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Abstract

Conditional expectiles are becoming an increasingly important tool in finance as well as in
other areas of applications. We analyse a support vector machine type approach for estimating
conditional expectiles and establish learning rates that are minimax optimal modulo a logarith-
mic factor if Gaussian RBF kernels are used and the desired expectile is smooth in a Besov sense.
As a special case, our learning rates improve the best known rates for kernel-based least squares
regression in this scenario. Key ingredients of our statistical analysis are a general calibration
inequality for the asymmetric least squares loss, a corresponding variance bound as well as an
improved entropy number bound for Gaussian RBF kernels.

1 Introduction

Given i.i.d samples D := ((21,y1),-- -, (Tn, yn)) drawn from some unknown probability distribution
P on X XY, where X is an arbitrary set and Y C R, the goal to explore the conditional distribution
of Y given x € X beyond the center of the distribution can be achieved by using both quantile
and expectile regression. The well-known quantiles are obtained by minimizing asymmetric least
absolute deviation (ALAD) loss function proposed by [26], whereas expectiles are computed by
minimizing asymmetric least square (ALS) loss function

LT(y,t)—{(l_T)(y_t)Q’ if y<t, (1)

T(y —t)?, if y>t,

for all t € R and a fixed 7 € (0,1), see primarily [29] and also [19, 1] for further references. These
expectiles have attracted considerable attention in recent years and have been applied successfully
in many areas, for instance, in demography [31], in education [33] and extensively in finance [48,
23, 50, 25]. In fact, it has recently been shown (see, e.g. [6], [42]) that expectiles are the only
risk measures that enjoy the properties of coherence and elicitability, see [21], and therefore they
have been suggested as potentially better alternative to both Value at Risk (VaR) and Expected
Shortfall (ES), see e.g. [46, 53, 6]. In order to see more applications of expectiles, we refer the
interested readers to, e.g. [3, 34, 22].

*This research is supported by Higher Education Commission (HEC) Pakistan (PS/OS-I/Batch- 2012/Ger-
many/2012/3449) and German Academic Exchange Service (DAAD) scholarship program/-ID50015451.



Both quantiles and expectiles are special cases of so-called asymmetric M-estimators (see [8])
and there exists one-to-one mapping between them (see, e.g. [19], [1] and [52] ), in general, however,
expectiles do not coincide with quantiles. Hence, the choice between expectiles and quantiles mainly
depends on the application at hand, as it is the case in the duality between the mean and the
median. For example, if the goal is to estimate the (conditional) threshold for which 7-fraction of
(conditional) observations lie below that threshold, then T-quantile regression is the right choice.
On the other hand, if one is interested to estimate the (conditional) threshold for which the average
of below threshold excess information (deviations of observations from threshold) is k& times larger
then above that threshold, then the T-expectile regression is a preferable choice with 7 = %,
see [29, p. 823]. In other words, the focus in quantiles is the ordering of observations while
expectiles account magnitude of the observations, which makes expectiles sensitive to the extreme
values of the distribution and this sensitivity thus play a key role in computing the ES in finance.
Since, estimating expectiles is computationally more efficient than quantiles, one can however use
expectiles as a promising surrogate of quantiles in the situation where one is only interested to
explore the conditional distribution.

As already mentioned above, T-expectiles can be computed with the help of asymmetric risks

Re,.p(f) 12/

XxY

Loy, f(2))dP(z,y) = /X /Y Ly, f(2))dP(ylz)dPx (z), (2)

where P is the data generating distribution on X x Y and f : X — R is some predictor. To be
more precise, there exists a Px-almost surely unique function f7_p satisfying

Rer.p(fi, p)=RL, p:=inf{Rr, p(f)|f: X — R measurable},

and f7_p(x) equals T-expectile of the conditional distribution P(-|z) for Px-almost all z € X.

Some semiparametric and nonparametric methods for estimating conditional T-expectiles with
the help of empirical L,-risk have already been proposed in literature, see e.g. [32, 52, 51] for
further details. Recently, [20] proposed an another nonparametric estimation method that belongs
to the family of so-called kernel based regularized empirical risk minimization, which solves an
optimization problem of the form

fp = arg g}él}{} M+ Re,.p(f) 3)

Here, A > 0 is a user specified regularization parameter, H is a reproducing kernel Hilbert space
(RKHS) over X with reproducing kernel k (see, e.g. [4] and [37, Chapter 4.2]) and Ry, p(f) denotes
the empirical risk of f, that is

Re,p(f) == Lo(yi, f(z)).
=1

SEE

Since the ALS loss L; is convex, so is the optimization problem (3) and by [37, Lemma 5.1, Theorem
5.2] there always exits a unique fp  that satisfies (3). Moreover, the solution of fp y is of the form

n

fD,)\ = Z(a;k - /Bj)K(‘/E’La ) )
i=1
where o > 0,8 > 0foralli =1,...,n, see [20] for further details. Learning method of the form (3)
but with different loss functions have attracted many theoretical and algorithmic considerations,
see for instance [49, 5, 9, 41, 17, 44] for least square regression, [38, 17] for quantile regression



and [24, 40] for classification with hinge loss. In addition, [20] recently proposed an algorithm for
solving (3), that is now a part of [43], and compared its performance to ER-Boost, see [51], which is
another algorithm minimizing an empirical L, -risk. The main goal of this article is to complement
the empirical findings of [20] with a detailed statistical analysis.

A typical way to access the quality of an estimator fp is to measure its distance to the target
function f7_p, e.g. in terms of lfp — sz7P||L2(pX). For estimators obtained by some empirical
risk minimization scheme, however, one can hardly ever estimate this Lo-norm directly. Instead,
the standard tools of statistical learning theory give bounds on the excess risk Ry, p(fp) — ’th p-
Therefore, our first goal of this paper is to establish a so-called calibration inequality that relates
both quantities. To be more precise, we will show in Theorem 3 that

1fp = 11, plLoes) < ¢ VRep(fD) = Rips 4)

holds for all fp € La(Pyx) and some constant ¢; only depending on 7. In particular, (4) provides
rates for || fp — fi_ pllL,(py) as soon as we have established rates for Ry, p(fp) — R} p. Further-
more, it is common knowledge in statistical learning theory that bounds on Ry, p(fp) — Ri_p
can be improved if so-called variance bounds are available. We will see in Lemma 4 that (4) leads
to an optimal variance bound for L, whenever Y is bounded. Note that both (4) and the variance
bound are independent of the considered expectile estimation method. In fact, both results are key
ingredients for the statistical analysis of any expectile estimation method based on some form of
empirical risk minimization.

As already indicated above, however, the main goal of this paper is to provide a statistical
analysis of the SVM-type estimator fp  given by (3). Since 2L, /2 equals the least squares loss,
any statistical analysis of (3) also provides results for SVMs using the least squares loss. The
latter have already been extensively investigated in the literature. For example, learning rates
for generic kernels can be found in [12, 13, 9, 41, 28] and the references therein. Among these
articles, only [12, 41, 28] obtain learning rates in minimax sense under some specific assumptions.
For example, [12] assumes that the target function f}jm’ p € H, while [41, 28] establish optimal

learning rates for the case in which H does not contain the target function. In addition, [17] has
recently established (essentially) asymptotically optimal learning rates for least square SVMs using
Gaussian RBF kernels under the assumption that the target function le/% p is contained in some
Sobolev or Besov space Bj ., with smoothness index a. A key ingredient of this work is to control

the capacity of RKHS H.,(X) for Gaussian RBF kernel k-, on the closed unit Euclidean ball X C R?
by an entropy number bound

ei(id : Hy(X) = loo(X)) < cpa(X)y 7i 7, (5)

see [37, Theorem 6.27], which holds for all v € (0,1] and p € (0,1]. Unfortunately, the constant
cp,d(X) derived from [37, Theorem 6.27] depends on p in an unknown manner. As a consequence,
[17] were only able to show learning rates of the form

2
n_ 2aid +£

for all £ > 0. To address this issue, we use [47, Lemma 4.5] to derive the following new entropy
number bound

d+1 % _d 1
)7

exlid - H,(X) = (X)) < (3K) 7 ( - RiF (6)



which holds for all p € (0,1] and v € (0,1] and some constant K only depending on d. In other
words, we establish an upper bound for ¢, 4(X) whose dependence on p is explicitly known. Using
this new bound, we are then able to find improved learning rates of the form

(log n)dHn_?zﬁ .

Clearly these new rates replace the nuisance factor né of [17] by some logarithmic term, and up
to this logarithmic factor our new rates are minimax optimal, see [17] for details. In addition, our
new rates also hold for 7 # 1/2, that is for general expectiles.

The rest of this paper is organized as follows. In Section 2, some properties of the ALS loss
function are established including the self-calibration inequality and variance bound. Section 3
presents oracle inequalities and learning rates for (3) and Gaussian RBF kernels. The proofs of our
results can be found in Section 4.

2 Properties of the ALS Loss Function: Self-Calibration and Vari-
ance Bounds

This section contains some properties of the ALS loss function i.e. convexity, local Lipschitz con-
tinuity, a self-calibration inequality, a supremum bound and a variance bound. Throughout this
section, we assume that X is an arbitrary, non-empty set equipped with o-algebra, and ¥ C R
denotes a closed non-empty set. In addition, we assume that P is the probability distribution on
X xY, P(:|z) is a regular conditional probability distribution on Y given € X and @ is a some
distribution on Y. Furthermore, L, : Y x R — [0, 00) is the ALS loss defined by (1) and f: X — R
is a measurable function. It is trivial to prove that L, is convex in ¢, and this convexity ensures
that the optimization problem (3) is efficiently solvable. Moreover, by [37, Lemma 2.13] convexity
of L. implies convexity of corresponding risks. In the following, we present the idea of clipping to
restrict the prediction ¢ to the domain Y = [—M, M| where M > 0, see e.g. [37, Definition 2.22].

Definition 1. We say that a loss L : Y x R — [0,00) can be clipped at M > 0, if, for all
(y,t) € Y xR, we have

L(y,t) < L(y,t), (7)

where t denotes the clipped value of t at =M, that is

-M if t<-—-M,
t:={ t if te[-M,M],
M if t>M.

Moreover, we say that L can be clipped if t can be clipped at some M > 0.

Recall that this clipping assumption has already been utilized while establishing learning rates
for SVMs, see for instance [10, 39, 40] for hinge loss and [11, 38] for pinball loss. It is trivial to show
by convexity of L, together with [37, Lemma 2.23] that L, can be clipped at M and has at least one
global minimizer in [—M, M]. This also implies that T\’,Lﬁp(]?) < Rpr, p(f) for every f: X — R.
In other words, the clipping operation potentially reduces the risks. We therefore bound the risk
Rr,. p(fa ») of the clipped decision function rather than the risk Rp,  p(fp.), which we will see
in details in Section 3. From a practical point of view, this means that the training algorithm for
(3) remains unchanged and the evaluation of the resulting decision function requires only a slight



change. For further details on algorithmic advantages of clipping for SVMs using the hinge loss
and the ALS loss, we refer the reader to [40] and [20] respectively. It is also observed in [37, 41, 17]
that || - ||co-bounds, see Section 3, can be made smaller by clipping the decision function for some
loss functions.
Let us further recall from [37, Definition 2.18] that a loss function is called locally Lipschitz

continuous if for all @ > 0 there exists a constant ¢, such that

sup|L(y,t) — L(y, t")| < ca|t — ¥, t,t' € [—a,a].

yey
In the following we denote for a given a > 0 the smallest such constant ¢, by |L|; 4. The following
lemma, which we will need for our proofs, shows that the ALS loss is locally Lipschitz continuous.

Lemma 2. Let Y € [-M,M] and t € Y, then the loss function L, : Y x R — [0,00) is locally
Lipschitz continuous with Lipschitz constant

’L’T|17M =Cr 4M
where Cr := max{r,1 —7}.

For later use note that L, being locally Lipschitz continuous implies that L, is also a Nemitski
loss in the sense of [37, Definition 18], and by [37, Lemma 2.13 and 2.19], this further implies that
the corresponding risk Ry, p(f) is convex and locally Lipschitz continuous.

Empirical methods of estimating expectile using L, loss typically lead to the function fp for
which Rp, p(fp) is close to R} _ p with high probability. The convexity of L; then ensures that
Jp approximates f;_p in a weak sense, namely in probability Py, see [35, Remark 3.18]. However,
no guarantee on the speed of this convergence can be given, even if we know the convergence rate
of R, p(fp) — Rj, p- The following theorem addresses this issue by establishing a so-called
calibration inequality for the excess L, -risk.

Theorem 3. Let L, be the ALS loss function defined by (1) and P be the distribution on R.
Moreover, assume that f;_p(x) < oo is the conditional T-expectile for fized T € (0,1). Then, for
all f: X — R, we have

CoY2A(Re, p(f) — L,P)l/2 <|f = 11, pllLape) < ;2 (Re, p(f) - L,P)l/27
where ¢ = min{r,1 — 7} and C- is defined in Lemma 2.

Note that the calibration inequality, that is the right-hand side of the inequality above in
particular ensures that fp — f;_p in Lo(Px) whenever R, p(fp) = R} _p. In addition, the
convergence rates can be directly translated. The inequality on the left shows that modulo constants
the calibration inequality is sharp. We will use this left inequality when bounding the approximation
error for Gaussian RBF kernels in the proof of Theorem 6.

At the end of this section, we present supremum and variance bounds of the L, -loss. Like
the calibration inequality of Theorem 3 these two bounds are useful for analyzing the statistical
properties of any L -based empirical risk minimization scheme. In Section 3 we will illustrate this
when establishing an oracle inequality for the SVM-type learning algorithm (3).

Lemma 4. Let X C R? be non-empty set, Y C [—M, M| be a closed subset where M > 0, and P
be a distribution on X xY. Additionally, we assume that L; : Y xR — [0,00) is the ALS loss and
[, p(z) is the conditional T-expectile for fired T € (0,1). Then for all f: X — [-M, M] we have

i) | Ly o f—Lroff_ pllc <4C; M?.

it) Ep(Lyo f =Ly o f} p)? <16C2 ;' M*(Re, p(f) =R}, p)-



3 Oracle Inequalities and Learning Rates

In this section, we first introduce some notions related to kernels. We assume that k£ : X x X — R
is a measurable, symmetric and positive definite kernel with associated RKHS H. Additionally, we
assume that k is bounded, that is, ||k||s := sup,cx \/k(x,2) < 1, which implies that H consists
of bounded functions with || f||ecc < ||k|lec||f||zr for all f € H. In practice, we often consider SVMs
that are equipped with well-known Gaussian RBF kernels for input domain X € R?, see [40, 20].
Recall that the latter are defined by

ky(,2) = exp(—y 7z — 2/3),

where v is called the width parameter that is usually determined in a data dependent way, i.e. by
cross validation. By [37, Corollary 4.58] the kernel k. is universal on every compact set X € R”
and in particular strictly positive definite. In addition, the RKHS H,, of kernel &, is dense in L, (x)
for all p € [1,00) and all distributions p on X, see [37, Proposition 4.60].

One requirement to establish learning rates is to control the capacity of RKHS H. One way
to do this is to estimate eigenvalues of a linear operator induced by kernel k. To be more precise,
given a kernel k and a distribution p on X, we define the integral operator Ty : Lo(u) — La(p) by

Tef()i= [ bl )f @) (8)

for p-almost all z € X. In the following, we assume that u = Px. Recall [37, Theorem 4.27] that T},
is compact, positive, self-adjoint and nuclear, and thus has at most countably many non-zero (and
non-negative) eigenvalues \;(7y). Ordering these eigenvalues (with geometric multiplicities) and
extending the corresponding sequence by zeros, if there are only finitely many non-zero eigenvalues,
we obtain the extended sequence of eigenvalues (A;(Ty))i>1 that satisfies S5, Xi(Tx) < oo [37,
Theorem 7.29]. This summability implies that for some constant ¢ > 1 and ¢ > 1, we have
Xi(Ty,) < ai~!. By [41], this eigenvalues assumption can converge even faster to zero, that is, for
p € (0,1), we have

MN(T) <air, P> 9)

It turns out that the speed of convergence of A;(7}) influences learning rates for SVMs. For instance,
[7] used (9) to establish learning rates for SVMs using hinge loss and [9, 28] for SVMs using least
square loss.

Another way to control the capacity of RKHS H is based on the concept of covering numbers or
the inverse of covering numbers, namely, entropy numbers. To recall the latter, see [37, Definition
A.5.26], let T : E — F be a bounded, linear operator between the Banach spaces F and F, and
i > 1 be an integer. Then the i-th (dyadic) entropy number of T is defined by

ei(T) := inf {e > 0:3zy,...,2q9-1suchthat TBg C U?;l (xj + eBF)} .

In the Hilbert space case, the eigenvalues and entropy number decay are closely related. For
example, [36] showed that (9) is equivalent (modulo a constant only depending on p) to

1
eiid : H — Lo(Py)) < Vai~ % i>1, (10)
It is further shown in [36] that (10) implies a bound on average entropy numbers, that is, for
empirical distribution associated to the data set Dx := (z1,---,x,) € X", the average entropy
number is
1
EDXNP)T;ei(id cH — LQ(P)()) < ai_%, 7 > 1,

6



which is used in [37, Theorem 7.24] to establish the general oracle inequality for SVMs. A bound
of the form (10) was also established by [37, Theorem 6.27] for Gaussian RBF kernels and certain
distributions Px having unbounded support. To be more precise, let X C R? be a closed unit
Euclidean ball. Then for all v € (0,1] and p € (0, 1), there exists a constant ¢, 4(X) such that

ei(id : Hoy(X) = loo(X)) < cpa(X)y 7i 77, (11)

which has been used by [17] to establish leaning rates for least square SVMs. Note that the constant
¢p.a(X) depends on p in an unknown manner. To address this issue, we use [47, lemma 4.5] and
derive an improved entropy number bound in the following theorem by establishing an upper bound
for ¢, 4(X) whose dependence on p is explicitly known. We will further see in Corollary 8 that this
improved bound leads us to achieve better learning rates than the one obtained by [17].

Theorem 5. Let X = R? be a closed Euclidean ball. Then there exists a constant K > 0, such
that, for all p € (0,1), v € (0,1] and i > 1, we have

. 1/d+1 % _d__1
exlid s H,(X) = Lo(X)) < 3K (T2) 7 y70is (12)
ep
Another requirement for establishing learning rates is to bound the approximation error function
considering RKHS H,, for Gaussian RBF kernel k. If the distribution P is such that R} _p < oo,
then the approximation error function A : [0, 00) — [0, 00) is defined by

AN = fiEnlL%AHfH?qW +Re, p(f) =R, p- (13)

For A > 0, the approximation error function A(\) quantifies how well an infinite sample L2-SVM
with RKHS H,,, that is, )\||f|]%{7 +Rr.,p(f) approximates the optimal risk R} _ p. By [37, Lemma
5.15], one can show that limy_,g A(\) = 0 if H,, is dense in Ly(Px). In general, however, the speed
of convergence can not be faster than O(\) and this rate is achieved, if and only if, there exists an
f € Hy such that R, p(f) = R}_p, see [37, Lemma 5.18].

In order to bound A(X), we first need to know one important feature of the target function f7_ p,
namely, the regularity which, roughly speaking, measures the smoothness of the target function.
Different function spaces norms e.g. Hélder norms, Besov norms or Triebel-Lizorkin norms can be
used to capture this regularity. In this work, following [17, 27], we assume that the target function
fi. p is in a Sobolev or a Besov space. Recall [45, Definition 5.1] and [2, Definition 3.1 and 3.2]
that for any integer k > 0, 1 < p < 0o and a subset Q C R? with non-empty interior, the Sobolev
space Wf(Q) of order k is defined by

WH(Q) := {f € Ly(Q) : D' f € L,(Q) exists for all & € NJ with |o| < k},

with the norm

1
p Z :
1w = { (St 1D, @) i pe (Lo
max (o <k 1D fll L) if p=oo0,
where D@ is the a-th weak partial derivative for multi-index o = (a1,...,0q) € Ng of modulus
la| = a4+ -+ - + |ag|- In other words, the Sobolev space is the space of functions with sufficiently

many derivatives and equipped with a norm that measures both the size and the regularity of the
contained functions. Note that W]f (Q) is a Banach space, see [45, Lemma 5.2]. Moreover, by [2,

7



Theorem 3.6], Wf(Q) is separable if p € [1, 00), and is uniformly convex and reflexive if p € (1, c0).
Furthermore, for p = 2, W¥(Q) is a separable Hilbert space that we denote by Hy(€2). Despite the
underlined advantages, Sobolev spaces can not be immediately applied when « is non-integral or
when p < 1, however, the smoothness spaces for these extended parameters are also needed when
engaging nonlinear approximation. This shortcoming of Sobolev spaces is covered by Besov spaces
that bring together all functions for which the modulus of smoothness have a common behavior.
Let us first recall [16, Section 2] and [15, Section 2] that for a subset @ C R? with non-empty
interior, a function f : Q@ — R with f € L,(Q2) for all p € (0,00] and s € N, the modulus of
smoothness of order s of a function f is defined by

ws,Lp(Q)(fa t) = Sup ||Ai(fa ')||Lp(Q) ) t>0,
[hll2<t

where the s-th difference A7 (f,-) given by

. — | Do ()10 (@ +ih) if oz+h,... 2+sheq,
Ah(fax>Q) = { 0, otherwise,

for h € R?, is used to measure the smoothness. Note that wS7Lp(Q)(f, t) — 0 as t — 0, which
means that the faster this convergence to 0 the smoother is f. For more details on properties of
the modulus of smoothness, we refer the reader to [30, Chapter 4.2]. Now for 0 < p,q < o0, a > 0,
s := |a] + 1, the Besov space By (£2) based on modulus of smoothness for domain 2 C R4, see for
instance [14, Section 4.5], [30, Chapter 4.3] and [16, Section 2], is defined by

By (@) :={f € Ly(2) : |f’Bg’q(Q) < oo},

where the semi-norm |- Bg,(9) is given by

Q=

S dt
Asgo = ([ w07 5) s e 0.
and for ¢ = oo, the semi-norm ]-\ng(ﬂ) is defined by
|flBg @) = igg(twws@p(m(ﬁ t).

In other words, Besov spaces are collections of functions f with common smoothness. For more
general definition of Besov-like spaces, we refer to [27, Section 4.1]. Note that [|f|[ps ) =
£z, ) + |f|Bqu(Q) is the norm of By, (), see e.g. [16, Section 2] and [15, Section 2]. Fur-
thermore, for p > 1 different values of s > «a give equivalent norms of By (€2), which remains true
for p < 1, see [16, Section 2]. It is well known, see e.g [30, Section 4.1], that W (Q) C B, ., (£2) for
all 1 < p < o0, p# 2, where for p = g = 2 the Besov space is the same as the Sobolev space.

In the next step, we find a function fy € Hy such that both the regularization term A|| f0||%{W
and the excess risk R, p(fo) — R} p are small. For this, we define the function K, : R? — R, see
[17], by

(2} e (- 2alipy, (14)

,),277 j2,72

K@ =3 ()0

I\ j

forall7 € N, v > 0 and = € R?. Additionally, we assume that there exists a function fi.p: R? - R
satisfies f7_p € La(RY) N Lo (RY) and Re,.p(ff. p) =R}, p- Then fo is defined by

8



folx) == K f5_p(z) = /R K(z—t)ff p(t)dt,  z€R.
With these preparation, we now establish an upper bound for the approximate error function A(\).

Theorem 6. Let L, be the ALS loss defined by (1), P be the probability distribution on R? x Y,
and Px be the marginal distribution of P onto R? such that X := suppPx and Px(0X) = 0.
Moreover, assume that the conditional T-expectile f7_p satisfies f[_p € Lo(RY) N Loo(RY) as well
as f1_p € BS(Px) for some o > 1. In addition, assume that k. is the Gaussian RBF kernel
over X with associated RKHS H.,. Then for all v € (0,1] and A > 0, we have

I follzz, + Re,.p(fo) = RE, p < Cidy™% + Cr iy,
where Cr s > 0 is a constant depending on s and T, and the constant C1 > 0.

Clearly, the upper bound of the approximation error function in Theorem 6 depends on the
regularization parameter A, the kernel width =, and the smoothness parameter « of the target
function f}jﬂ p- Note that in order to shrink the right-hand side we need to let v — 0. However,
this would let the first term go to infinity unless we simultaneously let A — 0 with a sufficient
speed. Now using [37, Theorem 7.24] together with Lemma 4, Theorem 6 and the entropy number
bound (12), we establish oracle inequality of SVMs for L, in the following theorem.

Theorem 7. Consider the assumptions of Theorem 6 and additionally assume thatY := [—M, M|
for M > 1. Then, for alln > 1,0 > 1,v € (0,1) and X € (0,e?%], the SVM using the RKHS H,,
and the ALS loss function L, satisfies

MFpanllt, + Reep(Foay) = Ri, p < CM2 (™ 492 + (log A1) 1y~ 4 n1o) , (15)

with probability P™ not less than 1 — 3e™¢. Here C > 0 is some constant independent of p, A, v,n
and o.

It is well known that there exists a relationship between Sobolev spaces and the scale of Besov
spaces, that is, By, (R?) — W(R?) — B2 (R%), whenever 1 < u < min{p,2} and max{p,2} <
v < 00, see for instance [18, p.25 and p.44]. In particular, for p = u = v = 2, we have W§(R%) =
B$5(R?) with equivalent norms. In addition, by [17, p.7] we have BS (R?) C BS, (Px). Thus,
Theorem 7 also holds for decision functions f7_p : R?Y — R with fi.p € L2(RY) N Lo (R?) and
ft.p € Wg(RY).

By assuming some suitable values for A and « that depends on data size n, the smoothness
parameter «, and the dimension d, we obtain learning rates for learning problem (3) in the following
corollary.

Corollary 8. Under the assumptions of Theorem 7 and with
Ap = cln_1 ,
Tn = con” 2T,

where ¢1 > 0 and co > 0 are user specified constants, we have, for allm > 1 and 0 > 1,

~ _ 2o
Rei,.p(fprn) —Ri, p < CM?g(logn)™*'n™ 2+ (16)

with probability P™ not less than 1 — 3e™¢.



Note that learning rates in Corollary 8 depend on the choice of A, and ~,, where the kernel
width 7, requires knowing o which, in practice, is not available. However, [37, Chapter 7.4], [41],
[17] and [38] showed that one can achieve the same learning rates adaptively, i.e. without knowing
a. Let us recall [37, Definition 6.28] that describes a method to select A and -, which in some sense
is a simplification of the cross-validation method.

Definition 9. Let H, be a RKHS over X and A := (Ay,) and I' := (I',,) be the sequences of finite
subsets Ay, Ty, C (0,1]. Given a data set D := ((x1,41),- -, (Tn,yn)) € (X x R)™, we define

Dy = (($17yl)7 ) (l'ma ym))
Dg = ((xm+1a ym+1)v SRR (ij yn)) y

where m = [§]+1 andn > 4. Then use Dy as a training set to compute the SVM decision function
fDlv\,’Y = arg }2}}1 /\HfH%-L, + RLTyDl (f)’ ()‘77) € (Am Fn) )
i
and use Dy to determine (\,7) by choosing (Ap,,vp,) € (An,I'n) such that

min _~ Rp, p,(foiaq) -

Rr,.p FDuA =
D2 (JD10y 0, (A)E(An,Tn)

Every learning method that produce the resulting decision functions fDl’
validation SVM with respect to (A,T).

ADy YDy U called a training

In the next Theorem, we use this training-validation SVM (TV-SVM) approach for suitable
candidate sets A, := (A1,...,Ay) and Ty, := (71,...,7s) with A\, = 75 = 1, and establish learning
rates similar to (16).

Theorem 10. With the assumptions of Theorem 7, let A := (A,,) and T := (T'),) be the sequences
of finite subsets A, Ty, C (0,1] such that A, is an n~t-net of (0,1] and T, is an n”ZaFd et of
(0, 1] with polynomially growing cardinalities |A,| and |T'y| in n. Then for all 0 > 1, the TV-SVM
produce th)\DQNDQ that satisfies

-~ _ 2o _
P"(Re,p(JD1 Apymy) = Ri,.p < CM2g(logn) ) n~ 287 ) > 1 - 3¢~

where C' > 0 is a constant independent of n and o.

So far we have only considered the case of bounded noise with known bounds, that is, Y €
[—M, M] where M > 0 is known. In practice, M is usually unknown and in this situation, one can
still achieve the same learning rates by simply increasing M slowly. However, more interesting is
the case of unbounded noise. In the following we treat this case for distributions for which there
exist constants ¢ > 1 and [ > 0 such that

P({(z.y) X x Y :[y| <co'}) 21 —e? (17)

for all o > 1. In other words, the tails of the response variable Y decay sufficiently fast. It is shown
in [17] by examples that such an assumption is realistic. For instance, if P(.|z) ~ N(u(z),1), the
assumption (17) is satisfied for [ = 3, see [17, Example 3.7], and for the case where P(.|z) has the
density whose tails decay like e~I*l| the assumption (17) holds for I = 1, see [17, Example 3.8].

With this additional assumption, we present learning rates for the case of unbounded noise in
the following theorem.

10



Theorem 11. Let Y C R and P be a probability distribution on R xY such that X := suppPx C
Blg. Moreover, assume that the T-expectile f;_p satisfies f7_p(x) € [~1,1] for Px-almost all

r € X, and both f]_p € Ly(RY) N Loo (RY) and fi.p € BS(Px) for some a > 1. In addition,
assume that (17) holds for all o > 1. We define

A\, =cin !

1
Yn = Con 2ot

where ¢1 > 0 and co > 0 are user-specified constants. Moreover, for some fivred 6 > 1 and n > 3
we define 0 := 6+ Inn and M, = 2co'. Furthermore, we consider the SVM that clips decision
function fp,~, at M, after training. Then there exists a C > 0 independent of n, p and o such
that R o

Mllf s, + R p(FD N0 0) = RE, p < CO*FH (logn)* 4 in 205 (18)

holds with probability P™ not less than 1 — 2e~¢.

Note that the assumption (17) on the tail of the distribution does not influence learning rates
achieved in the Corollary 8. Furthermore, we can also achieve same rates adaptively using TV-SVM
approach considered in Theorem 10 provided that we have upper bound of the unknown parameter
[, which depends on the distribution P, see [17] where this dependency is explained with some
examples.

Let us now compare our results with the oracle inequalities and learning rates established by
[17] for least square SVMs. This comparison is justifiable because a) the least square loss is a
special case of L.-loss for 7 = 0.5, b) the target function J7. p s assumed to be in the Sobolev or
Besov space similar to [17], and ¢) the supremum and the variance bounds for L, with 7 = 0.5 are
the same as the ones used by [17]. Furthermore, recall that [17] used the entropy number bounds
(11) to control the capacity of the RKHS H.,, which contains a constant ¢, 4(X) depending on p in
an unknown manner. As a result, they obtained a leading constant C' in their oracle inequality, see
[17, Theorem 3.1] for which no upper bound can be determined explicitly. We cope this problem
by establishing an improved entropy number bound (12) which not only provides the upper bound
for ¢, 4(X) but also helps to determine the value of the constant C' in the oracle inequality (15)

2a
explicitly. As a consequence we can improve their learning rates of the form n~ 2e+d +e , where £ > 0,
by

(logn)®*tn~ 2 . (19)

In other words, the nuisance parameter n¢ from [17] is replaced by the logarithmic term (logn)®+1.

Moreover, our learning rates, up to this logarithmic term, are minimax optimal, see e.g. the discus-
sion in [17]. Finally note that unlike [17] we have not only established learning rates for the least
squares case 7 = 0.5 but actually for all 7 € (0,1).

4 Proofs
4.1 Proofs of Section 2

Proof of Lemma 2. We define ¢ : R — R by

(1—7)r?, it r<o0,

¢(T)::{Tr2, if r>0.

11



Clearly, 1 is convex and thus [37, Lemma A.6.5] shows that 1 is locally Lipschitz continuous.
Moreover, we have

IL(Y, )i = [(Y =)

v = sup [y =)y Smax{r,l—7} sup [2(y—1)| < Cr4M,
te[—M,M)] te[M,—M]

where C; := max{7,1 — 7}. A simple consideration shows that this estimate is also sharp. O

In order to prove Theorem 3 recall that the risk Ry, p(f) in (2) uses regular conditional proba-
bility P(y|x), which enable us to computed Ry, p(f) by treating the inner and the outer integrals
separately. Following [37, Definition 3.3, Definition 3.4], we therefore use inner L, -risks as a key
ingredient for establishing self-calibration inequalities.

Definition 12. Let L; : Y x R — [0,00) be the ALS loss function defined by (1) and Q be a
distribution on'Y = [—=M, M]. Then the inner L.-risks of Q are defined by

CLoalt)i= [ Lo(n.0dQw),  teR,

and the minimal inner Lq—-ﬂsk 18
C*[ := inf Cl t).
‘er %QR T’Q( )

In the latter definition, the inner risks Cr, o(-) for a suitable classes of distributions @ on Y
are considered as a template for C_ p(|z)(-). From this, we immediately can obtain the risk of
function f, i.e. Rp, p(f) = [xCr, p(|x)(f(2)dPx(x). Moreover, by [37, Lemma 3.4], the optimal
risk R} _p can be obtained by minimizing the inner L.-risks, i.e. R} p = [y CET,P(-|x)dPX($)‘
consequently, the excess L, -risk, when Rzﬁ p < 00, is obtained by

Rip(f) = Rip = [ Cooopin (F@) = i pinydPx(@). (20)

Besides some technical advantages, this approach makes the analysis rather independent of the
specific distribution P. In the following theorem, we use this approach and establish the lower and
the upper bound of excess inner L -risks.

Theorem 13. Let L, be the ALS loss function defined by (1) and Q be a distribution on R with
Cl. g < oc. Fora fivzed T € (0,1) and for allt € R, we have

cr(t = 1) < Cpq(t) = Cf, o < Cr(t —t")?, (21)
where ¢, = min{r,1 — 7} and C- is defined in Lemma 2.

Proof of Theorem 13. Let us fix 7 € (0,1). Then for a distribution @ on R satisfies C} _, < oo,
the T-expectile t*, according to [29], is the only solution of

T/M* (y —t7)dQ(y) = (1 = 7) /M*(t* —9)dQ(y) . (22)

Let us now compute the excess inner risks of L, with respect to Q. To this end, we fix a t > t*.
Then we have

| w=vrew = | w-r+e-n0w)

y<t

12



- / )+ 20t — 1) / 1= 1dQM) + (¢ — Q((~oe.1)
_ / —)2dQ(y) + / — 1)2dQ(y) + (t* — £)>Q((—o0, 1))
y< <y<t
w20 [ - v =0 [ (r-raQ(),

and
| w-vfew) = [ P - [ -t + @ ~ Q)
y=>t y=>t* t*<y<i
v =1 [ w-tdem -2 -0 [ m-1dQw.
By Definition 12 and using (22), we obtain

cLT,Q(t):u—T)/N —1)2dQ(y /y> (y — t)%dQ(y)

:T/ (y — 1—7/
y<t* >t*

+2<t*—t>( / (y—1)dQ(y) + (1) /< —t*)d@(y))

y<t

(= 12(1 = 1)Q((—00,8)) + (£ — )7 Q([t, 50))
v [ o) 20— [ (v-raQw)

=Cr, (") + (t* = )*(1 = 7)Q((~00,1)) + (t* — 1)*7Q([t, 00))
F=2) [ )2 D - 14,
tr<y<t
and this leads to the following excess inner L,-risk
Cr,q(t) = Cr, (")
= (" = 1)’ (1 = 1)Q((=00, ") + (" = )*(1 = T)Q([t", 1)) + (t* — £)*7Q([t, o0))

HU-2m) [ )2 (- 1)4Qw)
= (" = (1= DQU=00,t) +7QUIt0oN) =7 [ (y— )+ 20" )y — Q)

t*<y<t

FE =20 -DQUE )+ (1-7) [ (=12 20— Dy - )dQ()

t<y<t

= (= (1= DQU=o0,t) + 7RIt ooN) =7 [ (y—t)y+1 ~20dQ()

t*<y<t

HU=m) [ P2 0~ ) + 0 1)
= (= (1= DQU=00,t) + 7@t 0oN) +7 [ (y—)(2t — " — Q)

t*<y<t

H-m) [ - 0Quw). (23)

13



Let us define ¢; := min{7,1 — 7}, then (23) leads to the following lower bound of excess inner
L,-risk when t > t*:

Cr,(t) —Cr, q(t")
> er(t = 02 (QU(=00,#) + Q(It,00))) + s [

t*

= er (" — 17 (Q((—00. 1)) + Q([1.0)) ) + - /*<y<t(t*)2 2t + 12dQ(y)

= (8 = 1)2(Q((=00, 1)) + Q([t,20))) + s (¢ = )2Q([t", 1))
=c (t* —t)2. (24)

<y<t(y — )2t — t* —y) + (y — 1)*dQ(y)

Likewise, the excess inner L, -risk when ¢t < t* is

Cr.q(t) = Cr o) = (¢ = )*((1 = M)Q((~00,1) + )Q([t", %)) ) + 7 / L, W= 0240w

(25)
+(1=7) /KN* (" —y)(y + 1" = 20)dQ(y) ,

that also leads to the lower bound (24). Now, for the proof of upper bound of the excess inner
L,-risks, we define C; := max{7,1 — 7}. Then (23) leads to the following upper bound of excess
inner L,-risks when t > t*:

Cr, q(t) —Cr, (")
< C-(t" = 1*(Q((—00, 1)) + Q([t,)) ) + Cs /t e (=)@t —t* =)+ (y — 1)*)dQ(y)

= C (" —1)%. (26)

Analogously, for the case of ¢t < t*, (25) also leads to the upper bound (26) for excess inner L.-
risks. O

Proof of Theorem 3. For a fixed z € X, we write ¢ := f(x) and ¢* := f}_p(z). By Theorem 13,
for Q := P(-|x), we then immediately obtain

CoHCL, Py (F(@) = C_ piwy) < F(@) = f1, p(@)]* < 7' (Co, peiay (F(2)) = CF piay) -

Integrating with respect to Px leads to the assertion. O

Proof of Lemma 4. i) Since L, can be clipped at M and the conditional T-expectile satisfies
fi. p(z) € [-M, M] almost surely. Then

1L+ (y, f(2)) = ey, f7, p(2) oo <max{r,1 =7} sup (y—1)
y,t€[—M,M]

=C.4M?,

for all f: X — [-M,M] and all (z,y) € X x Y.
ii) Using the locally Lipschitz continuity of the loss L; and Theorem 3, we obtain

Ep(Lro f—Lyo fip)? <|L:I3 o Bl f — fipl?
< 16¢;'C2 M?* (R, p(f) — RE, p)-

14



4.2 Proofs of Section 3

Proof of Theorem 5. By [47, Lemma 4.5], the || - || -log covering numbers of unit ball B, (X) of
the Gaussian RKHS H.,(X) for all v € (0,1) and € € (0, ) satisfy

d+1
Hoo(B(X) ) < K (log é) " (27)

where K > 0 is a constant depending only on d. From this, we conclude that

1 d+1
sup ePHoo(By(X),e) < Ky™¢ sup &? (log 7) .
€

£€(0,3) £€(0,3)

d+1
Let h(e) := &P (log %) " In order to obtain the optimal value of h(e), we differentiate it with
respect to €

dh 1)+t 1\¢1
() = peP! (log 7) —eP(d+1) (log 7> =,
de € e/ €
and set d};(;) = 0 which gives
1 d+1
log— = ——
€ p
. 1
€= g
e p
By plugging €* into h(e), we obtain
d+1 d+1
ney= ()
ep
and consequently, || - ||so-log covering numbers (27) are
d 1)\ 4+1 \P
HoaBy(),2) < K (L) gt () ,
ep €

d+1
where a := K % - 7%, Now, by inverse implication of [37, Lemma 6.21], see also [37, Exercise

6.8], the bound on entropy number of the Gaussian RBF kernel is

IS

d+1 % _d 1
)74

ei(id : Hoy (X) = loo(X)) < (3a)7i ¥ = (3K)» ( =

foralli>1,~v € (0,1). O

Proof of Theorem 6. The assumption f7_p € L3(R%) and [17, Theorem 2.3] immediately yield
that fo := K * ff_p € Hy, i.e. fois contained in RKHS H,. Furthermore, [17, Theorem 2.3] leads
to the following upper bound of the regularization term

* —é S *
HfOHH7 = ||K * fLT,PHHw < (7\/7?) 2(2° - l)HfLT7PHL2(Rd)'
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In the next step, we bound the excess risk. By [17, Theorem 2.2|, the upper bound for Ls(Px)-
distance between fy and f7_p is

(28)

Ifo = 17, Pl Eapey = 1K % f1, p = f7. Pl T,pe) < Cs,

where Cj 9 :=:= Zﬁﬂ ([2;1)(261)% Hé-:l(j - %)%, see [17, p.27], is constant only depending on s and
g € Ly(R%) is the Lebesgue density. Now using Theorem 13 together with (28), we obtain

Ri,.p(fo) = Ri.p < Crllfo = 11, plia(py) = Crs?™
where C. s := ¢ C; Cs 9 HgHLQ(Rd). With these results, we finally obtain
fienﬁf,w/\llflﬁjrV +Re,.p(f) = Ri, p < Alfoli, + Re, p(fo) =R, p,
<O+ Cr

where C := (ﬁ)_ (2" — 1) HfLT,P”LQ(]Rd -

In order to prove the main oracle inequality given in Theorem 7, we need the following lemma.

Lemma 14. The function h : (0, %] — R defined by

p
h(p) = <\@22_1> ,
V2 -2

s convex. Moreover, we have SUPc (0,1] h(p) = 1.

Proof. By considering the linear transformation ¢ := 2p, it is suffices to show that the function

g :(0,1] — R defined by
t
V2-1 \?
g(t)::<1_1 ;
V2 -2

is convex. To solve the latter, we first compute the first and second derivative of g(¢) with respect

to t, that is:
t
) 1/ v2-1 \? V2 -1 21-7 log 2
g ) = 9 1_1 log _1 + 1 )
V2 -2t V2 — 213 t(v2—2'"7)

t 2
iy (V2= N (L (V21 2'"7 log 2
0~ (Goe1) (21g<ﬂ_21—1)+2t<f—21—%)>

t _1,\2
. ( V21 )2 (21 t) (log 2)? N 21_%(log 2)? (29)
v2-2tt) \am(va—oti)’  a(v2—2l-7)
Since t € (0, 1], it is not hard to see that all terms in ¢”(t) are strictly positive. Thus ¢”(¢) > 0 and
hence ¢(t) is convex. Furthermore, by convexity of g(t), it is easy to find that

sup g(t) = max{lim g(t), (1)} = 1.
te(0,1]

and
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Proof of Theorem 7. The assumption f7_p € Loo(RY) and [17, Theorem 2.3] yield that

|K* f7, p(x)| < (2° = DIIfL pllo.®ay s
holds for all x € X. This implies that, for all (z,y) € X x Y, we have

Lo(y, K = f7, p(x)) < (M +[|K % f}_ plloo)?
< AM +2°(| /7. pllr..re))® == Bo,

and hence we conclude that By > 4M?. Now, by plugging the result of Theorem 6 together with

a+1

a= (3K)% (deipl) * from Theorem 5 and V = 16¢c;! M? from Lemma 4, into [37, Theorem 7.23],

we obtain

d+ 1)d+1 4
pd+ixey
+ (345602 C2 ¢ + 60(M +2° £, pll 1. mey)) -

"}/_d

pd+1 \Pn,

Aol + Rep(Foag) = Ri,p < 9CIM +9Cr® + 3K (p) K ( .

<9ICIM 90, P+ CyK(p)

0
+ an , (30)

where C and C; ¢ are from Theorem 6, K (p) is a constant from [37, Theorem 7.23] that depends
on p, Cy := 3456 M* C2 ¢ ' +60(M +2°|| f}_ p

depending on d. Let us assume that p := log%. Since A < e~? and AP = e~ ! thus (30) becomes

d+1
\Lw(Rd))Q, and Cy := 3K(%) is a constant only

_ —d
%+ Re, p(fory) = Ri.p <9CIAY 4+ 9C, 7v** + Cye K(p) (log A~ H)4H! T4 cgg

)‘HfD,)\,'y T
(31)

We now consider the constant K (p) in more detail. To this end, by using the Lipschitz constant
|Ly|1m = 4M from Lemma 2 and the supremum bound B = 4M? from Lemma 4 , the value of
K(p) is, see [37, Theorem 7.23]:

K : = 3max{30- 27 C1 (p)| L. |2 1, V", 30 - (120)” C3 *(p)| L. [, B' 7. B}
= 3max{120 - 22 M C, ¢P=D/2 ¢y (p),120 - (480)? C1HP M2 C3 P (p), Cr A M2}, (32)

where the constants Cj(p) and Ca(p) are derived in the proof of [37, Theorem 7.16], that is

2
Cop) e 200 wd Gyl [ BB\
T VR- -2 TN VEena )
and by [37, Lemma 7.15], we have
o .- Y2-1 1-p
b= - :
f — 2 2p p

Here we are interested to bound K (p) for p € (0, %] For this, we first need to bound the constants
C1(p) and Ca(p). We start with C}, and obtain the following bound for p € (0, 1].

Cp:( V2 -1 )p(l_p)pgemax](\/i_l)p:e,

P \/5_2227;1 P pe(0,3 \@_22221
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where we used (%)p = (% - 1)p < e forall p € (0, 3], and Lemma 14. Now the bound for C;(p)

is the following:

24/1n 256 CII,’ < 4e+/1n 256 1

C < max max —-> < 46e
i(p) < pe(03] (V2 —1)(1—p)2¢/2 = /2—1 pe(o,i)2P/2 ~
Analogously, the bound for the constant Cy(p) is:
2
8vIn 16 C? 2
CyP(p) < max b < 256¢ In(16) max % <1035¢€2.
pe©,5 \ (V2 = 1)(1 — p)4» (V2-1)% peo 4%

By plugging Ci(p) and Ca(p) into (32), we thus obtain
K <3 max{8-10*Cr ;2 e M,9-107 C, 2 M?,C, AM?}
<3-108C, V22 M2,
and by plugging this result into (31), we obtain
MFpasl +Re, p(Toaq) = Ri, p < CM2 (A~ +42 4 (log A7)y~ =t 4 on7!) |
where C' is a constant independent of p, A,v,n and o. O

Proof of Corollary 8. For all n > 1, Theorem 7 yields

M foaallds, + Resp(Foas) = RE, p < eM2(og A7) (A 452 4+ 01y 4 n~lo)

with probability P™ not less than 1 — 3e~¢ and a constant ¢ > 0. Using the sequences \, = c;n~!

771 .
and v, = can 2eFd, we obtain

- __2a _
M foanlds, + Re.p(foas) = RE, p < CM*(logn)™ ((c165% + B + ¢ )n~ =57 4+ n~'o)

< C’MQQ(log n)dHn_Qzﬁ ,

where the positive constant C:=C (c1e5 dy c%”‘ +cy dy 1) is independent of p. ]

Before we can proof the Theorem 10, we need the following technical lemma.

Lemma 15. Let ¢ > 3, n > 3 be a constant, A,, C (0,1] be a finite set such that there exists a
i € A, with %n_l <\ < en~t. Moreover assume that 5, >0 and T',, C (0,1] is a finite o,-net of
(0,1]. Then for d >0 and a > 0 we have

2c
(}\ ’y)g}xf - <)\,de +72a + (log Afl)d+1,y*dn71) S C(logn)d+1 (n—m _’_672104) ’

where ¢ is a constant independent of n, 6y, Ap, 'y

Proof. Let us assume that A, = {A1,..., A} and T'), = {71,...,7s}, and A1 < \; for all ¢ =
2,...,rand yj_1 <~; for all j =2,...,s. We thus obtain

(log )\_l)d+1)

(10g )‘il)d+1>
vin

inf (Afy*d 24 L
yrn

(A1) EARXT < inf (A% +

T oyely,
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< inf (cy‘dn_l +~%% 4 (log ¢ + log n)dH’y_dn_l)
vel'y

< (c + (2log c)dH) (log n)dJrl 71€nf (fy_dn_l 4 nya)

)L inf (’y’dnfl + 0‘) , (33)

< ¢ (logn
’Ye n

d+1

where ¢ := ¢+ (2logc)¥*!. Tt is not hard to see that the function v — 7=~ + 42 is optimal at
1

v* := cin 2e+d where ¢; > 0 is a constant only depends on a and d. Furthermore, with vy = 0,
we see that v; — vj_1 < 26, for all j = 1,...,s. In addition, there exits an index j € {1,...,s}
such that vj_1 < 7, < ;. Consequently, we have v;; < ~; <5 + 20,. Using this result in (33), we

obtain

B (7t BB < gy (i)
< ¢ (logn)dt! ( =l 4 (4F + 26, )20‘)
< é(logn) d“( U pco ()% + caéza)
< Eq (logn)dtt ((cmfm)_dn_l + (ein™ 2a+d) 520‘)
< ¢ (logn)dtt (n_#id + 5,%“) ,
where ¢ := &,(c;7? + 1) is a constant. O

Proof of Theorem 10. The proof of this theorem is the literal repetition of the proof of [17,
Theorem 3.6 |, however, we present here for the sake of completeness. Let us define m := [§] +1 >
5, then for all (A,v) € A, x I';;, Theorem 7 yields

(log Afl)d+1 0 )
~vim m

1 )\71 d+1

(og A7)™" | 2),

<c ()\v_d + 42 4 7
v¥en, n

RLT,P(J?DI,A,V)— L.p <& (/\7 + 72 4

with probability P™ not less than 1 — 3|A, x I';]e™®. Now define n —m > § —1 > % and

on =0+ In(l+ |A, x I',]), then by using [37, Theorem 7.2] and Lemma 15, we obtain

;aLmP(fDLAD2ﬂD2) - zﬁp
3 R ~ - Qn
= { T 512M2c-1 =2
(Auwlél/\n,m( LrP(fD1an) = LT,P> + T n—m

(log A™1)d+1

<6c; inf ()ry’d + % 4 ~n

(>\7’Y)6A7L7Fn

< 6ex (c(log n)** (n” 25 + 62°)) + 2048071 2

+2) + 2048M2 1 2
n n

< oM?(logn)*™ (6¢1c + 6cc1 02 + 6y + 2048c;1gn)n_%

2a
< epM?p(logn)¥+in " 2a+a |

with probability P™ not less than 1 — 3(1 + |A,, x T'y,|)e™ 2. O
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Proof of Theorem 11. By (17), we obtain

Pr{Dexyy s max (i) < cd'}) 213 Plley] > eo)
i=1

>1—ne?

C et
This implies that

Pr({De X xy): emax {luil} < @+ mn)'}) >1-e?.

This leads us to conclude with probability P™ not less than 1 — e~2 that the SVM for ALS loss
with belatedly clipped decision function at M, is actually a clipped regularized empirical risk
minimization (CR-ERM) in the sense of [37, Definition 7.18]. Consequently, [37, Theorem 7.20]
holds for Y := {—M,, M,} modulo a set of probability P not less than 1 — e~¢. From Theorem
7, we then obtain

M foanllis, + Resp(Foas) = RE, p < CM2 (log A7) (37 442 401y~ 4 n~15)

with probability P™ not less than 1 — e~ — e~2. As in the proof of Corollary (8) and by using the
inequality (a + b)¢ < (2ab)¢, for a,b > 1 and ¢ > 0, we finally obtain

Mlfoaqllir, + Re,.p(Ffoag) — R, p < CaM2(log n) iy~ 7
=Cp (20(@ + log n)l>2 (log n)d“'ln_%
< Cgac? (20 logn)? (log n)d—i—ln—#‘id
< C’é@m(log n)2l+d+1n—22ﬁ 7

for all n > 3 with probability P™ not less than 1 — e™2 — ¢~¢. Choosing ¢ = ¢ leads to the
assertion. 0
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