX of P around
the decision boundary by the following exponents. We say that P has strong
margin exponent (SME) α ∈ (0,∞] if there exists a constant cSME > 0 such
that

PX({∆η(x) < t}) ≤ (cSMEt)
α

for all t > 0. Descriptively, the strong margin exponent α measures the amount
of mass close to the decision boundary. Therefore, large values of α are better
since they reflect a low concentration of mass in this region, which makes the
classification easier. Furthermore, we say that P has margin-noise exponent
(MNE) β ∈ (0,∞] if there exists a constant cMNE > 0 such that∫

{∆η(x)<t}
|2η(x)− 1| dPX(x) ≤ (cMNEt)

β

for all t > 0. The margin-noise exponent β measures the mass and the noise,
that means the amount of points x ∈ X with η(x) ≈ 1/2, around the decision
boundary. That is, we have high margin-noise exponent if we have low mass
and/or high noise around the decision boundary. Next, we say that the distance
to the decision boundary ∆η controls the noise from below by the exponent γ
if there exist a γ ∈ [0,∞) and a constant cLC > 0 with

∆γ
η(x) ≤ cLC|2η(x)− 1| (5)
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for PX -almost all x ∈ X. That means, if η(x) is close to 1/2 for some x ∈ X,
this x is close to the decision boundary. For examples of typical values of these
exponents and relations between them we refer the reader to [7, Chapter 8].

Finally, in order to describe the region of the decision boundary in a more
geometrical way, we say according to [5, 3.2.14(1)] that a general set T ⊂ X
is m-rectifiable for an integer m > 0 if there exists a Lipschitzian function
mapping some bounded subset of Rm onto T . Moreover, we denote by Hd−1 the
(d− 1)-dimensional Hausdorff measure on Rd.

The following lemma, which is based on [6, Lemma A.10.4], describes the
Lebesgue measure of the decision boundary in terms of the Hausdorff measure.
Its result will be necessary for the analysis of the main theorem in Section 3.

Lemma 2.1. Let X := [−1, 1]
d

and P be a probability measure on X ×{−1, 1}
with fixed version η : X → [0, 1] of its posterior probability. Moreover let λd be the
d-dimensional Lebesgue measure and Hd−1 be the (d−1)-dimensional Hausdorff
measure on Rd. Furthermore, let X0 equal the relative boundary of X1 in X,
that means X0 = δXX1, with Hd−1(X0) > 0 and let X0 be (d − 1)-rectifiable.
Then, there exists a δ∗ > 0 such that for all δ ∈ (0, δ∗] we have

λd({x ∈ X |∆(x) ≤ δ }) ≤ 4Hd−1({x ∈ X | η(x) = 1/2 }) · δ.

3. Oracle inequality and learning rates

Our goal is to find an upper bound for the excess risk RL,P (hD,s)−R∗L,P . The
idea is to split X into two overlapping sets and to find a bound on the risks over
these sets by using information on P . To this end, we denote the set of indices
of cubes that intersect X by

J := { j ≥ 1 |Aj ∩ [−1, 1]
d 6= ∅ }.

Next, we split this set into cubes that lie near the decision boundary and into
cubes that are bounded away from the decision boundary. To be more precisely,
we define, for r > 0 and a version η for which the assumptions at the end of
Section 2 hold, the set of indices of cubes near the decision boundary by

JrA := { j ∈ J | ∀x ∈ Aj : ∆η(x) ≤ 3r }

and the set of indices of cubes that are sufficiently bounded away by

JrB := { j ∈ J | ∀x ∈ Aj : ∆η(x) ≥ r }.

Moreover, we write

Ar :=
⋃
j∈JrA

Aj , (6)

Br :=
⋃
j∈JrB

Aj . (7)
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As the following lemma shows, we need to define requirements on the side length
of the cells to ensure that X ⊂ Ar ∪Br. Besides that, it shows that we are able
to assign all x ∈ Aj , where j ∈ JrB , either to the class X−1 or to X1.

Lemma 3.1. Let A = (Aj)j≥1 be a partition of Rd into cubes of side length

s ∈ (0, 1] and let X := [−1, 1]
d
. For r ≥ s/2 define the sets Ar and Br by (6)

and (7). Then,

i) we have X ⊂ Ar ∪Br,
ii) we have either Aj ∩X1 = ∅ or Aj ∩X−1 = ∅ for j ∈ JrB.

Since the excess risk is non-negative, we obtain under the assumption of
Lemma 3.1(i) that

RL,P (hD,s)−R∗L,P
≤
(
RLAr ,P (hD,s)−R∗LAr ,P

)
+
(
RLBr ,P (hD,s)−R∗LBr ,P

)
.

(8)

That means, we can bound the excess risk RL,P (hD,s)−R∗L,P if we find bounds
on the excess risks over the sets Ar and Br. For that purpose, we use an oracle
inequality for empirical risk minimizer separately on both error terms, see [7,
Theorem 7.2]. This is possible, since the following lemma shows that, considering
the loss LTJ for any set TJ constructed as in (2), the empirical histogram rule
hD,s is still an empirical risk minimizer over F .

Lemma 3.2. Consider for an arbitrary index set J ⊂ { 1, . . . ,m } the set TJ :=⋃
j∈J Aj and the related loss LTJ : X × Y × R → [0,∞) defined in (3). Then,

the empirical histogram rule hD,s is an empirical risk minimizer over F for the
loss LTJ , that means

RLTJ ,D(hD,s) = inf
f∈F
RLTJ ,D(f).

Before we state our oracle inequality, we discuss in a more detailed way
the improvement that we gained by our separation technique described above.
First, we make no approximation error on the set Br, which consists of cells
that are sufficiently bounded away from the decision boundary. This follows
from the circumstance that hD,s learns correctly on those cells and follows even
intuitively inasmuch as the noise concentration is rather low in this region. We
refer the reader to Part 1 of the proof of Lemma 3.4 for details. Second, the
main refinement arises from the fact that we achieve, under the condition that
the decision boundary controls the noise from above, in the variance bound on
Br, a bound of the form

EP (L ◦ f − L ◦ f∗L,P )2 ≤ V · EP (L ◦ f − L ◦ f∗L,P )θ

where V > 0, the best possible exponent, θ = 1. This bound plays an important
part in the analysis of the risk terms, since we have small variance if the right-
hand side of the latter bound is small, as the next lemma shows.



I. Blaschzyk and I. Steinwart/Classification Rates under Refined Margin Conditions 7

Lemma 3.3. Let X := [−1, 1]
d

and P be a probability measure on X ×{−1, 1}
with fixed version η : X → [0, 1] of its posterior probability. Assume that the
associated distance to the decision boundary ∆η controls the noise from below
by the exponent γ ∈ [0,∞) and consider for some fixed r > 0 the set Br, defined
in (7). Furthermore let L := Lclass be the classification loss and let f∗L,P be a
fixed Bayes decision function. Then, for all measurable f : X → {−1, 1} we have

EP (LBr ◦ f − LBr ◦ f∗L,P )2 ≤ cLC
rγ

EP (LBr ◦ f − LBr ◦ f∗L,P ).

We remark that the right-hand side of the variance bound on Br depends on
the separation parameter r. This dependence is also reflected in the risk term
on Br. In particular, we show in the proof of our main theorem by applying [7,
Theorem 7.2] on the risk term on the set Br that the improvements mentioned
above lead to

RLBr ,P (hD,s)−R∗LBr ,P ≤
32c1(8d+1s−d + τ)

rγn

with probability Pn ≥ 1 − e−τ , where τ ≥ 1 and c1 is a positive constant.
Whereas this error term increases for r → 0, the error term on the set Ar behaves
exactly the opposite way, that is, it decreases for r → 0. In fact, bounding the
risk on Ar requires additional knowledge of the behaviour of P in the vicinity
of the decision boundary. By applying [7, Theorem 7.2] on the risk on the set
Ar we show under the assumption that P has strong margin exponent α and
margin-noise exponent β that

RLA,P (hD)−R∗LA,P ≤ 6cMNEs
β + 4

(
8V (c5rs

−d + τ)

n

) α+γ
α+2γ

holds with probability Pn ≥ 1− e−τ . Here, c5 is a positive constant, τ ≥ 1 and
V is the prefactor of the variance bound on Ar, shown in Part 2 of the proof of
Lemma 3.4. If we balance the obtained risk terms over Ar and Br with respect
to r, we obtain the oracle inequality presented in our main theorem. For this
purpose, we define the positive constant

c̃α,γ,d :=

(
16γ(α+ 2γ) · 8d+1 max{cLC, 2

γ} · (α+ γ)−1

ĉ
α+γ
α+2γ

) α+γ
α+γ+γ(α+2γ)

,

which depends on α, γ and d and where ĉ := 24 max{12Hd−1({η = 1/2}), 1} ·
max

{
1, α+γ

γ c
αγ
α+γ

SME

(
γcLC

α

) α
α+γ

}
.

Theorem 3.4. Let A = (Aj)j≥1 be a partition of Rd into cubes of side length

s ∈ (0, 1]. Let X := [−1, 1]
d

and P be a probability measure on X × {−1, 1}
with fixed version η : X → [0, 1] of its posterior probability. Assume that the
associated distance to the decision boundary ∆η controls the noise from below
by the exponent γ ∈ [0,∞) and assume as well that P has MNE β ∈ [0,∞) and



I. Blaschzyk and I. Steinwart/Classification Rates under Refined Margin Conditions 8

SME α ∈ (0,∞]. Furthermore, let X0 equal the relative boundary of X1 in X,
that means X0 = δXX1, with Hd−1(X0) > 0 and let X0 be (d − 1)-rectifiable.
Let L be the classification loss and let for fixed n ≥ 1 and τ ≥ 1 the bounds

s ≤ c̃
(1+γ)(α+γ)+γ2

(1+γ)(α+γ)+γ2+dγ

α,γ,d

( τ
n

) γ

(1+γ)(α+γ)+γ2+dγ
, (9)

and

sdn ≥ τ

(
c̃α,γ,d

min{ δ∗3 , 1}

) (1+γ)(α+γ)+γ2

γ

(10)

be satisfied, where the constant c̃α,γ,d > 0 depends on α, γ, d and the constant
δ∗ > 0 is the one of Lemma 2.1. Then, there exists a constant cα,γ,d > 0 such
that

RL,P (hD,s)−R∗L,P ≤ 6 (cMNEs)
β

+ cα,γ,d

( τ

sdn

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

(11)

holds with probability Pn ≥ 1− 2e−τ , where the constant cα,γ,d only depends on
α, γ and d.

The proof shows that the constants cα,γ,d is given by

cα,γ,d := 128 · 8d+1 max{cLC, 2
γ} ·max

{
γ(α+ 2γ)

α+ γ
, 1

}
· c̃−γα,γ,d. (12)

Note that the assumptions (9) and (10) on the side length s of the cubes are
natural assumptions, since s has to be small enough given a specific number
of observations, but yet should not shrink too fast for grown observations. By
choosing an appropriate sequence of sn in dependence of our data length n and
setting a constraint on the margin-noise exponent β we state learning rates in
the next theorem. Prior to that, we define the positive constant

c̃α,β,γ,τ,d

:=

d(1 + γ)(α+ γ) · cα,γ,d · τ
(1+γ)(α+γ)

(1+γ)(α+γ)+γ2

6βcβMNE((1 + γ)(α+ γ) + γ2)


(1+γ)(α+γ)+γ2

β((1+γ)(α+γ)+γ2)+d(1+γ)(α+γ)

that depends on α, β, γ, τ and d and where cα,γ,d is the constant from (12).

Theorem 3.5. Assume that X and P satisfy the assumptions of Theorem 3.4
for β ≤ γ−1κ, where κ := (1+γ)(α+γ). In addition assume that the side length
sn in Theorem 3.4 is given by

sn = c̃α,β,γ,τ,dn
− κ
β(κ+γ2)+dκ .
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Then, there exists a constant cα,β,γ,τ,d > 0 such that for all n ≥ n0

RL,P (hD,sn)−R∗L,P ≤ cα,β,γ,τ,dn
− βκ

β(κ+γ2)+dκ

holds with probability Pn ≥ 1− 2e−τ , where n0 and the constant cα,β,γ,τ,d only
depend on τ, α, β, γ and d.

The proof shows that the constant cα,β,γ,τ,d is given by

cα,β,γ,τ,d := 2 max

{
d · κ

β(κ+ γ2)
, 1

}
cα,γ,δ · τ

κ
κ+γ2 · c̃

− dκ
κ+γ2

α,β,γ,τ,d.

To obtain the rates we have to know the P describing parameters. However, it
is possible to yield the rates in Theorem 3.5 by a training validation ansatz,
that is by splitting the dataset into two parts and considering a suitable set of
candidates sn. In order to compare our rate obtained in Theorem 3.5, we now
consider, besides our geometric assumption on X, namely

(i) X0 is (d − 1)-rectifiable with Hd−1(X0) > 0 and X0 equals the relative
boundary of X1 in X,

the following two assumptions on P :

(ii) P has SME α ∈ (0,∞],
(iii) there exists a γ ∈ [0,∞) and constants c1, c2, cUC > 0 such that

a) c1|2η(x)− 1| ≥ cLC∆γ
η(x),

b) c2|2η(x)− 1| ≤ cUC∆γ
η(x).

Here, assumption (iii)a) coincides up to the constant c1 with the definition in
(5). Furthermore, assumption (iii)b) indicates that we have an upper control by
∆η on the noise, which is a kind of inverse to (iii)a). Then, [7, Lemma 8.17]
shows under the assumptions (ii) and (iii) that P has MNE β = α+ γ. Hence,
we find in Theorem 3.5 with κ := (1 + γ)(α+ γ) and a suitable cell-width that
hD,sn learns with a rate with exponent

β(1+γ)(α+γ)
β[(1+γ)(α+γ)+γ2]+d(1+γ)(α+γ) = (α+γ)(1+γ)(α+γ)

(α+γ)[(1+γ)(α+γ)+γ2]+d(1+γ)(α+γ)

= (1+γ)(α+γ)
(1+γ)(α+γ)+γ2+d(1+γ) .

A simple transformation shows that this exponent equals

(1+γ)(α+γ)
(1+γ)(α+γ)+γ2+d(1+γ) = α+γ

α+γ+
γ2

1+γ+d

= α+γ

α+2γ+
γ2

1+γ+d−γ
= α+γ

α+2γ+d− γ
1+γ

. (13)

First, we compare the rate with exponent (13) with the rate achieved by sup-
port vector machines (SVM) for the hinge loss by considering the assumptions
(i), (ii) and (iii). For this purpose, [7, Chapter 8.3(8.18)] shows that the best
possible rate for the SVM is obtained by

n−
α+γ

α+2γ+d+ρ,
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where ρ > 0 is an arbitrary small number. Hence, our rate in (13) is better by
− γ

1+γ in the denominator. For the typical value of γ = 1, indicating a mod-

erate control of noise by the decision boundary, our rate is better by −1/2 in
the denominator. Finally, we remark that for both results less assumptions are
sufficient.

Second, we compare our rate with the ones for certain plug-in classifiers, see
[1], and with the rates of a classification scheme, described in [2]. In both cases,
the authors use the so called margin assumption, which is comparable to the
Definition of the noise exponent in [7]. Hence, we find under assumptions (ii)
and (iii) with [7, Exercise 8.5] that the margin condition is fulfilled for α/γ. In
addition to (i) and (iii) we impose the following two conditions:

(iv) η is Hoelder-continuous with exponent γ,
(v) PX is the Lebesgue measure.

Under condition (i) and (v) we find with Lemma 2.1 that assumption (ii) is
fulfilled for α = 1. Furthermore, we find under condition (iv) with Lemma A.1
that assumption (iii) is fulfilled with exponent γ. Hence, the conditions (i) and
(iii)− (v) yield in (13) a rate with exponent

1+γ

1+2γ+d− γ
1+γ

.

Furthermore, [1, Theorem 4.3] shows that certain plug-in classifier yield under
the same conditions (i) and (iii)− (v) the rate

n−
1+γ

1+2γ+d (14)

and we find that our rate is better by − γ
1+γ in the denominator. Under the

same assumptions, [2, Corollary 5.2(ii)] shows that the described classification
scheme obtains the rate (

(log n)
1

2+d

n

)− 1+γ
2γ+d

.

Hence, our rate is worse by 1
1+γ . However, the results from [2] are also compara-

ble under another set of assumptions. Indeed, if we assume that the conditions
(i)− (iv) hold, then, our rate given in (13) holds and [2, Corollary 5.2(i)] shows
that the described classification scheme yields the rate(

log n

n

)− α+γ
α+2γ+d

and our rate is again better by − γ
1+γ in the denominator. Note that for α =

1 this rate equals (14) up to the logarithm. Finally, we remark that for our
results as well as for the results from [1] and [2] less assumptions are sufficient
and in the comparisons above we tried to formulate reasonable sets of common
assumptions.
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4. Proofs

Proof of Lemma 2.1: For a set T ⊂ X and δ > 0 we define as in [6] the sets

T+δ := {x ∈ X | d(x, T ) ≤ δ },
T−δ := X \ (X \ T )+δ.

Since X1 := {x ∈ X | η(x) ≤ 1/2 } is bounded and measurable, we find with
[6, Lemma A.10.3] and the proof of [6, Lemma+A.10.4(ii)] that there exists a
δ∗ > 0, such that for all δ ∈ (0, δ∗] we have

λd(X+δ
1 \X−δ1 ) ≤ 4Hd−1(∂X1) · δ = 4Hd−1({x ∈ X | η(x) = 1/2 }) · δ. (15)

Next, we show that

{x ∈ X |∆(x) ≤ δ } ⊂ X+δ
1 \X−δ1 ∪X0. (16)

For this purpose, we remark that according to (4) we have

{x ∈ X |∆(x) ≤ δ }
= {x ∈ X1 | d(x,X−1) ≤ δ } ∪ {x ∈ X−1 | d(x,X1) ≤ δ } ∪X0.

Let us first show that {x ∈ X1 | d(x,X−1) ≤ δ } ⊂ X+δ
1 \ X−δ1 . To this end,

consider an x ∈ X1 with d(x,X−1) ≤ δ, where we check at once that x ∈ X+δ
1 .

Now, assume that x ∈ X−δ1 = X \(X \X1)+δ. Then, we find that x /∈ (X \X1)+δ

such that d(x,X \ X1) = d(x,X−1 ∪ X0) > δ. Hence, x /∈ X−δ1 . Next, let us
show that {x ∈ X−1 | d(x,X1) ≤ δ } ⊂ X+δ

1 \ X−δ1 . To this end, consider an
x ∈ X−1 with d(x,X1) ≤ δ. Then, it is clear that x ∈ X+δ

1 by definition of
X+δ

1 . Furthermore, x /∈ X−δ1 since X−δ1 = X \ (X−1)+δ ⊂ X1. Having showed
(16), we find together with the fact that λd(X0) = 0 since X0 = ∂X1 is (d− 1)-
rectifiable that

λd({x ∈ X |∆(x) ≤ δ }) ≤ λd(X+δ
1 \X−δ1 ).

Finally, with (15) we obtain that

λd({x ∈ X |∆(x) ≤ δ }) ≤ λd(X+δ
1 \X−δ1 ) ≤ 4Hd−1({x ∈ X | η(x) = 1/2 }) · δ

for all δ ∈ (0, δ∗].

Proof of Lemma 3.1:

i) We define the set of indices

JrC := { j ∈ J | ∃x ∈ Aj : ∆η(x) < r }

and define the set

Cr :=
⋃
j∈JrC

Aj .
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Since X ⊂ Br ∪ Cr, it suffices to show that Cr ⊂ Ar. To show the latter
we fix an x ∈ Cr. If x ∈ X0 we immediately have ∆η(x) = 0 ≤ 3r, hence
we assume w.l.o.g. that x ∈ X1. Then, there exists a j ∈ JrC such that
x ∈ Aj . Furthermore, there exists an x∗ ∈ Aj with ∆η(x∗) < r and we
find

∆η(x) = inf
x′∈X−1

‖x− x′‖∞

≤ inf
x′∈X−1

(‖x− x∗‖∞ + ‖x∗ − x′‖∞)

≤ s+ ∆η(x∗)

< s+ r,

where ‖ · ‖∞ is the supremum norm in Rd. Since s ≤ 2r, it follows that
∆η(x) ≤ 3r and therefore x ∈ Ar.

ii) We assume for Aj with j ∈ JrB that we have an x1 ∈ Aj ∩ X1 6= ∅ and
an x−1 ∈ Aj ∩ X−1 6= ∅. Then, the connecting line x−1x1 from x−1 to
x1 is contained in Aj since Aj is convex and we have ‖x−1 − x1‖∞ ≤ s.
Moreover, since ∆η(x) ≥ r for all x ∈ Br we have X0 ∩Br = ∅. Next, pick
an m > 1 such that

t0 = 0, tm = 1, ti =
i

m

and

xi := tix−1 + (1− ti)x1

for i = 0, . . . ,m. Clearly, xi ∈ x−1x1 and xi ∈ X−1 ∪X1. Since x0 ∈ X1

and xm ∈ X−1, there exists an i with xi ∈ X1 and xi+1 ∈ X−1 and we
find that

‖xi − xi+1‖∞ ≥ ∆η(xi) ≥ r.

On the other hand,

‖xi − xi+1‖∞ =
1

m
‖x−1 − x1‖∞ ≤

s

m
≤ 2r

m

such that r ≤ 2r
m , which is not true for m ≥ 3. Hence, we can not have an

x1 ∈ Aj ∩X1 6= ∅ and an x−1 ∈ Aj ∩X−1 6= ∅ for j ∈ JrB .

Proof of Lemma 3.2: For f ∈ F we have

RLTJ ,D(f)

=

∫
X×Y

LTJ (x, y, f(x)) dD(x, y)

=
∑
j∈J

∫
Aj×Y

Lclass(y, f(x)) dD(x, y).
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Next, we take a closer look at the risk on a single cell Aj for a j ∈ J . That is,∫
Aj×Y

Lclass(y, f(x)) dD(x, y) =
1

n

n∑
i=1

1Aj (xi)1yi 6=ci .

The risk on a cell is the smaller the less often we have yi 6= ci such that the
best classifier on a cell is the one which decides by majority. This is true for
the histogram rule by definition. Since the risk is zero on Aj with j 6∈ J , the
histogram rule minimizes the risk with respect to LTJ .

Proof of Lemma 3.3: We define hf := LBr ◦ f −LBr ◦ f∗L,P for a measurable

f : X → {−1, 1}. Since (LBr ◦ f − LBr ◦ f∗L,P )2 = 1Br
|f−f∗L,P |

2 we obtain

EP (hf − EPhf )2

≤ EP (hf )2

= EP (LBr ◦ f − LBr ◦ f∗L,P )2

=
1

2
EP1Br |f − f∗L,P |.

For x ∈ Br we have ∆η(x) ≥ r and thus we find with our lower-control assump-
tion that

rγ ≤ ∆γ
η(x) ≤ cLC |2η(x)− 1|

and therefore

1 ≤ cLCr−γ |2η(x)− 1|.

By using 1Br
|f−f∗|

2 = 1(X−14{f<0})∩Br , where 4 denotes the symmetric dif-
ference defined by C4D := (C \D) ∪ (D \ C) for sets C,D ⊂ X and by using
Lemma A.1 we obtain for the variance bound

EP (hf − EPhf )2 ≤ 1

2

∫
1Br (x)|f(x)− f∗L,P (x)|dPX(x)

≤ cLC
2rγ

∫
1Br (x)|2η(x)− 1||f(x)− f∗L,P (x)|dPX(x)

=
cLC
rγ

∫
(X−14{f<0})∩Br

|2η(x)− 1|dPX(x)

=
cLC
rγ

(RLBr ,P (f)−R∗LBr ,P )

=
cLC
rγ

EPhf .

Proof of Theorem 3.4: We define the set of cubes Ar and Br as in (6), (7)
for the choice of

r := c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ)

, (17)
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where

θ :=
α

α+ γ
. (18)

To estimate the excess risk RL,P (hD,s)−R∗L,P , we split the risk as in (8) by

RL,P (hD,s)−R∗L,P
≤
(
RLAr ,P (hD,s)−R∗LAr ,P

)
+
(
RLBr ,P (hD,s)−R∗LBr ,P

)
.

This separation is valid by Lemma 3.1(i), since s ≤ r. To see that, we remark
that

s ≤ c̃α,γ,d
( τ

sdn

) 1−θ
1+γ(2−θ) ⇐⇒ s

1+γ(2−θ)+d(1−θ)
1+γ(2−θ) ≤ c̃α,γ,d

( τ
n

) 1−θ
1+γ(2−θ)

⇐⇒ s ≤
(
c̃α,γ,d

( τ
n

) 1−θ
1+γ(2−θ)

) 1+γ(2−θ)
1+γ(2−θ)+d(1−θ)

and conclude by replacing θ by (18) that s ≤ r holds if

s ≤ c̃
(1+γ)(α+γ)+γ2

(1+γ)(α+γ)+γ2+dγ

α,γ,d

( τ
n

) γ

(1+γ)(α+γ)+γ2+dγ
,

which equals (9). The rest of the proof is structured in three parts, where we
establish error bounds on Ar and Br in the first two parts and combine the
results obtained in the third and last part of the proof. In the following we
write A := Ar and B := Br and keep in mind, that these sets depend on a
parameter r. Furthermore we write hD := hD,s.

Part 1: In the first part we establish an oracle inequality for RLB ,P (hD,s)−
R∗LB ,P . Therefore we define hBf := LB ◦ f − LB ◦ f∗LB ,P and find that

‖hBf ‖∞ = ‖LB ◦ f − LB ◦ f∗LB ,P ‖∞ ≤ 1

for all f ∈ F . Furthermore with Lemma 3.3 we obtain

EP (hBf )2 ≤ cLC

rγ
EPhBf ≤

c1
rγ

EPhBf , (19)

where c1 := max{cLC, 2
γ}. We observe that rγ ≤ c1, since with assumption

(10), where we rewrite the exponent by (1+γ)(α+γ)+γ2

γ = 1−θ
1+γ(2−θ) , we find

r = c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ)

≤ c̃α,γ,d

(min{ δ
∗

3 , 1}
c̃α,γ,d

) 1+γ(2−θ)
1−θ


1−θ

1+γ(2−θ)

= min

{
δ∗

3
, 1

}
≤ 1
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and therefore rγ ≤ 2γ ≤ c1. As we conclude from Lemma 3.2 that hD is an
empirical risk minimizer over F for the loss LB , we are able to use [7, Theo-
rem 7.2], an improved oracle inequality for ERM. We obtain for all fixed τ ≥ 1
and n ≥ 1 that

RLB ,P (hD)−R∗LB ,P < 6(R∗LB ,P,F −R
∗
LB ,P ) +

32c1(log(|F|+ 1) + τ)

rγn

holds with probability Pn ≥ 1 − e−τ , where R∗LB ,P,F := inff∈F RLB ,P (f).
Next, we refine the right-hand side of this oracle inequality. Obviously we have
|F| ≤ 2|J|. We bound the the cardinality |J | by using a volume comparison

argument. To this end, we define the set J̃ := { j ≥ 1 |Aj ∩ 2 [−1, 1]
d 6= ∅ } and

observe that
⋃
j∈J Aj ⊂

⋃
j∈J̃ Aj ⊂ 2B`d∞ . Then,

|J |sd = λd

⋃
j∈J

Aj

 ≤ λd
⋃
j∈J̃

Aj

 ≤ λd (4B`d∞) = 8d,

such that we deduce with |J | ≤ 8ds−d that

log(|F|+ 1) ≤ log(28ds−d + 1)

≤ log(2 · 28ds−d)

= log(28ds−d+1)

= (8ds−d + 1)log(2)

≤ 8ds−d + 1

≤ 8d+1s−d.

Thus,

RLB ,P (hD)−R∗LB ,P < 6(R∗LB ,P,F −R
∗
LB ,P ) +

32c1(8d+1s−d + τ)

rγn
(20)

holds with probability Pn ≥ 1− e−τ .
Finally, we have to bound the approximation error R∗LB ,P,F − R

∗
LB ,P

=
inff∈F RLB ,P (f)−R∗LB ,P . We find with hP,s ∈ F and Lemma A.1 that

R∗LB ,P,F −R
∗
LB ,P ≤ RLB ,P (hP,s)−R∗LB ,P

=

∫
(X14{hP,s≥0})∩B

|2η − 1| dPX

=
∑
j∈JrB

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX

= 0,

(21)

since (X14{hP,s ≥ 0}) ∩ Aj = ∅ for each j ∈ JrB . To see the latter, we first
remark that the latter set contains those x ∈ Aj for that either hP,s(x) ≥ 0 and
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η(x) ≤ 1/2 or hP,s(x) < 0 and η(x) > 1/2. Since we have Aj ⊂ X−1 ∪ X1 we
can ignore the case η(x) = 1/2. Furthermore, we know by Lemma 3.1(ii) that
either Aj ∩X−1 = ∅ or Aj ∩X1 = ∅. Let us first consider the case Aj ∩X−1 = ∅
and thus Aj ⊂ X1. According to the definition of the histogram rule, c.f. (1),
we find for all x ∈ Aj that hP,s(x) = 1, since

fP,s(x)

= P (Aj(x)× {1})− P (Aj(x)× {−1})

=

∫
Aj

∫
Y

1Aj×{1}(x, y)P (dy|x)dPX(x)

−
∫
Aj

∫
Y

1Aj×{−1}(x, y)P (dy|x)dPX(x)

=

∫
Aj

1Aj×{1}(x, 1)η(x)dPX(x)−
∫
Aj

1Aj×{−1}(x,−1)(1− η(x))dPX(x)

=

∫
Aj

2η(x)− 1dPX(x)

≥ 0.

Obviously we have η(x) ≥ 1/2 and hP,s(x) = 1 for all x ∈ Aj . Analogously
we can show for cells with Aj ∩ X1 = ∅ for j ∈ JrB that η(x) ≤ 1/2 and
hP,s(x) = −1 for all x ∈ Aj . Hence, (X14{hP,s ≥ 0}) ∩ Aj = ∅ for all j ∈ JrB
and the approximation error vanishes on the set B.

Altogether, for the oracle inequality on B we obtain with (20) and (21) that

RLB ,P (hD)−R∗LB ,P <
32c1(8d+1s−d + τ)

rγn
(22)

holds with probability Pn ≥ 1− e−τ .
Part 2: In the second part we establish an oracle inequality for RLA,P (hD)−

R∗LA,P , again by using [7, Theorem 7.2]. Analogously to Part 1 we define hAf :=

LA ◦f−LA ◦f∗LA,P for f ∈ F and find ‖hAf ‖∞ ≤ 1. Since (hAf0)2 = 1A
|f−f∗L,P |

2 =
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1(X−14{f<0})∩A we find with [Appendix, Lemma A.1] that

EP (hAf0)2

=
1

2

∫
A

|f0(x)− f∗LA,P (x)|dPX(x)

=
1

2

∫
A∩{|2η−1|≥t}

|f0(x)− f∗LA,P (x)|dPX(x)

+
1

2

∫
A∩{|2η−1|<t}

|f0(x)− f∗LA,P (x)|dPX(x)

≤ 1

2t

∫
A∩{|2η−1|≥t}

|2η(x)− 1||f0(x)− f∗LA,P (x)|dPX(x)

+ PX({x ∈ A : |2η(x)− 1| < t})

≤ 1

2t

∫
A

|2η(x)− 1||f0(x)− f∗LA,P (x)|dPX(x)

+ PX({x ∈ A : |2η(x)− 1| < t})
≤ t−1EPhAf0 + min{PX(A), PX({x ∈ X : |2η(x)− 1| < t})}

(23)

for all t > 0. We turn our attention to the minimum and note, that by the
definition of A we have

PX(A) ≤ PX({∆η(x) ≤ 3r}). (24)

For x ∈ X with |2η(x)−1| < t by the definition of the lower control we conclude
from

∆γ
η(x)

cLC
≤ |2η(x)− 1| < t.

that

∆η(x) ≤ (cLCt)
1
γ

and consequently

{x ∈ X : |2η(x)− 1| < t} ⊂ {x ∈ X : ∆η(x) ≤ (cLCt)
1
γ }. (25)

Then we find by (24), (25) and by the definition of the strong margin exponent
that

min{PX(A), PX({x ∈ X : |2η(x)− 1| < t})}

≤ min{PX({∆η(x) ≤ 3r}), PX({x ∈ X : ∆η(x) ≤ (cLCt)
1
γ })}

≤ min{(cSME3r)α, cαSME(cLCt)
α
γ }.

(26)

Combining (26) with (23) we obtain

EP (hAf0 − EPhAf0)2 ≤ t−1EPhAf0 + min{(cSME3r)α, cαSME(cLCt)
α
γ }

≤ t−1EPhAf0 + cαSME(cLCt)
α
γ .

(27)
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Minimizing the right-hand side of (27) yields

min
t>0

(
t−1EPhAf0 + cαSME(cLCt)

α
γ

)
= c2

(
EPhAf0

) α
α+γ ,

where c2 := α+γ
γ c

αγ
α+γ

SME

(
γcLC

α

) α
α+γ , such that with

V := max{1, c2} (28)

and (18) we have

EP (hAf0)2 ≤ t−1EPhAf0 + cSME(cγt
1
γ )α = c2

(
EPhAf0

) α
α+γ ≤ V

(
EPhAf0

)θ
. (29)

Note, that the definition of V yields V
1

2−θ ≥ 1. Since hD is an ERM over F for
the loss LA due to Lemma 3.2, by using [7, Theorem 7.2] we obtain for fixed
τ ≥ 1 and n ≥ 1 that

RLA,P (hD)−R∗LA,P

< 6(R∗LA,P,F −R
∗
LA,P ) + 4

(
8V (log(|F|+ 1) + τ)

n

) 1
2−θ (30)

holds with probability Pn ≥ 1−e−τ . In order to refine the right-hand side in (30),
we establish a bound on the cardinality |F| = 2|JA| and on the approximation
error. To bound the mentioned cardinality we use the fact that A lies in a
tube around the decision line, that is

⋃
j∈JA Aj ⊂ {∆η(x) ≤ 3r}, see (6). We

remark that 3r ≤ δ∗ holds, where δ∗ is the constant from Lemma 2.1, since with
assumption (10) we have

3r = 3c̃α,γ,d

( τ

sdn

) 1−θ
1+γ(2−θ) ≤ 3 min

{
δ∗

3
, 1

}
≤ δ∗.

Then, with Lemma 2.1 we find that

λd({∆η(x) ≤ 3r}) ≤ 12Hd−1({η = 1/2})r

and we obtain

|JA|sd = λd

 ⋃
j∈JA

Aj

 ≤ λd({∆η(x) ≤ 3r}) ≤ 12Hd−1({η = 1/2})r.

This yields to

|JA| ≤ 12Hd−1({η = 1/2})rs−d = c3rs
−d,
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where c3 := 12Hd−1({η = 1/2}). By r ≥ s ≥ sd we hence conclude that

log(|F|+ 1) = log(2c3rs
−d

+ 1)

≤ log(2 · 2c3rs
−d

)

= log(2c3rs
−d+1)

= (c3rs
−d + 1)log(2)

≤ c3rs−d + rs−d

≤ c4rs−d,

(31)

where c4 := 2 max{12Hd−1({η = 1/2}), 1}. Thus (30) changes to

RLA,P (hD)−R∗LA,P ≤ 6(R∗LA,P,F −R
∗
LA,P ) + 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

(32)

with probability Pn ≥ 1− e−τ .
Finally, we have to bound the approximation error R∗LA,P,F −R

∗
LA,P

in (32).
For f0 = hP,s we have with Lemma A.1 that

RLA,P (hP,s)−R∗LA,P =

∫
(X14{hP,s≥0})∩A

|2η − 1| dPX

=
∑
j∈JrA

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX .

We split JrA in indices where cells do not intersect the decision line and those
which do by

JrA1
:= { j ∈ JrA |PX(Aj ∩X1) = 0 ∨ PX(Aj ∩X−1) = 0 }

JrA2
:= { j ∈ JrA |PX(Aj ∩X1) > 0 ∧ PX(Aj ∩X−1) > 0 }.

such that ∑
j∈JrA

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX

=
∑
j∈JrA1

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX

+
∑
j∈JrA2

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX .

We notice that, as in the calculation of the approximation error in Part 1, the
first sum vanishes, since (X1∆{hP,s ≥ 0}) ∩ Aj = ∅ for all j ∈ JrA1

. Moreover,
we remark that JrA2

only contains cells of width s that intersect the decision
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boundary. Hence, by using the margin-noise assumption we find

RLA,P (hP,s)−R∗LA,P =
∑
j∈JrA2

∫
(X14{hP,s≥0})∩Aj

|2η − 1| dPX

≤
∫
{∆(x)≤s}

|2η − 1| dPX

≤ (cMNEs)
β
.

(33)

Altogether for the oracle inequality on A with (32) we find that

RLA,P (hD)−R∗LA,P ≤ 6 (cMNEs)
β

+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

(34)

holds with with probability Pn ≥ 1− e−τ .
Part 3: In the last part we combine the results obtained in Part 1, the oracle

inequality on B and Part 2, the oracle inequality on A. That means, with the
separation in (8) we obtain with (22) and (34) for the oracle inequality on X
that

RL,P (hD,s)−R∗L,P
≤
(
RLA,P (hD,s)−R∗LA,P

)
+
(
RLB ,P (hD,s)−R∗LB ,P

)
≤ 6 (cMNEs)

β
+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

+
32c1(8d+1s−d + τ)

rγn

(35)

holds with probability Pn ≥ 1 − 2e−τ . Since s ∈ (0, 1] and r ≥ s, we find that
rs−d ≥ 1. Together with the fact s−d, τ ≥ 1 and c4 ≥ 1 it follows that

RL,P (hD,s)−R∗L,P

≤ 6 (cMNEs)
β

+ 4

(
8V (c4rs

−d + τ)

n

) 1
2−θ

+
32c1(8d+1s−d + τ)

rγn

≤ 6 (cMNEs)
β

+ 4

(
8V (c4τrs

−d + c4τrs
−d)

n

) 1
2−θ

+
32c1(8d+1τs−d + τs−d)

rγn

≤ 6 (cMNEs)
β

+ 4

(
c5τrs

−d

n

) 1
2−θ

+
c6τs

−d

rγn

≤ 6 (cMNEs)
β

+ r
1

2−θ 4
( c5τ
sdn

) 1
2−θ

+
c6τ

rγsdn
,

where c5 := 24V max{12Hd−1({η = 1/2}), 1} and c6 := 64 · 8d+1 max{cLC , 2γ}.
Thus, inserting r, defined in (17), with the choice of c̃α,γ,d :=
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(γ(2−θ)c6)2−θ

42−θc5

) 1
1+γ(2−θ)

minimizes the right-hand side and yields to

RL,P (hD,s)−R∗L,P

≤ 6 (cMNEs)
β

+ r
1

2−θ 4
( c5τ
sdn

) 1
2−θ

+
c6τ

rγsdn

= 6 (cMNEs)
β

+ 4(c̃α,γ,dc5)
1

2−θ

( τ

sdn

) 2−θ+γ(2−θ)
(1+γ(2−θ))(2−θ)

+
c6

c̃γα,γ,d

( τ

sdn

) 1+γ
1+γ(2−θ)

= 6 (cMNEs)
β

+

 c̃ 1+γ(2−θ)
2−θ

α,γ,d 4c
1

2−θ
5 + c6

c̃γα,γ,d

( τ

sdn

) 1+γ
1+γ(2−θ)

= 6 (cMNEs)
β

+

(
γ(2− θ)c6 + c6

c̃γα,γ,d

)( τ

sdn

) 1+γ
1+γ(2−θ)

≤ 6 (cMNEs)
β

+

(
2c6 max{γ(2− θ), 1}

c̃γα,γ,d

)( τ

sdn

) 1+γ
1+γ(2−θ)

and we find again by inserting θ that

RL,P (hD,s)−R∗L,P ≤ 6 (cMNEs)
β

+ cα,γ,d

( τ

sdn

) (1+γ)(α+γ)

(1+γ)(α+γ)+γ2

(36)

holds with probability Pn ≥ 1 − 2e−τ , where cα,γ,d := 2c6 max{γ(2−θ),1}
c̃γα,γ,d

=

2c6 max{ γ(α+2γ)
α+γ ,1}

c̃γα,γ,d
.

Proof of Theorem 3.5: We begin by proving that the chosen sequence sn satis-

fies assumptions (9) and (10). To this end, we define nτ,α,β,γ,d :=
(
c̃α,β,γ,τ,d

c1

) 1
ζ1

with c1 := c̃
κ+γ2

κ+γ2+dγ

α,γ,d τ
γ

κ+γ2+dγ , where c̃α,γ,d is the constant from Theorem 3.4,

and ζ1 := κ(κ+γ2+dγ)−γ(β(κ+γ2)+dκ)
(β(κ+γ2)+dκ)(κ+γ2+dγ) . We remark that ζ1 ≥ 0 since we find by

β ≤ γ−1(1 + γ)(α+ γ) that

κ(κ+ γ2 + dγ)− γ(β(κ+ γ2) + dκ) = κ2 + kγ2 − γβκ− βγ3

≥ κ2 + κγ2 − κ2 − κγ2

= 0.

Then, for n ≥ nτ,α,β,γ,d a simple calculation shows that the latter is equivalent
to

c1n
−γ

κ+γ2+dγ ≥ c̃α,β,γ,τ,dn
− κ
β(κ+γ2)+dκ ,

which equals assumption (9) with sn := c̃α,β,γ,τ,dn
− κ
β(κ+γ2)+dκ . To see that

assumption (10) is satisfied we define ñτ,α,β,γ,d :=
(

c2
c̃α,β,γ,τ,d

) 1
ζ2

with c2 :=
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τ
1
d

(
c̃α,γ,d

min{ δ∗3 ,1}

)κ+γ2
dγ

, where c̃α,γ,d is the constant from Theorem 3.4, δ∗ the one

from Lemma 2.1 and where ζ2 := β(κ+γ2)
d(β(κ+γ2)+dκ) . Then, a simple transformation

shows again that for all n ≥ ñτ,α,β,γ,d we find

c̃α,β,γ,τ,dn
− κ

(β(κ+γ2)+dκ) ≥ c2n−1/d,

which equals assumption (10) with sn := c̃α,β,γ,τ,dn
− κ

(β(κ+γ2)+dκ) .
Finally, we obtain for all n ≥ n0 := dmax{nτ,α,β,γ,d, ñτ,α,β,γ,d}e by inserting

our chosen sequence sn, satisfying (9) and (10), in (11) that

RL,P (hD,sn)−R∗L,P

≤ 6(cMNEs)
β + cα,γ,d

( τ

sdn

) κ
κ+γ2

= 6cβMNEc̃
β
α,β,γ,τ,dn

− βκ

β(κ+γ2)+dκ + cα,γ,dτ
κ

κ+γ2 c̃
− dκ
κ+γ2

α,β,γ,τ,dn
− βκ

β(κ+γ2)+dκ

=

6cβMNEc̃
β(κ+γ2)+dκ

κ+γ2

α,β,γ,τ,d + cα,γ,dτ
κ

κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

n
− βκ

β(κ+γ2)+dκ

=

 dκ
β(κ+γ2)cα,γ,dτ

κ
κ+γ2 + cα,γ,dτ

κ
κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

n
− βκ

β(κ+γ2)+dκ

≤

2 max
{

dκ
β(κ+γ2) , 1

}
cα,γ,δτ

κ
κ+γ2

c̃
dκ

κ+γ2

α,β,γ,τ,d

n
− βκ

β(κ+γ2)+dκ

= cα,β,γ,τ,dn
− βκ

β(κ+γ2)+dκ

holds with probability Pn ≥ 1− 2e−τ , where cα,β,γ,τ,d :=

2 max
{

dκ
β(κ+γ2) , 1

}
cα,γ,δτ

κ
κ+γ2 · c̃

− dκ
κ+γ2

α,β,γ,τ,d.

Appendix A: Appendix

Lemma A.1. Let Y := {−1, 1} and P be a probability measure on X × Y .
For η(x) := P (y = 1|x), x ∈ X define the set X1 := {x ∈ X | η(x) > 1/2 }.
Let L be the classification loss and consider for A ⊂ X the loss LA(x, y, t) :=
1A(x)L(y, t), where y ∈ Y, t ∈ R. For a measurable f : X → R we then have

RLA,P (f)−R∗LA,P =

∫
(X14{f≥0})∩A

|2η(x)− 1|dPX(x),

where 4 denotes the symmetric difference.
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Proof of Lemma A.1: It is well known, e.g., [7, Example 3.8], that

RLA,P (f)−R∗LA,P

=

∫
A

|2η(x)− 1| · 1(−∞,0)((2η(x)− 1)signf(x))dPX(x).
(37)

Next, for PX -almost all x ∈ A we have

1(−∞,0]((2η(x)− 1)signf(x)) = 1⇔ (2η(x)− 1)signf(x) ≤ 0.

The latter is true if for x ∈ A holds that f(x) < 0 and η(x) > 1/2 or that
f(x) ≥ 0 and η(x) ≤ 1/2 or that η(x) = 1/2. However, for η(x) = 1/2 we have
|2η(x) − 1| = 0 and hence this case can be ignored. Then, the latter obviously
equals the set (X14{f ≥ 0}) ∩A and we obtain in (37)

RLA,P (f)−R∗LA,P =

∫
(X14{f≥0})∩A

|2η(x)− 1|dPX(x).

Lemma A.2. Let X := [−1, 1]
d

and P be a probability measure on X×{−1, 1}
with fixed version η : X → [0, 1] of its posterior probability. Then, if η is Hoelder-
continuous with exponent γ, we have that ∆η controls the noise from below with
exponent γ.

Proof of Lemma A.2: Fix w.l.o.g. an x ∈ X1. Then, η(x) > 1/2. Since η is
Hoelder-continuous with exponent γ, there exists a constant c > 0 such that we
have

|2η(x)− 1| = 2|η(x)− 1/2| ≤ 2|η(x)− n(x′)| ≤ 2c(d(x, x′))γ

for all x′ ∈ X−1 and hence

|2η(x)− 1| ≤ 2c inf
x̃∈X−1

(d(x, x̃))γ = 2c∆γ
η(x).

Obviously the last inequality holds immediately for x ∈ X with η(x) = 1/2.
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2013-001 Kohls, K.; Rösch, A.; Siebert, K.G.: A Posteriori Error Analysis of Optimal Control
Problems with Control Constraints

2012-013 Diaz Ramos, J.C.; Dominguez Vázquez, M.; Kollross, A.: Polar actions on complex
hyperbolic spaces

2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces

2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs

2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces

2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations

2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces

2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors
under censoring

2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily

2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
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