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Abstract

Learning rates for regularized least-squares algorithms are in most cases expressed with
respect to the excess risk, or equivalently, the Lo-norm. For some applications, however,
guarantees with respect to stronger norms such as the L,,-norm, are desirable. We address
this problem by establishing learning rates for a continuous scale of norms between the Ls-
and the RKHS norm. As a byproduct we derive L,,-norm learning rates, and in the case
of Sobolev RKHSs we actually obtain Sobolev norm learning rates, which may also imply
L.-norm rates for some derivatives. In all cases, we do not need to assume the target function
to be contained in the used RKHS. Finally, we show that in many cases the derived rates are

minimax optimal.

1. Introduction

Given a dataset D = {(x;,v;)};_; independently sampled from an unknown distribution P on
X xY with Y C R, the goal of non-parametric least-squares regression is to estimate the
conditional mean function f5 : X — R given by fj(x) := E(Y|X = z). There are various different

algorithms for this regression problem, see e.g. [8], but in this paper we focus on regularized




least-squares algorithms, which are also known as least-squares support vector machines (LS-SVM),
see e.g. [11].
Recall that LS-SVMs construct a predictor fp x by solving the convex optimization problem

. 1 ¢

fo = angmin{ M3+ > (s — (@))%} (1)
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where H is a reproducing kernel Hilbert space (RKHS) over X and A\ > 0 is the so called

regularization parameter. Probably the most interesting theoretical challenge for this and many

other algorithms is to establish bounds, either in expectation or in probability, for

lfor— fell- (2)

Here, the most frequently considered norm is the Lo(v)-norm, where v := Px denotes the marginal
distribution of P on X, since a simple calculation shows that this norm equals the square root of
the least squares excess risk. From a practical point of view another highly interesting norm is
the supremum norm || - ||«. However, this norm is only rarely investigated, probably because of
the associated technical challenges. Yet another norm considered in (2) is the RKHS norm || - ||,
since on the one hand side it bounds the | - || as long as the kernel is bounded, and on the other
hand its consideration is less challenging than directly dealing with || - ||~. However, the price for
this convenience is that, instead of fj € Loo(v), one even needs to assume f} € H. In this paper,
we address these shortcomings by establishing learning rates for a continuous scale of norms || - ||,
between || - ||z, and || - ||, which in many interesting cases dominate both || - [ and Sobolev
type norms even if fj, ¢ H. As a consequence of the latter, we also obtain || - [|s-estimates that
include derivatives. Last but not least we show that our resulting || - ||,-learning rates are in many
cases minimax optimal.

Before we describe our results in a bit more detail, let us quickly introduce these intermediate
spaces. To this end let us assume in the following that the kernel k of H is bounded. Then
the integral operator T, : Lo(v) — Lo(v) associated to the kernel k is well-defined, positive
semi-definite, self-adjoint and nuclear. In particular, the powers 7}/ /? are defined for v >0 and
it has been shown in [12, Equation (36)] that its image [H]} := ran T,/ can be equipped with
some norm || H[H}Z7 see also page 5 where these spaces are called power spaces. In fact, [12,
Equation (36)] also introduces [H]Y, but in this case the equation above only holds if H C La(v)

is dense. Furthermore, [12, Theorem 4.6] shows that || - ||z is equivalent to the interpolation




norm || - [|{z,(),m), . of the real method for all v € (0,1). As a consequence [H], is equipped
with a Besov type norm if H is a Sobolev space and v is close to the uniform distribution on a
suitable domain, see Section 4 for details. Last but not least, we have [H]. = H if the embedding
H — Ly(v) is injective.

As in most papers investigating bounds on (2) we consider the following two types of assumptions:

(i) eigenvalue decay: p; < i~/ for some p € (0,1), where (y;);>1 denotes the eigenvalues of T},

(ii) source condition: f} € [H]g for some 0 < 5 < 2.

To the best of our knowledge all papers considering stronger norms than the Lo(v)-norm restrict
their investigations to the source condition case 8 > 1. However, this is a strong assumption since
it implies the usually unrealistic f5 € H. The novelty of our results is, that they even hold in the
case 8 < 1, where f}, € H is no longer necessary. Moreover, for 1 < 3 < 2 our [H]]-learning rates
generalize the best (and optimal) already known learning rates. Furthermore, our rates for f < 1

are still optimal in many cases if we additionally use the assumption

(iii) embedding property: [H]% < Loo(v) for some 0 < a < 1, i.e. the power space [H]Y is

v

continuously embedded into Lo (v),

taken from Steinwart et al. [13]. To be more precise, we obtain optimality in the case o < f3,
in which we have f} € [H ]5 — [H]¢ < Loo(v). In addition note that the embedding property
always holds for a = 1 if k is a bounded kernel. Let us now compare our results to some results
from the literature, see Table 1 for an overview. To this end, we assume Y = [-M, M| for some
M > 0 and that k is a bounded measurable kernel whose (separable) RKHS H is dense in La(v).
Note that these assumptions form the largest common ground under which all papers considered
in Table 1 achieve learning rates. In order to complete this comparison, let us briefly emphasize
the specialty of each paper. Steinwart et al. [13] consider clipped LS-SVMs with a generalized
regularization term M| f||%, for ¢ > 1. Furthermore, instead of f}, € [H]’?; and [H]S < Loo(v)
they used slightly weaker assumptions. This paper provides the fastest Lo(r)-learning rates in
the case 8 € (0,1]. Smale and Zhou [9] additionally provide faster rates in the noise-less case.
Caponnetto and De Vito [3] prove their rates also for the case of multidimensional output and
also consider rates for the best approximation if H is not dense in Lo(v) and f} € Lg(y)\FLQ(V).
Finally, Blanchard and Miicke [2] prove their results for an entire family of spectral regularization
methods, which contains LS-SVMs as a special case.

The rest of this paper is organized as follows: In Section 2 we introduce the concepts we need

to formulate our main results in Section 3. The subsequent section discusses the consequences for




assumptions learning rates (exponent)
publication L
frelHf  HE o L) pisi b | L) [Le@)Hhe  H  Lea(v)
e 8 B-—) (B-1) (B-a)
our results 0<p<2 0<a<l1 0<p<La max (Aot ip max{ﬁiaﬁrp ﬂ+p+ pr+
Steinwart et al. 3
< < = e
13] 0<pB<1 0<a<l p=a 75 X X X
Smale and _ B (B-1) (B-1)
Zhou [9] 0<f=2 a=1 p=1 | mxpim X il e
Caponnetto 8
<p< = < P
and De Vito [3] 1sfs2 a=1 O<p<l B+p X x x
Blanchard and _ 8 B=r)+ B-1+ (B4
Miicke [2] 1<p<2 a=1 0<p=<1 B+p Btp Btp  Btp

Table 1: Learning rates obtained by different authors. For simplicity, we ignore possible log(n)-
terms and just compare the exponent r > 0 of the polynomial part n~". The symbol , x“
means that the corresponding situation is not covered in this paper.

the special case of Besov RKHSs. For these spaces we will also see that the embedding property
is often automatically satisfied. Last but not least we derive learning rates with respect to the

C7(X)-norms. The proofs of the main results can be found in Section 5.

2. Preliminaries

Setting Let (X, B) be a measurable space (the input space), Y = R (the output space) and
P an unknown distribution on X x Y with |Ply := [y, %* dP(z,y) < oo. Moreover, we
label the marginal distribution of P on X as v := Px and assume that (X, B) is v-complete.
Furthermore, we fix a regular conditional probability (P(|x))x cx of P, which exists according to
Dudley [6, Theorem 10.2.1 and Theorem 10.2.2]. Then the conditional mean function is given by
fp=lzm [y P(dy|x)]y, where [f], denotes the v-equivalence class of a measurable function
f: X—=>R

RKHS vs. Ly We fix a separable RKHS H on X with respect to a (B ® B-)measurable and
bounded kernel k. Let us recall some basic facts about the interplay between H and Lo(v) from
Steinwart and Scovel [12]. According to [12, Lemma 2.2, Lemma 2.3] and [11, Theorem 4.27] the
(not necessarily injective) embedding I, : H — La(v), f — [f], is well-defined, Hilbert-Schmidt




and the Hilbert-Schmidt norm fulfills

1/2
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Moreover, the adjoint operator S, := I} : La(v) — H is an integral operator with respect to k, i.e.
it holds

<&ﬁw:/kmwﬂwmmv

X
for all z € X and all f € La(v). Next we define the self-adjoint and positive semi-definite integral
operators
T, :=1,5,: La(v) — La(v) and C,:=5,1,.: H— H.

These operators are trace class and the trace norm is given by ||T,/z,(1,0)) = ICvllz, )y =
||L,H%2(H7L2(V)) = ||SV\|%2(L2(V),H). Please note that the operators I, S,, T, and C,, also depend
on the RKHS H although this is not reflected in the notation. The spectral theorem for compact
operators yields an at most countable index set Z = {1,2,..., N} with N € Ny resp. Z =N, a
positive, decreasing sequence (i;)icr € ¢1(Z) (i.e. it is summable) and a family (e;)ier € H, such
that (uzl-/2 ei)iez is an ONS in H and ([e;]y)iez is an ONS in Lo(v) with

Co=> pil-uemp*e,  vesp. T, =3 il led) ywleils, (3)

1€L €L

see Steinwart and Scovel [12, Lemma 2.12] for details.

Power Spaces Let us recall some intermediate spaces introduced in Steinwart and Scovel [12,
remark after Proposition 4.2]. We call them power spaces. For av > 0 the a-power space is given
by
(]S = { Y @iy + (aidier € (T)} € Lo(v)
€L

and equipped with the a-power space norm

| e

i€

(Ho = H(ai)ielueg(z)

for (a;)iez € ¢2(Z). In the special case a = 1 we introduce the abbreviation [H], := [H].. Let us

summarize some basic facts about these spaces: Since for every f € [H]$ there exist a unique




sequence (a;)iez € £2(T) with f =37 ai,u?/ ?[e;], such that this series converges unconditionally
in [H]S, the a-power norm is well-defined. Furthermore, [H|% is a separable Hilbert space with
ONB (,u?/2 [e5],)iez and for 0 < 8 < « the embedding [H]% < [H]5 exists and is compact. Recall,
that [H]. =ranI, and [H]" = mL2(V) with || {70 = || - |, () holds. In the case 0 < v <1
the a-power spaces are characterized by

[H]} = [L2(v), [H]y]a2- (4)

)

This mean that these sets coincide and the corresponding norms are equivalent. Furthermore, we
can choose constants in the norm equivalence that depend only on a. For details see Steinwart
and Scovel [12, Theorem 4.6], whereby the dependency of the constants is not a part of this
statement, but it is contained in the proof of that theorem. Finally remark, that the interpolation
space [La(v), [H]y]a,2 (of the real method) is for some measures v and RKHSs H well-known from

the literature.

3. Assumptions and Results

In this section we present the assumptions and results of this work and discuss their consequences.

Assumptions Here we define the set of probability measures P on X x Y which are considered

in our main results. Let us start with the set of considered marginal distributions on X.

3.1 Assumption (Probability measures on X)
Let H be a separable RKHS on X with respect to a bounded and measurable kernel k. Furthermore,
let A,C > 0 be some constants and 0 < p < a < 1 be some parameters. By Ny op = NH,4,0,0.p

we denote the set of all probability measures v on X with the following properties:
(i) The measurable space (X, B) is v-complete.
(ii) The embedding property [H|$ < Loo(v) holds with || Id : [H]S — Lo (v)| < A.

(iii) The eigenvalues fulfill a polynomial upper bound of order %, ie. p; <Ci 7 foralliel.

Furthermore, we introduce for a constant ¢ > 0 and a parameter 0 < ¢ < p the subset My o pq :=

NH,A,Cc,apq © NH,A4,C,a,p Of probability measures v on X which additionally have the following
property:

(iv) The eigenvalues fulfill a polynomial lower bound of order %, ie ci™a < p;forallieZ.




The condition p < « is not restrictive because the existence of the embedding [H]% < Loo(v)
already implies a polynomial upper bound of order é for the eigenvalues (see the Paragraph
Loo-Embedding in Section 5). Thus we are just interested in tightenings of the eigenvalue decay.
Although we omit the constants A, C, c in the notation and just write Mg o p resp. Ny ap,q, this

sets are provided with some fixed constants A, C,c > 0.

3.2 Assumption (Probability measures on X X Y)

Let H be a separable RKHS on X with respect to a bounded and measurable kernel k£ and 91 a set
of probability measures on X. Furthermore, let B, By, L, > 0 be some constants and 0 < g < 2
a parameter. Then we denote by By 3(N) := Py B B 1,0,3(I) the set of all probability measures
P on X x Y with the following properties:

(i) v:= Px € M,

(ii) |P)3 := fXnyQ dP(z,y) < oo,

(i) f € Loo(v) O [H]y with | f3l17 () < Boo and | f5]12, 5 < B,

(iv) [y ly — fp(@)™ P(dy|z) < $m!o® L™ 2 for v-almost all z € X and all m > 2.

Condition (iv) holds for Gaussian noise with bounded variance, i.e. P(-|z) = N (fp (), 02), where
x — o, € (0,00) is a measurable and v-a.s. bounded function. Another sufficient condition is
that P is concentrated on X x [—M, M] for some constant M > 0, i.e. P(X x [-M,M])=1. In

most cases we use M = Ny op or N = Ny o pg, 50 We introduce the abbreviations By g4 1=
Br,sNiap) and Brrpapq = Bus(Niapg)-

Upper Rates The next theorem is the main result and contains our [H]}-learning rates.

3.3 Theorem ([H]]-Learning Rates)
Let H be a separable RKHS on X with respect to a bounded and measurable kernel k, 0 <p < a <1,

0<~v<1,0<y<pB<2and A= (M)n>1 a sequence of reqularization parameters. Then the
LS-SVM D — fp », with respect to H fulfills

lim limsup  sup P"(D c Do)y — f;H[QH]Z > Tan> =0

T n—oo PePBu g ap

if one of the following two conditions hold:

(i) B<a, \y < (%)&%P and a, = (M)ﬁﬂ,

n




(i) B> a, Ay =< (%)ﬂ%p and a,, = (%)ﬁ%

In the following we call such sequences (ay)n>1 upper rates or learning rates. Obviously, every
sequence (ay)n>1 which decreases at most with the speed of (an)n>1 (i-e. a, = O(ay)) is also an
upper rate for and on every smaller set of probability measures P C B g, at least the same
learning rate is achieved. Recall, since || - ||;zy7 = || - || £, () holds for v = 0, our upper rates contain
the special case of the La(v)-norm, witch coincides with the LS-excess-risk (see the Paragraph
LS-SVM in Section 5). Because of the assumed embedding [H]$ < Lo (v), the following corollary

is a direct consequence of the [H])-learning rates in the case v = a.

3.4 Corollary (L (v)-Learning Rates)

Let H be a separable RKHS on X with respect to a bounded and measurable kernel k, 0 < p < a <1,
0 <a<pf <2and = (A\y)n>1 a sequence of reqularization parameters. Then the LS-SVM
D — fp.a, with respect to H fulfills

lim limsup  sup P”(D o)y — fI*DHiOO(V) > Tan) =0

T—=0 n—-co Pe%H,ﬁ,a,p
. 1\ 7= 1y 2=2
if Ap < (ﬁ) Bte and a, = (5) B+r holds.
Remark, that in the case 0 < a < f < 1 we get Lo (v)-learning rates even though the conditional
mean function f7 do not have to lie in the RKHS.

Lower Rates In order to investigate the optimality of our learning rates the next theorem yields

lower rates for the minimax probabilities.

3.5 Theorem ([H|-Minimax Lower Rates)
Let H be a separable RKHS on X with respect to a bounded and measurable kernel k, 0 < q <
p<a<l,0<y<1,0<y<B<L2, such that N apg s not empty. Then it holds

lim liminf inf sup P" (D : H[fD],, — f}f—,H[QH];, > Tbn> =1

70+ m=e0 D fp PePu g,a,p.q

max{a.8}—y
e . . . .
for b, = (%) maxteolita=11=3) - The infimum is taken over all measurable learning methods with

respect to Bu g.apg and v, i.e. maps (X x Y)" = {f : X =Y measurable}, D — fp such that
(X xY)" = [0,00], D= |[fply — Bl is for all P € P papq measurable with respect to the

universal completion of the product-o-algebra.




In the following we call such sequences (b, )n>1 (minimaz) lower rates. Obviously, every sequence
(bp)n>1 which decreases at least with the same speed as (by)p>1 (i.e. b, = O(by)) is also a
lower rate for this set of probability measures and on every larger set of probability measures
B D B gapg at least the same lower rate holds. The meaning of a [H|}-lower rate (by)n>1
is, that no measurable learning method can fulfill a [H])-learning rate (a,),>1 in the sense of
Theorem 3.3 that decreases faster than (b,),>1 (i-e. an = 0(by)). In the case ¢ =p and a < 3
the [H]}-learning rates of LS-SVMs stated in Theorem 3.3 coincide with the [H]}-minimax lower

rates from Theorem 3.5 and therefore are optimal in the [H])-minimax sense.

Discussion Recall that for v = 0, the same [H]}J-upper and lower rates and thereby optimal
rates are established in the publication [3], but only for the case @« = 1 < , and [2] extend
these optimal rates to all v € [0,1]. In other words, we further generalize these results to the
case a < 8 < 1, in which the conditional mean function f; does not have to be in the RKHS.
Unfortunately, for < a our lower and upper rates do no longer match, nonetheless they improve
the results from [9]. To be more precise, for v = 0 and 5 < «, [9] only obtained the upper rates
of Theorem 3.3 for automatically satisfied case p = a = 1, and therefore our rates are faster
whenever p < @ <1 or p < a < 1 holds. Similarly, we improve the rates of [9] for v = 1 and
8 > 1= a = p whenever we actually have p < 1. Finally, the only case, in which our rates are
worse than the best known rates is for 8 < o = p and v = 0. In this case, the best known upper
rates a; 1= (%)%, which were proven in [13], do not match our lower rates either. Namely, for

p = q we have

1\s5 1\ 75 log(n)\ 555
our lower rate = <—) P < (—) e < ( g >> P = our upper rate.
n n n

B+p
B < a=p,vy=0? Can the techniques from [13] be adapted to improve the [H|}-upper rates for

Consequently, the following questions remain open: Is the exponent optimal in the case

~ > 0 in the case f < a = p? And last but not least, are our L (v)-rates optimal?

4. Example: Besov RKHSs

In this section we consider the specific case of Besov RKHSs. To this end we make the following
assumptions: Let X C R? be a non-empty open, connected and bounded set with a Cso-boundary
and equipped with the Lebesgue o-algebra. Furthermore, we denote by u the d-dimensional

Lebesgue measure on X and by La(X) := La(u) the corresponding La-space.




Introduction We briefly introduce the Sobolev and Besov spaces. To this end we follow the lines
of Adams and Fournier [1, Chapter 7 Besov Spaces|. Because we are only interested in Hilbert
space, we restrict ourself to this special cases. For m € N the Sobolev space W,,,(X) is given by

the linear space
Win(X) = {f € Lo(X) : 9%f € Ly(X) for all & € N¢ with |a| < m}

equipped with the norm Hf”%/vm(x) =2 lal<m H@afH%Q(X). For r > 0 we define the Besov space
B,(X) by means of the real interpolation method, namely B, (X) := [L2(X), Wi (X)] 5, where
m :=min{k € N: k > r}. A consequence of the reiteration property of the real interpolation
method is

B (X) = [La(X), Bi(X)]r (5)

T

for all t > r > 0. It is well-known that the Besov spaces B,(X) are separable Hilbert spaces with
B (X) = Cj(X) (6)

for r > j+ %. Here C;(X) denotes the space of j-times continuous differentiable bounded functions
with bounded derivatives. Therefore we can define the Besov RKHS

Hy(X):={f € Co(X): [flu€ Br(X)}

for r > ¢ and equip this space with the norm I £l &, x) == If]ullB,(x)- The Besov RKHS is a
separable RKHS with respect a kernel k, since this space is isometric isomorph to B,(X) and this
space is embedded into Cy(X). Moreover, k, is bounded and measurable, for details see Steinwart
and Christmann [11, Lemma 4.28 and Lemma 4.25]. To describe the power spaces of H,(X) with

respect to a probability measure v on X we restrict ourself to the following set of measures.

4.1 Assumption (Probability measures on X for Besov RKHSs)
Let G > 0 be a constant with G™! < y(X) < G. Then we denote by Mx , := Ny, the set of
all probability measures v on X with v < u, u < v such that G~ < S—Z < G holds v-a.s.

Using Equation (4), the interpolation property and Equation (5) yield

[H (X" 2 [La(v), [Hr (X)]o]x 2 2 [La(X), [Hr(X)]u] 2 2 Bu(X) (7)

10



for v € My, and r > u > 0, where the constants of the overall norm equivalence can be chosen

just depending on G, u, r and the underlying geometry of X.

4.2 Lemma (Comparison - Probability measures on X)
For all constants G™1 < u(X) < G for the set Nx,, and all parameters r > %l, 1>a> % and
p=q= 2% there are constants A,C,c > 0 for the set My, (x).a,p,q Such that Nx , C Ny, (x).a.p.q

holds.

Proof. Recall that, H.(X) is a separable RKHS with respect to a measurable and bounded kernel
k.. Let v € Mx . Dueto 1 > a > % it holds r > ar > ¢, and therefore Equation (7) and (6)
yield [Hp(X)]$ = Bar(X) — Co(X) < Loo(v). Now the eigenvalues of T, (with respect to k;)
equal the squares of the approximation numbers of I, : H,(X) — Lao(v) (see Carl and Stephani
[4, Equation (4.4.12)] and Steinwart [10, Section 2 and 3]). Because of Edmunds and Triebel [7,
p. 119] (see also the discussion around Steinwart [10, Equation (37)]) these eigenvalues (p;)iez
behave asymptoticly like p; =< i~ . In both cases the constants can be chosen just dependent
on G, a, r and the underlying geometry of X. Thus we can choose A,C,c > 0 such that the

assertion holds. O

4.3 Assumption (Probability measures on X X Y for Besov RKHSs)
Let 91 be a set of probability measures on X. Furthermore, let E, By, L, 0 > 0 be some constants
and s > 0 a parameter. Then we denote by Px (M) := Px £ B L0s(I) the set of all probability
measures P on X x Y with the following properties:
(i) v:=Px €N,

(11) ‘P‘Q < 00,

(ili) fp € Loo(pt) N Bo(X) with || 3]l < Boo and || f5]l5,0x) < B

(iv) [y |y — fp(@)™ P(dy|z) < $mlo? L™2 for v-almost all z € X and all m > 2.
In most cases we use 91 = INx ,, so we introduce the abbreviation Bx s := Px s(MNx,u)-
4.4 Lemma (Comparison - Probability measures on X X Y')
For all parameters r > %, r>s>0,8 =2 and all constants E, Boo, L,o > 0 for the set Px s

there is a constant B > 0 such that Py, (x)3(Mxu) € Px,s holds with respect to the constants

B, By, L,o. Furthermore, there is another constant B > 0 such that the inverse inclusion
Bx,s € Ba,x),sMx,pu) holds.

Proof. We just have to compare Assumption (iii). But this is a direct consequence of Equation (7)
and Lo (i) = Loo(v) for v € Nx . O

11



Upper Rates In order to obtain learning rates in the Besov setting we exploit Theorem 3.3 with
the help of Lemma 4.2 and Lemma 4.4.

4.5 Theorem (B.(X)-Learning Rates)
Let r > g, r>s>tand A = (A\p)n>1 a sequence of regularization parameters. Then the LS-SVM
D — fp 2, with respect to H.(X) fulfills

lim limsup sup P”(D: I[fDAnle — f;SHQBt(X) > Tan) =0

T—0 n—co PG‘BX,S

if one of the following two conditions hold:

(i) s <2, N\, = (log(n))% and a, = (M)Q;df; for some 0 < e <2r—d
— 927 n — n n n Y

25—2t

(ii) s> 4, \, = (%)2% and a, = (L) 554 |

Proof. We set p :== ¢q := %, B = 7 and v := % For s < % we choose a := % and for
5 > % we choose 2 > a > %. According to Lemma 4.4 and Lemma 4.2 there are constants

for the set mHT(X),ﬁ(mX,u) resp. for the set My, (x)qap,q such that Px o C er(X),,B(mX,u) C
B, (x),8 M, X)7a,p) holds. Hence the assertion is a consequence of Theorem 3.3 combined with
Equation (7). O

Because of Equation (6), the following corollary is a consequence of Theorem 4.5 with j+% <t<s.

4.6 Corollary (C;(X)-Learning Rates)
Let 7 > 0 be a non-negative integer, r > s > j + % and X = (Ap)n>1 @ sequence of reqularization
parameters. Then the LS-SVM D — fp , with respect to H.(X) fulfills

lim limsup sup P"(D: | fox, — fI*DHQCj()Q > Tan> =0

T—0 pn—sco PG‘BX,s

2r 2s—2j—d o
if Ap < (%) 2+d gnd a, = (%) 2+ for some 0 < € < 28282jdd. Here fp also denotes the

unique continuous representative of the v-equivalence class fp.

Lower Rates In order to obtain minimax lower rates in the Besov setting we adapt the proof of
Theorem 3.5 with the help of Lemma 4.4.
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4.7 Theorem (B:(X)-Minimax Lower Rates)
Let r > %, r>s>t. Then it holds

lim liminf inf sup P"(D: Ifply — f;||123t(x) > Tbn) =1

7—0t n—o0 Dw—fp PePBx s

if one of the following two conditions hold:

: d _ (1) -
(i) s <5 and b, = (n) for some sufficient small e > 0,
25—2t
(ii) s > % and by, = (%) 254

The infimum in the above expression is taken over all measurable learning methods with respect
to Px,s and t, i.e. maps (X x Y)" = {f : X =Y measurable}, D — fp such that (X xY)" —
[0,00], D+~ |[[fp]y — fj*DHBt(X) is for all P € Bx s measurable with respect to the universal

completion of the product-c-algebra.

Proof. Because of a measurability issue we can not apply Theorem 3.5 and have to repeat

s
T
s

the proof in the Besov setting. We set p 1= ¢q := %, B =2 and v := % For s < % we

choose 1 > o > % sufficient small and for s > ¢ we choose =

5 > a > 2% arbitrary. As the
constant G in the density bound of Assumption 4.1 is restricted to G~! < p(X) < G, it holds
V= ﬁ,u € M, and according to Lemma 4.4 there are constants for the set Pr, (x),3(Mx )
such that B, (x),s{v}) € B, (x),8Mx,u) S Px,s holds. Together with Equation (7) the proof

remains a literally repetition of the proof of Theorem 3.5, so we omit the details. O

5. Proofs

First we summarize some well-known facts we need for the proof of our main results. To this end

we use the notation from Section 2.

L-Embedding Recall, that according to Steinwart and Scovel [12, Corollary 3.2] there exists
a v-zero set N C X, such that

k(z,2') =) piei(x)ei(2’) (8)

1€T

holds for all 2,2’ € X\N (because H is separable). Furthermore, the boundedness of k implies
>ier it (z) < A? for v-almost all z € X and a constant A > 0. Motivated by this statement we

13



say for a > 0 that the a-power of k is v-a.s. bounded if there exists a constant A > 0 with

> ufei(z) < A? 9)

€T

for v-almost all z € X. Furthermore, by abuse of notation we write ||k§‘|] Loo(v) for the smallest
constant with this property. Is there no such constant we set ||k ||1. () := c0. Thus we can just
write ||k}]| 1. ) < 00 as abbreviation of the phrase the a-power of k is v-a.s. bounded. Because of
the above mtroductlon it always holds ||k} | Lo (v) < 00 for bounded kernels with separable RKHS.

We recall the following theorem from Stelnwart and Scovel [12, Theorem 5.3].
5.1 Theorem (L.-Embeddings)
Let 0 < a <1 be a parameter. Then the following statements are equivalent:
(i) It holds ||k} | 1) < 00
(i) The embedding Id : [H]|$ — Loo(v) is well-defined and continuous.

In this case it holds

11d = [H]} = Loo (W)l 2(im1g Loc v)) = K2 | Lo v)- (10)
Note that the claimed equality is not a part of Steinwart and Scovel [12, Theorem 5.3] but it is
contained in the proof of that theorem. A further consequence of the v-a.s. boundedness of the
a-power is ) ;7 pst < HkSH%m(V) < oo (see [12, Proposition 4. 4]) and the monotony of (u;)iez
implies a polynomial decay of order L. More precise, p; < HkaH L)) i~"/* holds for all i € T.

Effective Dimension The effective dimension N,, : (0,00) — [0, 00) is defined by

Ny (A) := tr((C +A)~ ”l
zEI

for A > 0, where tr denotes the trace operator. This quantity is widely used in the analysis of
LS-SVMs and depends on the decay of the eigenvalues (1;);ez. More precise, if there is a constant
C > 0 and a parameter 0 < p < 1, such that g; < Ci~"/7 holds for all i € Z we get

No(X) < CpA™P (11)

for all A > 0, where C), := % if p < 1resp. Cp = Hk||%2(y) if p = 1. In the case p < 1 see
Caponnetto and De Vito [3, Proposition 3] for details and for p = 1 this is a consequence of
No(N) = tx((Cy + N)71C) < 1+ X) " Hleem IC 2,y together with [[(C +X) " H gy < A7
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LS-SVM The LS-risk of a measurable function f: X — R is defined by

Ro(f) = /X = 1@)? Pla.y)

and the Bayes-LS-risk R} := infs.x g Rp(f) is achieved by the conditional mean function fp.
More precise, the LS-excess-risk is given by Rp(f) — Rp = || f — f;H%2 () and minimizing the
LS-risk is equivalent to approximating the conditional mean function in the Ly(v)-norm. For

A > 0 the minimization problem
inf {\IFI% + Re(f) }
inf {AfI% + ()
is called LS-SVM-problem with respect to H, P and the regularization parameter A > 0. Since
fra=(C,+ N lgpe H

with gp := S, f5 is the unique minimizer of the LS-SVM-problem, fp  is called LS-SVM-solution
with respect to H, P and \. Using the spectral decomposition from Equation (3) we get

1/2
12 1/2 " A
= a; i) "e; € H, and — Ly = a; el 12
fra z'EeI: o it fp=[fpal ;ez A [ei] (12)

for a; := (fp, [€ilv) 1) (i € Z). Obviously, for the second identity we have to assume f}, € [H]).

Recall, that the predictor fp x for the dataset D defined in Equation (1) is the LS-SVM-solution
with respect to the corresponding empirical measure, which is given by D := %Z?:l O(ziys)- As
a consequence of Steinwart and Christmann [11, Theorem 6.23] the map LS-SVM (X x V)" —
H, D — fp is measurable with respect to the universal completion of product-o-algebra on

(X xY)". Hence we can measure the probability

P*(D e (X xY)": |[foaly = fillimp <2)

for A >0,e>0and 0 <y <1 if we extend P" to the universal completion.
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Upper Rates

Using the standard technique, we split the estimation of ||[fp ], — f ]*3H[2H]'Y into two parts:

Lo a)e = FBllEay < 200 = Fealully + 20fealy = Bl

the estimation error ||[fpa — fp’,\]l,H[gH]»y and the approzimation error ||[fpaly — fpl? - First

we consider the approximation error, which depends on the source condition.

5.2 Lemma (Approximation Error)
Let 0 < B8 <2, P a probability measure on X XY and H a separable RKHS on X with respect to
a bounded and measurable kernel k. If f}, € [H]3, then

IlfPal = £5IIF ]v<||fp|! ]a/\ﬁ !

holds for all A > 0 and all 0 <y < 5.

Proof. The spectral representation from Equation (12) holds because of f} € [H ]’5 C [H]% =ran,.
Since (,uz/ *[ei]v)iez is an ONB of [H]} Parseval yields

Hf;—[fP,A]yH[QHD: Z(M +2)\>2a — 22<M +)\) B2,

If we estimate the fraction on the right hand side with Lemma A.1 and use the fact, that
(,uf/2 [es]y )iez is an ONB of [H]5, we get

HfP [fPaly H[H <\ VZI,UZ a; P =2 ’y”fPH[H]B [
1€

The following oracle inequality controls the estimation error.

5.3 Theorem (Estimation Error - Oracle Inequality)
Let 0 < a,v <1 be some parameters, H a separable RKHS on X with respect to a bounded and
measurable kernel k and P a probability measure on X x Y with |Pla < co. Furthermore, we

assume

(i) the source condition: fj € Loo(v) N [H],

(i) the embedding property: ||kZ || ) < oo and
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(iii) the moment condition: there are some constants o, L > 0 with

1
/ v o)™ Pldylr) < gmlo® I
Y

for v-almost oll x € X and all m > 2.

Then for > 1, A>0 andn > Ay,

1.2
10 = Fealolyy <1285 (5NPX( )0§+Ilkiﬁx|%w(px),&>

holds with P™-probability > 1 — 4e™ 7, where we set

(i) Ary = max {25672 k2]2_, A-ONL(N), 167kSI2_ A2, T},

(ii) ox:=max{o, [|fp = [fpAlvllLew)} and Ly = maX{Lv ||fp = [fPalvllLe)}
We split the proof of this theorem into several lemmas.

5.4 Lemma (Power Norm on ran I,))

1
Under the assumptions of Theorem 5.3 it holds ||[f]u|l{zyy < HC,, QWfHH forall f € H.
Proof. We fix some f € H. Because (u;/Qei)iez is an ONB of (ker I,))*, there is a g € ker I, with

[ =2 er ai,ui/zei + g, where a; = (f, uz/QeﬁH for all 7 € 7. Parseval yields

1—v 2
= 1—
Wy, = | aos ™ el = D7
1€T i€

because (,uz/ ®[es]y)iez is an ONB of [H]}. If v < 1 holds, then the spectral decomposition from

1—y 2
EM ai,

where we used in the second equality again Parseval with respect to the ONS (#;/ Qei)iez of H.
1—

Equation (3) yields
100 713 = [ m

i€l

=7
For v =1 we get C,? = Idy and

1=y 1 2 1 2
167 71 = | S e+ g =D amie| + gl =D a?
1€T i€l

1€T

where we used ), 1 ai,ull-/ ’e; L g and again Parseval. O
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Next we bring some Lo (v) and La(v) bounds forward, because we use them later several times.

5.5 Lemma (L2 and L., Bound)

Under the assumptions of Theorem 5.3 the following statements are true for all A > 0:
(i) |(C, +N)~k(z, IWE < HkaHLOO(V))\_a for v-almost all x € X.
(ii) [y I(Co + ) ~Pk(z, )3 dv(z) = No(N).
Proof. Let A > 0. Because we assume a separable RKHS H with respect to a measurable kernel

the map X — H, x+ k(z,-) is measurable and thus also X — R, =~ [[(C,, + \)™?k(z,-)||% is
measurable. Let us fix an arbitrary ONB (e;);jcs of ker I,,. Thus (,ui/Qei)ieZ U (ej)jes is an ONB

of H and it holds
1 1
T,) = Zui/zei(ﬂf)ﬂ/QQ + Z ej(x)e;
i€l JET
for all x € X. Together with the spectral decomposition from Equation (3) and Parseval we get

uz+)\l )\Z

jeT

I(Cy +A) k()5 =
1€l

for all x € X. Because H is separable the index set J is at most countable. Thus e; € ker I, for
all j € J imply that the second summand on the right hand side vanishes for v-almost all z € X.

Hence

C,,—l—)\*l/zkx,- 2 = Hi e?w
I el = 3 et

holds for v-almost all € X. In order to prove Statement (i) we use Lemma A.1.
| et

i o e o2 % Lo .
Mi+)\ei($)— o +)\Mz i(@) < (ZEZIM@Z(QJ)) ilelp )\_H HL (l,))\

€L

for v-almost all € X. To prove Statement (ii) we use the fact that ([e;])iez is an ONS in Lo (v)

and the monotone convergence theorem

/ I(Cy +X) k()| dv(z) = / =tr((C,+N)7'C). O
X

€T 'uq +)\

In the next two lemmas we prefer the more detailed notation Px instead of v for the marginal

distribution of P on X to avoid misunderstandings.
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5.6 Lemma (Oracle Inequality (Part 1))
Let the assumption of Theorem 5.8 hold. For 7> 1, A > 0 and n > Ay ; the estimate

4 1/ 2
I[lfo — fP,/\]H[2HHDX < FH(CPX +A)” / ((gD —Cpyfpr) — (gp — CPXfP,/\))HH

holds with P™-probability > 1 — 2e™7.

The following proof is a modification of Caponnetto and De Vito [3, proof of Theorem 4 (Step 2.1
and Step 3.1)]. We extend the applicability of this proof from the parameter rage vy =0 and o = 1
to0 <,y < 1.

Proof. Let us fixa7>1A>0andn > Ay ;. For D € (X xY)" Lemma 5.4 yields

153 = feAlllpmy, <HCP “(foor — fe)lli

Using the representation fp = (Cpy + A)“tgp we get

1—v 1—

CpZ (for — fra) = Cp2 (Coy + )" gp — (Coy + N fen),

Together with the identitie Idy = (Cpy 4+ A)~72(Cpy + A)/? it follows

177-\/

ILfox = feallimy, < 1|Cp2 (Cpy + A)_l/QHﬁ(H) (13a)
N Crx + X (Cox +2)THCry + 2| (13b)
N(Cpy +N)2(gp — (Cpy + N fea)lu (13c)

for all D € (X x Y)™. Now we successive estimate the three factors on the right hand side. (13a)
Because Cp, is self-adjoint and positive semi-definite the spectrum of the operator is contained
in 0(Cp, ) C [0,00) and therefore it holds

=7\ Y2 —v/2
(13a—HC H(Cpy + N Pl eeary = teféix)(HA) =A

where we used Lemma A.1 in the last step. (13c) This term can be rearranged using the identity
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fea=(Cpy +A)"lgp

(Cry +A) " (gp — (Cpy + N fpa) = (Cry + N)*(gp — (Cpyx — Cpy + Cpy + A fp2)
= (CPX + A)_l/Q((gD - ODXfP,/\) - (gP - OPX fP,)\))'

Consequently we get

1 1 _
16 = fealll, < 57 ll(Crx + X)2(Coy + 27 Cry + 2|

[(Cpy +X)"2((gp — Cpy frr) — (9P — Cry fo ) || -

(14)

for all D € (X x Y)™ and it remains to estimate the Factor (13b) which is the main part of the
proof. In order to estimate (13b) we start with the following identity

(Cpy +A) =(Cpy —Cpy +Cpy + )
= (CPX + )‘)1/2 (Id_(CPX + A)il/Q(CPX - CDX)(CPX + /\)71/2) (CPX + /\)1/2'

If we take the inverse and multiply the factor (Cp, + )\)1/ 2 from left and right, then we get
(13b) = || (14 =(Cpy + ) (Cry = Co ) (Cre + N ") " gy

Now we apply the Berstein inequality to estimate the norm of the operator (Cp, + N *(Cpy —
Cpy)(Cp, + A)~"? and afterwards we use the Neumann series to get an estimate for (13b). To

this end we consider the random variable & : X — Lo(H),
§1(2) = (Cry + 070y (Cry + 1)

with values in the space of Hilbert-Schmidt operators on H. Where Cy,) : H — H denotes the

integral operator with respect to the empirical measure of the point {z}, i.e.

Croyf = f(@)k(z, ) = (f, k2, - ) m k(z, -).

Because the range of the operator Cy;) is one dimensional it is especially a Hilbert-Schmidt
operator. Since H is a separable RKHS with respect to a measurable and bounded kernel, the
map X — Lo(H), x — C{s) 1s bounded and measurable. Moreover, the map z — C{,; and

x — &1 (x) are Bochner integrable with respect to a arbitrary probability measure p on X and
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Diestel and Uhl [5, Chapter I1.2 Theorem 6] yields
Eué = (Cpy +A) ™ (BanpClay) (Cryg +X) 772 = (Cpy + A)"2Cu(Cpy + A) 2

If we exploit this identity for the case y = Px and u = Dy, then we get

1 « _ _
E Z(gl(xz) - EPX€1) = Engl - Iprégl = (CPX + )‘) 1/2(CDX - CPX)(CPX + )‘) /2

i=1
for all D = ((x,9:)); € (X x Y)". Using the self-adjointness of (Cp, + )~ we get & (x) =
(-, 92)1 9o for all z € X with g, := (Cpy + A\)~?k(x,-). Applying Lemma 5.5 yields the
supremum bound

€2 (@) |2y ey = NgallEr < kB 17 (p) A~ = L

for Px-almost all x € X and the variance bound
/x 16112,y dPx (@) < Ly /X 1(Cry +X)k(x, )|} dPx(z) = LiNpy (A) =: oF.

The separability of H implies the separability of L9(H) and hence the Bernstein inequality
(Corollary A.3) is applicable. Therefore

L
H(CPX + A) 1/2(CPX - CDx)(CPX + )\ 1/2H£ < 47'(\/5 1)

n

holds with Px"-probability > 1—2e~". Because we have chosen n > A , > max{(16707)2,167L; }

we get

o2 410y 4101 1 L1 4714 1
4y =L = < = - d 4r— ==,
N TR S 16rey 2 ™ T S 16rL 4

Combining these estimates we get

1,11
=1

_l’_

H(CPX + )‘) /2(CPX - CDX)(CPX + /\ 1/2H

| =

with Px™-probability > 1 — 2¢™"7. Because the Hilbert-Schmidt norm dominates the operator

norm the Neumann series is applicable and yields

N
(13b):H(Id (Cpy + )~ 1/2(CPX—C’DX)(CPX+>\) 1/2 Hz: S <§> =2
-0
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with Px"-probability > 1 — 2e~". Together with the inequality (14) the statement follows. [
5.7 Lemma (Oracle Inequality (Part 2))

Let the assumption of Theorem 5.8 hold. For 7 > 1, A > 0 and n > 1 the estimate

1(Cry + N ((9p — Cox frr) = (gp — Cop fo) |1

3272

L2
2 a |12 A
< — <5NPX()\)U)\ + HkPXHLoo(Px)n)\a)

holds with P™-probability > 1 — 2e™7.

Proof. LetusfixaT>1A>0andn > 1. To prove this statement we define the random variable
&: X xY — H,

&a(,y) = (y = fa(@)(Cpy + 2 Pk(z, ).

Since H is a separable RKHS with respect to a bounded and measurable kernel and the moment
condition holds, we get that & and (x,y) — (y — fpa(x))k(z,-) are measurable and Bochner
integrable with respect to an arbitrary probability measure @ on X x Y. Diestel and Uhl [5,
Chapeter I1.2 Theorem 6] yields

Eqé = (Cpy + NV (B y)nquk(@, ) = Eovgy Jra(@)k(z, -))
= (Cpy + N "(9q — Cox frA)-

If we use this identity for the case Q = P and QQ = D we get
1 n
- (52(% yi) — EP&) =Ep& —Ep&e
i
= (Cpy + N7 ((SJD —Cpyxfrp) — (9p — CPXfP,A))-

To apply the Bernstein inequality (Theorem A.2) we need to bound the m-th moment for m > 2.
Let us fix some m > 2. By the definition we get

Ep|/éa|™ = /X I(Cpy +X)k(a, -)H?/Y ly — fra(@)|™ P(dylx) Px(x).
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First we consider the inner integral: Using the triangle inequality yields

/Y ly — fea(@)™ P(dylz) < 2™ Y(|lidy —fp@)T, (pejy + [F5(2) = foa(2)]™).

for Px-almost all x € X. Furthermore, it follows by the moment condition

/Y’y_fP,)\(x)‘m P(dy’.ﬁlﬁ) S om 1(§m!0'2L 2+||fp_[fpv’\]PX”Loo(Px)> S im' (20')\)2 (2L)\) 2
for Px-almost all x € X. If we plug this into the initial equation and use Lemma 5.5 we get

Ep|&|™ < 5 m!(203)* (QLA)m_2/X 1(Cpy +X) k() |[H Px (2)

2

< —ml (4Npy (N)53) 2B, 1 (poy A 72 LA)™ "

N = N =

Because H is separable the Bernstein inequality (Theorem A.2) is applicable and yields

H(CPX + )\)_1/2<(9D —Cby fp)) — (9P — CPXfP,)\)) H;

<472< 20Npy (Mo +2||k%X”LOO(PX))\_a/2LA>2

n n
8 2 2 L3
S - (QONPX(A)U)\ + 4||kpy HLOO(PX)W
with P"-probability > 1 — 2e™". O

Now the proof of Theorem 5.3 is just an application of Lemma 5.6 and Lemma 5.7. In order
to simplify the statement in Theorem 5.3 under the assumption P € By 3., we need the next

lemma.

5.8 Lemma
Let P € By g,ap be a probability measure. Then there are constants N,V > 0 depending only on
PBu,g,a,p such that Ay, < N)\Z% and Li,a?\ < /\max{% forall0 <A <1 and > 1.

Proof. Let P € By gap, 0 <A <1and 7 > 1. From Equation (8) we get ||k||%2(y) < Hki”%m(u) <
||k3H%OO(V) and Theorem 5.1 yields HkH%Q(V) < ||I<:3H%OO(V) < A, since we have the embedding
property. If we redefine C) := A in the case p = 1 then Equation (11) still holds and N :=

max{256AC), 16A,1} is a possible constant. In order to prove the second inequality we distinguish
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two cases: For 8 < a we proceed by

1F5 = [FPalulll ) < 20F5lE + 20 Pl ) < 2Boo + 241 FPalu g
Using the spectral representation from Equation (12) and Parseval yields

1-o/2 14852

_ Wi ) 9 (ui ’ )2 2 B
= a; = aik; -
[H]g ;(uﬁk ; Wi + A

If we estimate the fraction on the right hand side with Lemma A.1, then we get

1/l HZ“Z:; i el

I palulfmg < X7 afui” = A2 fpllE 0 < BA(79),
i€l

Therefore it holds L?\, 0/2\ < VA (@ F) with V := max{L?, 02,2By +2AB}. In the case 8 > a we

apply Lemma 5.2:

1£5 = Fealo |2y < AllfS — el < ABN= < AB.
Hence it holds Li,ai <max{L? c% AB} <V. O
With this preparations we simplify the estimation for the measures in the set ‘B g .q,p-

5.9 Corollary (Estimation on P 3.a.p)

Let H be a separable RKHS on X with respect to a bounded and measurable kernel k, o > 0,
p,a,y €[0,1] and B € [0,2] with0 <p < a <1 resp. 0 <~ < B <2. Then there exists constants
K,N >0, depending only on By g.ap such that for all0 <A <1, 7>1 andn > N)\OH_p

T

2
1
o2 B—v -
H[fD’)\]V fPH[H]Z < K<>\ + n\Y+ptmax{0,a—pF} (1 + n)\a*p))

holds with P™-probability > 1 —4e™7 for all P € Pu g a.p-

Proof. Let P € Pygap, 0 <A< 1, 7>1andn > N/\Z—ip, whereby N is the constant from
Lemma 5.8. Then Theorem 5.3 is applicable and yields

2
9 T 1
1lfpx = fRAlullfy; < 128V max{5C,, A} NT+pmax{0,a—pB} <1 - n)\a—p>
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with P"-probability > 1 — 4e™7. Together with Lemma 5.2 we get the assertion for K :=
2max{128V max{5C,, A}, B}. O

If we exploit the previous results, then we can prove the claimed learning rates.

Proof of Theorem 3.3. Because for the given asymptotic of the regularization parameter sequence

. . 7_2
n)n T - yoFp = Tbry
(An)n>1 there is an index bound n, such that n > N o holds for all n > n., we can apply
Corollary 5.9. Since the term ﬁ is bounded we get the claimed rates. O

Lower Rates
In order to prove [H])-minimax lower rates we establish the following lower bound.

5.10 Lemma (Lower Bound)

Let H be a separable RKHS on X with respect to a bounded and measurable kernel k, 0 < q <
p<a<l,0<y<1and0<v< B <2 such that there exists a v € Ny apq- In addition, we
set v = % and u := m. Then there are constants 0 < g9 < 1 and C1,Cy > 0 such that
for all 0 < e < eq there are Py, Py, ..., Py. € Bup({v}) with the following properties:

u u

(i) It holds 2€2¢" < M, < 23C2¢7",
(ii) It holds || fp, — f;f-,jH[?HP >de for alli,j €{0,1,..., M.} withi # j.

(#ii) It holds

. _ VI ) |
f P*D: ¥(D > Y= 1 tu(v+l) _
in j:oI,Ill,E.l.}fMg j ( (D) # J) = AL+ 1 Cine > Tog(ML)

for all n > 1, where the infimum is taken over all measurable functions ¥ : (X x V)" —

{0,1,..., M.} with respect to the universal completion of the product-c-algebra.

Please note, that the probability measures P; also depend on € although we omit this in the
notation. Remember that we need just one probability measures v on X with the required
properties to construct distributions on X x Y that are difficult to learn. The proof is an

application of the following theorem from Tsybakov [14].

5.11 Theorem (Lower Bound)
Let Py, Py, ..., Py with M > 2 be a family of probability measures on a measurable space (2, A).
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Moreover, we assume that P; < Py holds for all j = 1,..., M and that o, = ﬁ Zjvil K(P;, Py) €
(0,00), where K(Pj, Py) denotes the Kullback-Leibler divergence from Py to Pj. Then it holds

‘ VM 3au, 1
. : ) > - -
l%fj:(l)l,ll?j}f,M Pi(weQ: W(w)#j) > N7 ( log (M) Qlog(M)>’

where the infimum is taken over all measurable functions ¥ : Q — {0,1,...,M}.

Proof. From Tsybakov [14, Proposition 2.3] we know, that

T ( s + 0‘2*>
su — =
0<TI<)1 1+7M log(7)
is a lower bound for the left hand side. If we choose 7 = ﬁ and use the estimation v/2a, < %—ka*

afterwards, then we get the assertion. O

We use this theorem for the measurable space 2 = (X x Y)" with a fixed n > 1 and equip
this space with the universal completion of the product-o-algebra. Furthermore, we follow the
suggestion of Caponnetto and De Vito [3] as well as Blanchard and Miicke [2] in order to construct
a family of probability measures Py, P1, ..., Py € B g({v}). In the following, let the assumptions
of Lemma 5.10 hold and set ¢ := min{o, L}. Then we define for a measurable function f: X — Y
and z € X the distribution Py(-|z) := N(f(x),5°) as the normal distribution on ¥ = R with
mean f(z) and variance 2. Hence Pf(A) := [y [ 1a(z,y) P(dy|z) dv(z) for A € B® B(Y)
defines a probability measure on X x Y with marginal distribution v on X, i.e. (Py)x = v. For
that reason the corresponding power spaces are independent of f. The following lemma describes

the Kullback-Leibler divergence for this measures.

5.12 Lemma (Kullback-Leibler Divergence)
For f, f" € La(v) and n > 1 it holds P < P and P{ > Pj,. Furthermore, the Kullback-Leibler
divergence fulfills

dp?
n PNy . f n_ 1 2
K(P}, P} = /(an log(dp}ll> dPf = o5 f - i)

Proof. Let ¢ : R — R be the density of A/(0,52) with respect to the Lebesgue measure. Than

oy — f(x))

@0 = = @)
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is the density of Py with respect to Py and therefore Py < Py. Hence it also holds for the
product measures Pf' < PJ. It is well-known fact that K(Pf, Pf)) = nK(Py, Py) holds and the
determination of K (P, Pf/) is a standard procedure, so we omit it. O
Because Py = Py for f' = f v-a.s. we can define Py, for v-equivalence classes. For f € La(v) we
get |Prl3 =52+ f ||%2(V) < oo and fp = f. Moreover, the properties of the normal distribution
implies

m!a™

[ o= 5@ Priayia) = —or (") @0V2)" <

for all z € X, where I labels the gamma function. Hence for f € Lo (v)N[H]S with HfH% ) < Beo
and || f ||[ P < B the requirements of Assumption 3.2 are fulfilled, i.e. we have Py € Py 5({1/})

1
2

we reduced the construction of probability measures to the construction of appropriate functions
fos f1s- s far € Loo(v) N [H]S. To this end we use binary strings w = (w1, . . .,wm) € {0,1}™ and

define
8e /2
2( ) E wl MZer eZer]l/

for 0 < ¢ < 1. Because f, is a finite linear combination of the eigenvectors [e;], of T}, it holds
fw € [H], C Loo(v)N[H }5 . First we want to establish sufficient conditions on € and m, that
1foll? 0y < Boo and || full?, s < B holds.

5.13 Lemma

Under the assumptions of Lemma 5.10 there is are constants U > 0 and 0 < e1 < 1 depending
only on P g({v}), such that Hf“’H[QH}{f < B and wa”L () < Boo holds for all 0 < e < &1 and all
m < Ues™".

Proof. Let m € N and 0 < € < 1. The polynomial lower bound and v < § implies

32 Ui —(B— —(B— B=y B=y
1l = == D winin ¥ < 82emp ) < 328702 T em v
m

+m
=1

Hence for m < Uje 77 with Up := %Cq(ng)ﬁ 7 it holds waH[HB

the embedding property together with an analogues argument yields || wa%w ) < By, for m <
Use a7 with Uy = 20‘1(52"2)&37. So for U := min{U;, Uy} and ey := min{1,U"/*} we get the

< B. In the case v < «
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assertion. In the case 7 > « the polynomial upper bound implies

2 y—a
1£ollF ) < All fullPege < <3 5AZ TS < 32A e < 32ACT Cem™ (15)

and we get ||fw||%oo( < By for0<e<(C7™ O‘B‘x’ . So for U := U and g¢ := min{C7™ 0‘32A,Ul/u}

we get the assertion in the case v > a. O

If ' = (wf,...,w),) € {0,1}™ is an other binary string, we investigate the norm of the difference

fw — fur- Analogue estimates as in Equation (15) yields

_
oo = furllZy) < 3207 em™ . (16)
In order to obtain a lower bound on the [H]}-norm, we assume > i, (w; — w/)? > 2, i.e. the
distance between w and W’ is large:
m
[ fo — fw’H[QH];Y = Z 2> de. (17)

The following lemma is from Tsybakov [14, Lemma 2.9] and suggests that there are many binary

strings with large distances.

5.14 Lemma (Gilbert-Varshamov Bound)
For m > 8 there are {w®, ..., w™)} C {0,1}™ with M > 2™/* such that w®) = (0,...,0) and

Sl o) >

for all j # k, where w®) = (wgk), wgf)).
Now we are ready to prove Lemma 5.10.

Proof of Lemma 5.10. Let us define g9 := min{ey, (U/s)"7*} and m. := |[Us "], where we used the
notation from Lemma 5.13. Now fix an > 1 and a 0 < € < gg. Since m. > 8, Lemma 5.14 yields
M, := [27</%] > 2 binary strings w(®),w®, ... M) € {0,1}™ with large distances. If we define
fj = f,u and Pj:= Py, for j =0,1,..., Mc, then from Lemma 5.13 we get P; € Py s({v}) for
all j =0,1,..., M.. Due to the definition of M., m. and m. > 8 we get %Us_“ <me < Ue™
and 25° " <M < ML < 2me/A < 27" and Statement (i) holds for Cy := %. Assertion (ii)
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is a consequence of the large distance between the binary strings and the discussion around
Equation (17). Lemma 5.12, Equation (16) and m. > 3Us™* yield

M, M,
1 & n - 2 __2 - 1
AL 2o K P PR) = 5o D5 = follf gy < 1607072 nem: = Cynet+
j:l j:l

where C3 = ;g(cé?;))z. Combining Theorem 5.11 and Statement (i) we get Assertion (iii) for
. 3C
Cr = Ca 10g3(2)' u

Now the proof of Theorem 3.5 remains an application of Lemma 5.10 and the general reduction

scheme from Tsybakov [14, Section 2.2].

Proof of Theorem 8.5. Using the notation of Lemma 5.10 and r := m We fix a 7 > 0 and

choose an index bound n, with ¢, := T(%)r <¢gg forn > n,. Let us fix an > n,. The application
of Lemma 5.10 with € = &, yields some probability measures Py, Pi,..., Py, € Pug({r}) C
BHB,apq First we estimate the left hand side of the inequality in statement (iii) of Lemma 5.10.
Therefore we choose an arbitrary measurable learning method D — fp and define the measurable

function ¥ : (X xY)" — {0,1,..., M.},

U(D):= argmin ||[fply — fjll{my-
§=0,1,...,M-

Then for j € {0,1,..., M.} and D € (X x Y)" with U(D) # j it holds

2Ve < fby i, — B,z < ey, — DIl + 1l — £, 11z < 2011foly — 5,1l

and therefore P7'(D : ||[fpl, — fp, ”[QH]Z >¢) > P(D: ¥(D) # j). Because of Pj € B p,a,p,q for
all 7 =0,1,..., M, we get

: n . . n . * (12
inf _max P(D: (D) #j) < _max PPD: fole = i Iy = <)

< s P'(D: lfnh — kg = o).
PeBu p,a,p,q

Since we considered an arbitrary measurable learning method this holds also for the infimum over

all measurable learning methods. Since € = ¢,, with an arbitrary n > n, and M., — oo, we get

liminf inf P"(D : L= 512 > e, > 1 — 30 piTule D),
15210% DEfD PE‘B?EQ,W ( /o] fPH[H}g Z En) = 17
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max{a,B}—y
max{a,B}+q—y(1-1)" =

Another limit 7 — 07 yields the assertion because r =

A. Appendix

A.l1 Lemma
For A >0 and 0 < oo < 1 we consider the function fqo :[0,00) = R, fiq(t):= /\t—it.ln the case
a = 0 this function is strict monotonically decreasing and in the case o =1 strict monotonically

increasing. Furthermore, for the supremum of this function holds

1
5)\0‘*1 <sup falt) < et

>0
where we use 0° := 1. In the case a < 1 the function fra attain its supremum at t* := f‘_—aa
Proof. This could be easily proved, using the derivative of f) ,. O

A.2 Theorem (Bernstein Inequality without Supremum Bound)
Let (2, B, P) be a probability space, H a separable Hilbert space and & : Q@ — H a random variable
with

mlo2 ™2

N | =

Epliél <

for all m > 2. Then it holds

P <(wz')?1 eQ: H;En:ﬁ(wi) - EPfHH > 2T< i + L*>> <27
=1

n n

orallT>1,n>1 and 02 :=50% and L, := L.
[ *

Proof of Theorem A.2. We want to apply Caponnetto and De Vito [3, Proposition 2]. To this

end we first prove
1
Epll¢ — Epg|lf < 5mldo*(L + o)™ (18)

for all m > 2. Let us fix m > 2. Because of |Ep||g < Ep||{||z < o it holds

el ~ Eréll < Brlelu + oy =3 (7 )Er(lelip o™,

k=0
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If we omit the first two terms of the sum, then we can apply our assumptions:

— (m ko m—k L 2 S 1 k—2 _m—k
Z(k)EPO!ﬁ\H)U < 5mlo kZZQ(m_k)!L o

k=2

Shifting the index and using m <

m m—2
m k m—Fk 1 2 m—2 k_(m—2)—k 1 2 m—2
< - ! - = ! .
E (k>]Ep(||§HH)U 5 Mo E ( k: >L o 5 Mo (L+o0)

k=2
Now let us estimate the first two terms: The first term (k = 0) is bounded by o™ < $mlo? (L +
o)™~% and the second therm (k = 1) by mo™ < $m!20%(L+0)™~2. Together we get Equation (18).
Using [3, Proposition 2] and % + Lo < % + L yields the statement. O
A.3 Corollary (Bernstein Inequality with Supremum Bound)
Let (2, B, P) be a probability space, H a separable Hilbert space and & : Q@ — H a random variable

with supremum bound L := |||, py < oo and variance bound o* := Ep|||F; < co. Then
Theorem A.2 holds with Uf =402 and L, = 2L.

Proof. Because of the assumptions the requirements of Theorem A.2 are fulfilled for L and o?.

Since 0 < L we get by the penultimate step in the proof of Theorem A.2. O
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