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Subforms of Norm Forms of Octonion Fields

Norbert Knarr, Markus J. Stroppel

Abstract

We characterize the forms that occur as restrictions of norm forms of octonion fields. The
results are applied to forms of types E6, E7, and E8, and to positive definite forms over
fields that allow a unique octonion field.

Mathematics Subject Classification (MSC 2000): 11E04, 17A75.
Keywords: quadratic form, octonion, quaternion, division algebra, composition algebra,
similitude, form of type E6, form of type E7, form of type E8

1 Introduction

Let F be a commutative field. An octonion field over F is a non-split composition algebra of
dimension 8 over F . Thus there exists an anisotropic multiplicative form (the norm of the
algebra) with non-degenerate polar form. It is known that such an algebra is not associative
(but alternative). A good source for general properties of composition algebras is [9].

In [1], the group ΛV generated by all left multiplications by non-zero elements is studied
for various subspaces V of a given octonion field. In that paper, it is proved that ΛV has
a representation by similitudes of V (with respect to the restriction of the norm to V ), and
these representations are used to study exceptional homomorphisms between classical groups
(in [1, 6.1, 6.3, or 6.5]). It is thus natural to ask which forms do occur as restrictions of norm
forms of octonion fields. We answer this question in the present paper (in 3.1 below). In fact,
not every quadratic form in five, six or seven variables can be interpreted as a restriction of
the norm of some octonion field. We give abstract characterizations of the forms in question
(namely, forms of types E6, E7, and E8), in terms of concepts that play their role in the theory
of spherical Tits buildings, cf. [10, Ch. 12].

1.1 Properties of composition algebras. Let C be a composition algebra over F , and let NC

be its norm. The polar form will be denoted by px|yq :“ NCpx` yq ´NCpxq ´NCpyq.

(a) The map κ : C Ñ C : x ÞÑ x :“ px|1q1´ x is an involutory anti-automorphism, called the
standard involution of C. The norm and its polar form can be recovered from the standard
involution as NCpxq “ xx “ xx and px|yq “ xy ` yx.
In particular, we have the hyperplane PuC :“ 1K “

 

x P C
ˇ

ˇ x “ ´x
(

of pure elements.

(b) The Cayley–Dickson doubling process (cf. [9, 1.5.3]): If B is a subalgebra of C with
dimF C “ 2 dimF B and such that BK X B “ t0u then BK “ Bw “ wB holds for
each w P BK with NCpwq ‰ 0, and the multiplication in C “ B ‘ BK is given by
px` ywqpu` vwq “ pxu´NCpwqvyq ` pvx` yuqw.
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Conversely, given any1associative composition algebra B over F with norm NB and any
γ P Fˆ one uses that formula to define a composition algebra DγpBq on the direct sum
B ‘ wB using the multiplication rule as above with the scalar γ playing the role of Npwq;
the norm of DγpBq is then the orthogonal sum NDγpBq “ NB k γNB.

2 Norm splittings

2.1 Definition. Let q be an anisotropic quadratic form on a vector space of dimension 2d
over F . We say that q has a norm splitting (involving K{F ) if there exist a separable quadratic
field extension K{F with norm NK{F and scalars α1, . . . , αd P F

ˆ such that q is equivalent to
the orthogonal sum α1NK{F k ¨ ¨ ¨ k αdNK{F .

The notion of norm spliting is used to single out various forms that play their roles in the
theory of spherical buildings (see [10, Ch. 12]).

2.2 Definitions. Let q be an anisotropic quadratic form in n variables over some field F .

(a) The form q is of type E6 if n “ 6 and q has a norm splitting. See [10, Ch. 12] and [3].

(b) The form q is of type E7 if n “ 8 and q has a norm splitting but is not similar to the norm
form of any octonion algebra. See [10, 12.31].

In terms of the norm splitting α1NK{F k α2NK{F k α3NK{F k α4NK{F , the forms of
type E7 are characterized by α1α2α3α4 R NK{F pKq. (See 3.1 (f) below.)

(c) The form q is of type E8 if n “ 12 and q has a norm splitting α1NK{F k α2NK{F k

α3NK{F k α4NK{F k α5NK{F k α6NK{F such that ´α1α2α3α4α5α6 P NK{F pKq.

2.3 Theorem. The extension field involved in the norm splitting for a form of type E6 is unique
(up to isomorphism as an algebra over F ).

Proof. The even Clifford algebra for a form q is isomorphic to the full matrix algebra K4ˆ4 if q
has a norm splitting involving K{F (see [3, 5.3], cf. [10, 12.43 (i)]), and the algebra K4ˆ4

determines K{F , up to isomorphism. The latter claim follows since K is (isomorphic to) the
endomorphism ring of K4 considered as a simple module for K4ˆ4 (e.g., see [2, 26.4]), or
from an application of projective geometry, e.g., see [7, 4.7]2.

For quadratic forms of type E7, the field extension involved in the norm splitting is not
determined uniquely, in general, as the following example shows.

2.4 Example. Consider the quadratic extensions K :“ Qp
?
´1q and L :“ Qp

?
´3q of the

field Q of rational numbers; these are composition algebras obtained as doubles D1pQq and
D3pQq, respectively (cf. 1.1 (b)). Let i P K be a square root of ´1, and let N :“ NK{Q
and M :“ NL{Q be the corresponding norm forms. We note that N and M are not similar
because the discriminants differ. We now show that the orthogonal sumNkN is equivalent to
Mk2M . Doubling K (cf. 1.1 (b)) we obtain H1 :“ D1pKq “ K‘jK with NH1pjq “ 1. This is
a quaternion field, the norm form is equivalent to NkN . The element y :“ i`j`ij P PupH1q

1 Associativity is needed in order to make the new norm multiplicative. Note that a composition algebra in char-
acteristic two necessarily has non-trivial standard involution because the polar form of the norm is required
to be non-degenerate. If charF ‰ 2 we can (and will) start with F itself, made a composition algebra by the
form Npxq “ x2 on F .

2 There is a confusing systematic typo in [7]: LKV should be replaced by GLKpV q.
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has norm 3. The subalgebra Q`Qy of H1 is isomorphic to the field L, and i´ j is an element
of norm 2 in pQ ` QyqK. So Qpyq – L and H1 – D2pLq yield that N k N and M k 2M are
both equivalent to NH1 .

The form N k 3N is equivalent to the norm form of a quaternion field H3 :“ D3pKq “
K‘wK whereNH3pwq “ 3. In PupH3q we find an element 2i`w of norm 22`3¨12 “ 7, while
there is no such element in PupH1q (by Legendre’s three-square theorem, see [5, Ex. 3.12]).
This shows that the two forms N k N and N k 3N are not equivalent, and also not similar.
(We could also split off the summand N from both forms, and then argue that N and 3N are
not equivalent — it is easy to see that 3 R NpKq; i.e., the prime number 3 is not a sum of two
squares of rational numbers.)

The form q : Q8 Ñ Q : x “ px1, . . . , x8q ÞÑ x21`x
2
2`x

2
3`x

2
4`x

2
5`x

2
6` 3x27` 3x28 obviously

has a norm splitting N k N k N k 3N . The form q is not similar to the norm form of an
octonion field. In fact, if q were similar to the norm form NC of some octonion algebra C
then 1 P qpQ8q yields that q is equivalent to NC . Then we see that C contains a quaternion
subfieldH isomorphic toH1 (with norm formNkN), and the restrictionNC |HK is equivalent
toNk3N by Witt’s cancellation law. However, asHK contains an element of norm 1, doubling
yields C – D1pHq so that NC |HK is equivalent to N kN . This is impossible by our remark in
the preceding paragraph. (See also 3.1 (f) below.)

So q is a form of type E7. This form has norm splittings involving two inequivalent quadratic
extensions: For instance, using the equivalence of N kN with M k 2M (as noted above) and
the obvious equivalence of N k 3N with M kM we find that M kM kM k 2M is a norm
splitting for q, as well.

3 Subforms of norm forms

Not every quadratic form in five, six or seven variables can be interpreted as a restriction of
the norm of some octonion field, as in [1, 6.1, 6.3, or 6.5]).

3.1 Theorem. Let q : V Ñ F be an anisotropic quadratic form.

(a) If dimV “ 3 then q is similar to the restriction of the norm of a quaternion field H to PuH
if, and only if, the polar form is not zero. (This condition is trivially satisfied if charF ‰ 2.)

(b) If dimV “ 4 then q is similar to the norm of a quaternion field if, and only if, it has a
norm splitting.

(c) If dimV “ 5 then there exists an octonion field O and a 3-dimensional subspace W ă O
with 1 P W ď WK such that q is similar to the restriction NO|WK if, and only if, there
exists a hyperplane U ă V such that q|U has a norm splitting.

(d) If dimV “ 6 then there exists an octonion field O and a 2-dimensional subspace L ă O
with 1 P L ď LK such that q is similar to NO|LK if, and only if, the form q has a norm
splitting.

(e) If dimV “ 7 then there exists an octonion field O such that q is similar to NO|PuO if, and
only if, there exists a hyperplane U ă V and y P UK such that q|U has a norm splitting
α1NK{F k α2NK{F k α3NK{F and qpyq P α1α2α3NK{F pK

ˆq.

(f) If dimV “ 8 then there exists an octonion field O such that q is similar to NO if, and
only if, the form q has a norm splitting α1NK{F k α2NK{F k α3NK{F k α4NK{F with
α1α2α3α4 P NK{F pK

ˆq. Every norm splitting β1NL{F k β2NL{F k β3NL{F k β4NL{F of q
then has the property β1β2β3β4 P NL{F pL

ˆq.

3
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Proof. We use the doubling process for composition algebras, cf. 1.1 (b). The proof of asser-
tion (a) is postponed, we treat assertion (b) first.

Assume dimV “ 4 and q “ α1NK{F k α2NK{F . Then α´11 q is equivalent to the norm

of the quaternion algebra H :“ Dα
´1
1 α2pKq obtained by doubling K (considered as a two-

dimensional composition algebra over F ). As q is anisotropic, that quaternion algebra is
in fact a quaternion field. Conversely, every quaternion field is obtained by doubling any
separable 2-dimensional subalgebra K, and that procedure gives a splitting for the norm.
This completes the proof of assertion (b).

In order to prove assertion (a), we note first that the restriction of the norm to the space of
pure quaternions has the required properties. Now assume dimV “ 3 and that there exists a
two-dimensional subspace M such that the polar form is non-degenerate on M . Then there
exists a separable quadratic extension K{F such that q|M “ α1NK{F holds for some α1 P F

ˆ.
Pick y P MK r t0u, then q is the restriction of α1NK{F k qpyqNK{F to a suitable hyperplane.
By assertion (b) we thus know that there exists a quaternion field H such that q is similar to
the restriction of NH to some hyperplane W ă H. Pick a P WK r t0u; then PuH “ a´1W
yields that q is in fact similar to NH |PuH . This completes the proof of assertion (a).

Assume dimV “ 5, and that there exists a hyperplane U ă V such that q|U “ α1NK{F k

α2NK{F . From assertion (b) we know that there exists a quaternion field H with NH “ α´11 q.

Pick any y P UK r t0u and construct the composition algebra O :“ Dα
´1
1 qpyqpHq “ H ‘ wH

with Npwq “ α´11 qpyq. Then the restriction of NO to X :“ H ‘ Fw ă O is similar to q, and
thus anisotropic. As the norm of a split composition algebra is hyperbolic, the existence of
a five-dimensional anisotropic subspace yields that O is not split, and thus an octonion field.
We pick a P XK r t0u, then W :“ a´1XK contains 1, and W ď WK because W ă a´1HK

and the polar form on HK “ wH is not degenerate. Conversely, starting from a subspace W
with the required properties in any octonion field we recover that octonion field by doubling
the quaternion field generated by W , and see that the restriction of the norm to WK has the
required properties. This completes the proof of assertion (c).

Assume dimV “ 6 and q “ α1NK{F k α2NK{F k α3NK{F . We already know that there is a
quaternion field H with norm equivalent to NK{F kα

´1
1 α2NK{F . Doubling yields an octonion

algebra O :“ Dα
´1
1 α3pHq “ H ‘ wH with NOpwq “ α´11 α3. That algebra is an octonion field

because it contains an anisotropic subspace Y of dimension 6. We pick a P Y K r t0u, then
L :“ a´1Y K is a two-dimensional subalgebra which is separable because the restriction of
the polar form to Y K is not degenerate. So q is similar to NO|LK , as required. Again, in any
octonion field with any separable 2-dimensional subalgebra L we recover the octonion field
by repeated doubling and see that the restriction of the norm to LK has a splitting as claimed
in assertion (d).

Assume dimV “ 7, that there exists a hyperplane U ă V such that q|U “ α1NK{F k

α2NK{F k α3NK{F , and y P UK with qpyq P α1α2α3NK{F pK
ˆq. From the previous paragraph

we know that there exists an octonion field O with a two-dimensional separable subalgebra L,
a quaternion subfield H, and a similitude ψ from U onto Y “ aLK, for a suitable a P O.
The multiplier of ψ is α1. The construction of Y yields that there exists b P LK X H with
NOpbq “ α´11 α2, and we find that wb is an element of Y K with NOpwbq “ α´11 α2α3. Our
assumption on qpyq now yields that the similitude ψ extends to a similitude ψ̃ from V onto
T :“ aLK ‘ Fwb with ψ̃pyq P Lwb. Pick c P TK r t0u, then c´1T “ 1K “ PuO, and NO|PuO
is similar to q, as claimed.
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It remains to note that, in any octonion field, the restriction of the norm to the space of
pure elements has the required properties. To this end, we remark first that these properties
are preserved under similitudes because pµα1qpµα2qpµα3q “ µ3pα1α2α3q and µα1α2α3 lie in
the same square class. Pick u P O with TOpuq “ 1; then L :“ F ` Fu is a separable quadratic
extension of F , and PuO “ PuL ‘ LK. There are scalars β1, β2 P F such that NO|LK has a
norm splitting β1NL{F k β2NL{F k β1β2NL{F . Now the restriction of NO to the hyperplane
S :“ F ‘ LK has the required properties, and so has the hyperplane PuO “ a´1S, where
a P SK r t0u. This completes the proof of assertion (e).

The last assertion (f) follows from the doubling process.

At the end of the proof of 3.1 (e), it is tempting to use the hyperplane KK of PuO, with the
norm splitting β1NK{F k β2NK{F k β1β2NK{F . However, the intersection PuO X pKKqK “

PuK is, in general, not spanned by an element of norm β1β2pβ1β2q. In fact, the exis-
tence of such an element in PuK means K – F rXs{pX2 ` 1q if charF ‰ 2, and means
K – F rXs{pX2 ` X ` 1q if charF “ 2. So we have to use a different norm splitting for
the hyperplane KK, or indeed a different hyperplane with norm splitting. The proof above
circumvents this problem.

Recall that a quadratic form of type E6 is defined as an anisotropic form in 6 variables with
a norm splitting. In 3.1 (d) we have thus obtained a characterization of that class of forms
(cf. [10, 12.33]):

3.2 Corollary. A form of type E6 exists over F if, and only if, there exists an octonion field over F .

In 3.1 (d) we have noted that every form of type E6 is embedded into the norm form of an
octonion field over F . In fact, that embedding is essentially unique.

3.3 Theorem. Let q : U Ñ F be a form of type E6, and let C, D be octonion algebras with
vector subspaces V ă C and W ă D, respectively, such that q is similar to both restrictions
NC |V and ND|W . Then C and D are isomorphic as F -algebras.

If there are subalgebras L ă C and M ă D such that V “ LK and W “ MK, respectively,
then the isomorphism can be chosen in such a way that it maps L to M .

Proof. Let q “ α1NK{F k α2NK{F k α3NK{F be a norm splitting. Pick v P V K r t0u. Then
L :“ v´1pV Kq is a two-dimensional subspace of C. We have 1 P L, so L is a subalgebra. As
the restriction NC |V of the norm form has non-degenerate polar form, the restriction NC |L

has non-degenerate polar form, as well. So L is a separable quadratic field extension of F .
We recover C by repeated doubling as Dβ2pDβ1pLqq, and obtain that the restriction of NC

to LK has a norm splitting NC |LK “ β2NL{F k β3NL{F k β2β3NL{F . As the extension field
involved in the norm splitting is unique (see 2.3), we have an isomorphism of F -algebras
from K onto L, and NL{F is equivalent to NK{F .

Pick elements a P LK r t0u and b P pL ` aLqK r t0u with NCpaq “ sα1 and NCpbq “ sα2,
respectively (for some s P Fˆ; this is possible because the forms q and NC |LK are similar).
On the one hand, we have a norm splitting NC “ NK{F k sα1NK{F k sα2NK{F k sα3NK{F .
On the other hand, doubling yields C “ Dsα2pDsα1pLqq and a norm splitting NC “ NK{F k

sα1NK{F k sα2NK{F k s
2α1α2NK{F .

For the similitude from q onto W , we proceed analogously. We find a subfield M – K of D,
and obtain D by doubling as Dtα2pDtα1pMqq with some t P Fˆ. From 3.1 (f) we know that
the products sα1 ¨ sα2 ¨ sα3 and tα1 ¨ tα2 ¨ tα3 both belong to the group NK{F pK

ˆq. As that
group also contains s2 and t2, we obtain that s and t differ by an element of NK{F pK

ˆq. Thus
C – Dsα2pDsα1pLqq – Dtα2pDtα1pMqq – D, as claimed.

5
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4 Forms over ordered fields

4.1 Lemma. (a) If F admits an ordering then there exists at least one octonion field over F .

(b) If F admits two different orderings then there exists more than one isomorphism type of
octonion fields over F .

Proof. Assume that F admits an ordering ă. Then charF “ 0, and ´1 is not a square in F .
We form the quadratic extension E :“ D1pF q – F rXs{pX2 ` 1q. By repeated doubling, we
construct an octonion algebra O :“ D1pD1pEqq with norm form NE k NE k NE k NE . That
form is positive definite, and O is an octonion field.

In order to prove assertion (b), assume that there is a second ordering ă on F . Pick a P F
such that a ă 0 but 0 ă a. Then a is not a sum of squares, and ´a is not a square in F . The
field extension K :“ DapF q – F rXs{pX2 ` aq has positive definite norm form NK , and there
exists an octonion algebra D1pDapKqq over F with norm form NK k aNK k NK k aNK . As
before, that octonion algebra has positive definite norm form (with respect to ă), and is an
octonion field. In that octonion field, there exists an element of norm a, but no such element
exists in O because a is not a sum of squares in F .

4.2 Theorem. Over the field Q of rational numbers, there are precisely two isomorphism types
of octonion algebras: the split one, and the one with the positive definite norm form equivalent
to the sum of squares of coordinates.

Proof. Without loss, we concentrate on the non-split case. As in 4.1 (a), we construct the
“standard” non-split octonion algebra O :“ D1pD1pD1pQqqq.

Let C be an octonion algebra over the field Q, with norm form NC . The local-global
principle by Hasse-Minkowski [5, VI.3] asserts that the quadratic form NC is determined, up
to isometry, by the isometry types of the forms L b NC , where L runs over the completions
of Q. For every non-archimedean (i.e., p-adic) completion L, the form L b NC is isotropic
(cf. [5, 2.12]), and LbC is a split octonion algebra. So LbNC is hyperbolic, for each p-adic
completion L of Q. The archimedean completion R either leads to a positive definite form
R b NC , or to an isotropic form R b NC . In the latter case, the algebra R b C is the split
octonion algebra over R, and the form RbNC is hyperbolic. We have thus shown that there
are just two isomorphism types of octonion algebras over Q. Obviously, the split octonion
algebra and the non-split octonion algebra O over Q represent these two types.

The arguments used in 4.2 can be generalized, and yield the following3

4.3 Theorem. Let K be an algebraic number field (i.e., a finite extension field of Q).

(a) If K admits an ordering (i.e., if at least one completion of K is isomorphic to R) then
there exists at least one isomorphism type of octonion fields over K.

(b) If more than one completion is isomorphic to R then there exist at least two isomorphism
type of octonion fields over K.

(c) If precisely one of the archimedean completions of K is isomorphic to R then there exists
precisely one isomorphism type of octonion fields overK (represented by D1pD1pD1pKqqq –
K b D1pD1pD1pQqqq).

3 The results of 4.3 have already been obtained by Zorn [11, p. 400], who attributes them to Brandt (without
giving an explicit reference). We could not locate any pertinent publication.
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(d) If K does not admit an ordering (i.e., if every archimedean completion of K is isomorphic
to C) then every octonion algebra over K splits, and there exists no octonion field over K.

5 Forms over fields with unique octonion field

Motivated by the observation made in 4.2, we study fields with the property

p♦q There is precisely one isomorphism type of octonion field over F .

If F is a field with this property, we will denote the (unique) octonion field over F by O.
Recall from 4.2 that the field Q of rational numbers has property p♦q, and so do many (but

not all, see 4.3) algebraic number fields. The related property for quaternion algebras has
been studied by Kaplansky [4] (see [5, XI 6.23]) who proved the following. If F is a field
with charF ‰ 2 admitting no ordering and there is precisely one quaternion field over F then
every quadratic form in more than four variables over F is isotropic (i.e., the u-invariant of F
equals 4).

5.1 Lemma. If F is an ordered field with property p♦q then the octonion field O over F is
isomorphic to D1pD1pD1pF qqq. In particular, the norm form is positive definite.

Proof. Each norm in D1pD1pD1pF qqq is a sum of squares in F . Therefore, the norm form is
positive definite, and thus anisotropic. Thus D1pD1pD1pF qqq is the (unique) octonion field
over F .

5.2 Lemma. Assume that F has property p♦q. Then the group NOpH
ˆq has index two in Fˆ,

for every quaternion subalgebra H of O.

Proof. Let H be a quaternion subalgebra, and consider γ, λ P Fˆ. Then DγpHq is split pre-
cisely if ´γ P NOpHq, and DγpHq – DλpHq ðñ λ´1γ P NOpH

ˆq. The first one of these
observations shows that NOpH

ˆq is a proper subgroup of Fˆ because there exists an octonion
field, and index two follows from uniqueness.

5.3 Lemma. Assume that F has property p♦q. If NOpOq “ F then ´1 P NOpHq holds for each
quaternion field H in O. In particular, there exists no ordering on F , and F is not an algebraic
number field.

Proof. Let H be a quaternion algebra in O. Pick w P HK r t0u. Our assumption NOpOq “ F
yields F “ NOpHq ` NOpwqNOpHq, and NOpwq R NOpHq. From 5.2 we know that NOpH

ˆq

is a subgroup of index two in Fˆ, and infer Fˆ “ NOpH
ˆq Y NOpwqNOpH

ˆq. Now ´1 P
NOpwqNOpH

ˆq would imply that O is split, so ´1 P NOpH
ˆq.

If there were an ordering on F , property p♦q would (by 5.1) imply that the norm form
on O is positive definite, contradicting ´1 P NOpHq. Over an algebraic number field without
ordering, every octonion algebra splits (see 4.3 (d)).

5.4 Theorem. Assume that F has property p♦q, and that NOpOq ‰ F . Then NOpOˆq forms the
set of positive elements for an ordering on F , and that ordering is the only one turning F into an
ordered field. In particular, we have O – D1pD1pD1pF qqq. For every quaternion subalgebra H
in O, we have NHpH

ˆq “ NOpOˆq. An abstract quaternion algebra H over F is isomorphic to
a subalgebra of O if, and only if, its norm form NH is positive definite.

7
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Proof. Pick a quaternion subalgebra H in O. From 5.2 we know NOpOˆq P tNOpH
ˆq, Fˆu,

and our assumption yields NOpOˆq “ NOpH
ˆq. For w P HK r t0u there exists x P H with

NOpwq “ NHpxq. Now v :“ wx´1 P wH has norm 1 in O, and O “ D1pHq follows. As O is
not split, we have ´1 P F rNOpHq.

For α, β P NHpHq we pick x, y P H with NHpxq “ α and NHpyq “ β, respectively. Then
NOpx ` vyq “ NHpxq ` NOpvqNHpyq “ NHpxq ` NHpyq shows that the subgroup P :“
NOpOˆq “ NHpH

ˆq of Fˆ is also closed under addition. As O is not split, we have P X´P “
H, and PY´P “ Fˆ because P has index two in Fˆ (see 5.2). So P forms the set of positive
elements for an ordering of the field F , cf. [6, Section 11].

The choice of a quaternion subalgebra does not affect our argument. In particular, every
such subalgebra has the same group of norms (namely, P ).

The last assertion follows from the observations that NO (and thus each restriction to any
subspace of O) is positive definite, and that every quaternion algebra H with positive definite
norm is non-split, with positive definite double D1pHq – O.

5.5 Remark. Lagrange’s four-square theorem asserts that every positive element of Q is the
sum of four squares. We have used this theorem (indirectly, via the local-global principle by
Hasse-Minkowski) in 4.2 to show that there exists only one isomorphism type of octonion
field over Q. Conversely, we see from 5.4 that (under the assumption p♦q of uniqueness of
the octonion field over F ) every positive element of F is a norm in every quaternion field
with positive definite norm over F (a special case of the Hilbert-Siegel Theorem, see [8,
Hauptsatz, p. 259]). In particular, this holds for the quaternion field D1pD1pF qq; viz., every
positive element of F is a sum of four squares.

5.6 Theorem. Assume that F is an ordered field with property p♦q. Then every form of type E6

over F is either positive or negative definite.
The equivalence classes of positive definite forms of type E6 over F correspond uniquely to the

pairs of isomorphism classes of quadratic extension fields with positive definite norm and positive
scalars modulo the group of norms. The similarity classes correspond to isomorphism classes of
quadratic extension fields with positive definite norm.

More precisely: If q has a norm splitting q “ αNK{F k βNK{F k γNK{F with NK{F positive
definite and positive factors α, β, γ P F , then q is equivalent to NK{F k NK{F k λNK{F with
λ :“ αβγ. Its equivalence class corresponds to the pair consisting of the extension K{F and the
coset λNK{F pK

ˆq, and its similarity class is represented by NK{F kNK{F kNK{F .

Proof. Let O be the unique octonion field over F . Definiteness of q follows from the fact that q
is similar to a subform of NO.

The orthogonal sum qkλNK{F is equivalent to αpNK{F kαβNK{F kαγNK{F kβγNK{F q “

αNC , where the composition algebra C :“ DαγpDαβpKqq is obtained by suitable doubling.
As q is anisotropic, the algebra C is not split. Our uniqueness assumption gives C – O,
and q k λNK{F is equivalent to αNO. From 5.4 we know α P NO, and infer that αNO “ is
equivalent to NO.

We abbreviate sλ :“ NK{F k NK{F k λNK{F . The form sλ k λNK{F is equivalent to
NK{F k NK{F k λpNK{F k NK{F q “ ND, where D :“ DλpD1pKqq. As its norm is positive
definite, the composition algebra D is not split, and D – O follows from p♦q. Now Witt’s
cancellation theorem yields the claimed equivalence of q and sλ.

It remains to note that sλ is similar to λsλ “ λNK{F kλNK{F kλ
2NK{F ,which is equivalent

to sλ4 , and thus equivalent to s1.

8



Subforms of norm forms N. Knarr, M. J. Stroppel

5.7 Theorem. Assume that F is an ordered field with property p♦q, let K{F be a separable
quadratic extension, and let d ą 2 be an integer. If q : F 2d Ñ F is a quadratic form with norm
splitting q “ α1NK{F k ¨ ¨ ¨ k αd´1NK{F k αdNK{F then q is either positive or negative definite.

If q is positive definite then q also has a norm splitting q “ NK{F k ¨ ¨ ¨ k NK{F k λNK{F ,
where λ “

śd
j“1 αj . If q is negative definite then ´q has such a norm splitting.

Proof. Replacing q by ´q if necessary, we may (and will) assume α1 ą 0; this will put us into
the positive definite case.

We proceed by induction on d. The case d “ 3 is treated in 5.6. Now consider the case
d ą 3. Applying our induction hypothesis to the restriction of q to F 2d´2 ˆ t0u2, we may
assume α1 “ 1 “ ¨ ¨ ¨ “ αd´2. Now we apply 5.6 to the restriction of q to t0u2d´6 ˆ F 6.

5.8 Remarks. If F is an ordered field with property p♦q then 5.6 and 5.7 yield a complete
description of forms of type E6 and of type E7: up to a change of sign, these are forms with
norm splitting NK{F kNK{F k λNK{F with positive λ, and NK{F kNK{F kNK{F k λNK{F

with positive λ P F r NK{F pKq, respectively. Recall from 2.3 and 2.4 that K{F is uniquely
determined if the form is of type E6, but the situation is different for forms of type E7.

Under the present assumptions on F , there do not exist any forms of type E8 because such
a form would be a (positive or negative) definite one, so the scalars α1, . . . , α6 involved in the
norm splitting all have the same sign, and ´α1α2α3α4α5α6 will be negative while NK{F pK

ˆq

is contained in the set of positive elements of F .

5.9 Remark. Theorem 5.7 excludes forms in two or four variables. While norm splittings
for forms in two variables are not really interesting (obviously), the case of four variables is
completely different from the case studied in 5.7: From 3.1 (b) we know that a form in four
variables has a norm splitting precisely if it is similar to the norm of a quaternion field, and
the norm of the quaternion field determines the isomorphism type of the quaternion field
(cf. [9, 1.7]). Note that there exist quaternion fields over Q with indefinite norm form; e.g.,
take D´3pD1pQqq.
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2016-005 Kohls, C.; Kreuzer, C.; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite
Elements for Optimal Control Problems with Control Constraints

2016-004 Blaschzyk, I.; Steinwart, I.: Improved Classification Rates under Refined Margin
Conditions
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