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Clifford parallelisms defined by octonions

Andrea Blunck, Norbert Knarr,
Bernhild Stroppel, Markus J. Stroppel

Abstract

We define (left and right) Clifford parallelisms on a seven-dimensional projective space
algebraically, using an octonion division algebra. Thus, we generalize the two well-known
Clifford parallelisms on a three-dimensional projective space, obtained from a quaternion
division algebra. We determine (for both the octonion and quaternion case) the auto-
morphism groups of these parallelisms. A geometric description of the parallel classes is
given with the help of a hyperbolic quadric in a Baer superspace, obtained from the split
octonion algebra over a quadratic extension of the ground field, again generalizing results
that are known for the quaternion case.

In contrast to the quaternion case, the orbits of the two Clifford parallelisms under
the group of direct similitudes of the norm form of the algebra are non-trivial in the
octonion case. The two spaces of parallelisms can be seen as the point sets of two point-
line geometries, both isomorphic to the seven-dimensional projective space. Together
with the original space, we thus have three versions of this projective space. We introduce
a triality between them which is closely related to the triality of the polar space of split
type D4.

Mathematics Subject Classification (MSC 2000): 51A15, 17A75, 51A05, 51A10, 51J15,
11E04.
Keywords: Clifford parallelism, octonion, quaternion, composition algebra, projective space,
triality.

1 Introduction

Clifford’s classical parallelisms ([7], see [8] for historical information and background) in the
three-dimensional projective space PpR4q over the field R of real numbers can be described
in various ways. Among others, there are descriptions using Hamilton’s quaternions (i.e., the
four-dimensional associative division algebra over the ground field R) or using the two reguli
on a hyperbolic quadric in PpC4q (see [15], [3]; and [6] for a generalization to arbitrary
ground fields). We consider Clifford parallelisms in PpOq, defined by an octonion division
algebra O instead of quaternions. Wherever convenient, we formulate our results and proofs
in such a way that the quaternion case is treated together with the octonion case. (Section 2
collects the facts about composition algebras that we need in the present paper.) Character-
istic two is explicitly allowed. Note however, that octonion division algebras in characteristic
two contain both quaternion subfields and four-dimensional subalgebras that are commuta-
tive. Clifford parallelisms on the latter are treated in [12], but they are beyond the scope of
our present paper.
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So we consider a non-split composition algebra C of dimension at least four over an arbi-
trary ground field F and the associated projective space PpCq, which is a three-dimensional
or a seven-dimensional projective space over F . Two lines in this space are called right (Clif-
ford) parallel, if they can be written as Ku,Kw (with u,w non-zero elements of C) for some
two-dimensional subspace K of C containing the element 1 P C (which means that K is
a quadratic field extension of F contained in C). The left (Clifford) parallelism is defined
analogously.

In Section 4 we determine the automorphism group Autp�q of the right parallelism. It
turns out that the stabilizer of the point 1 “ F1 in Autp�q is the group of all collineations
induced by (not necessarily F -linear) automorphisms of C. Since the group generated by
collineations induced by left multiplications with pure elements of C is a subgroup of Autp�q
acting transitively on the point set, this yields a description of the whole group Autp�q. A
similar result holds for the automorphism group Autpq of the left parallelism.

Since the parallel classes of � and  are regular spreads, it is clear from [4] that they can
be described via (one-dimensional or three-dimensional) indicator spaces in appropriate Baer
superspaces of PpCq. In Section 5 we show the following. Let E : F be a quadratic extension
of F . Consider a left or right parallel class whose representative K through the point 1 is
isomorphic to E as an extension of F . Then the algebra CE :“ E bC splits, and so the norm
of CE gives rise to a hyperbolic quadric QE in the Baer superspace PpCEq of PpCq. On QE
there are two families M` and M´ of maximal totally isotropic subspaces. The indicator
spaces of the given parallel class are in M` if it is a right parallel class, otherwise in M´.
See [6] for the case that C is a quaternion algebra.

Our definition of the parallelisms � and  makes special use of the element 1. In Section 6,
we take an element a P Crt0u instead, and obtain parallelisms �a and a. If C is a quaternion
algebra, each �a coincides with �, and each a coincides with . In the case that C is an
octonion algebra O, however, we have that �a “ �b (and a “ b) holds exactly if Fa “ Fb.
So we have many different Clifford parallelisms in the octonion case. We show (in 6.14) that
the set Π` of all �a is the orbit of � under the action of the group of collineations induced by
direct similitudes of O with respect to the norm (and similarly for the set Π´ of all a). Let C`
and C´ be the sets of all parallel classes of all parallelisms in Π` (or Π´, respectively). In
Section 7 we prove that the incidence geometries pΠ`, C`, Qq and pΠ´, C´, Qq are isomorphic
to the projective space PpOq (seen as a point-line incidence geometry).

In Section 8 we study these three projective spaces and a triality linking them. There is
an associated action of the autotopism group of O. If E : F is a quadratic field extension
such that OE “ E b O splits, then both the triality and the group action can be extended
to M` ˆ QE ˆM´, where QE is the hyperbolic quadric in PpOEq mentioned above and
M`,M´ are the two families of totally isotropic subspaces contained in QE . Thus, we get
a connection to the polar space of split type D4 defined on QE and the associated classical
triality (see [26, §2]).

Finally, Section 9 contains remarks on older literature. We also correct an over-enthusiastic
generalization, giving a characterization of composition algebras containing only one isomor-
phism type of two-dimensional subalgebras (see 9.1).
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2 Composition algebras

Octonion algebras are special cases of composition algebras, obtained by a doubling process
(cf. 2.2.(i) below) leading from separable quadratic field extensions to quaternion algebras
and then to octonion algebras. We give a precise definition, and collect some of the crucial
properties:

2.1 Definition. Let F be a commutative field. A composition algebra over F is a vector space C
over F with a bilinear multiplication (written as xy) and a quadratic form N :“ NC : C Ñ F
which is multiplicative (i.e., Npxyq “ NpxqNpyq holds for all x, y P C) and whose polar
form is not degenerate. We also assume that the algebra contains a neutral element for its
multiplication, denoted by 1.

The composition algebra is called split if it contains divisors of zero. We recall that com-
position algebras occur only with dimension d P t1, 2, 4, 8u; see [23, 1.6.2]. If d “ 4 we call
the algebra a quaternion algebra, such an algebra is a skew field if it is non-split; it is then a
quaternion field ([20]). Composition algebras of dimension 8 are called octonion algebras; a
non-split octonion algebra is also called an octonion field.

As usual, the ground field F is embedded as F1 in C. The polar form will be written as
px|yq :“ Npx` yq ´Npxq ´Npyq.

The first chapter of [23] gives a comprehensive introduction into composition algebras over
arbitrary fields, including the characteristic two case.

We collect the basic facts that we need in the present paper (for proofs, consult [23]):

2.2 Properties of composition algebras. Let C be a composition algebra over F .

(a) The map κ : C Ñ C : x ÞÑ x :“ px|1q1´ x is an involutory anti-automorphism, called the
standard involution of C. (This is the reflection at F1 if charF ‰ 2, and the orthogonal
transvection with center 1 if charF “ 2.)

(b) The norm and its polar form can be recovered from the standard involution as NCpxq “
xx “ xx and px|yq “ xy ` yx. In particular, we have the hyperplane PuC :“ 1K “
 

x P C
ˇ

ˇ x “ ´x
(

of pure elements.

(c) In general, the multiplication is not associative, but weak versions of associativity are still
there; among them Moufang’s identities [23, 1.4.1]

paxqpyaq “ appxyqaq, apxpayqq “ papxaqqy, xpapyaqq “ ppxaqyqa.

(d) Artin’s Theorem (see [23, Prop. 1.5.2]): For any two elements x, y P C, the subalgebra
generated by x and y in C is associative.

(e) An element a P C is invertible if, and only if, its norm is not zero; we have a´1 “ NCpaq
´1 a

in that case. Thus a non-split composition algebra is a division algebra, each element of
C˚ :“ C r t0u is then invertible. Note that Artin’s Theorem then implies a´1paxq “ x “
apa´1xq “ pxaqa´1 “ pxa´1qa, for each x P C.

(f) Each element a P C is a root of a polynomial of degree 2 over F , namely, the polynomial
X2 ´ pa` aqX `NCpaq P F rXs. We call TCpaq :“ a` a the trace of a in C.

3



A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel Clifford parallelisms defined by octonions

(g) For each a P C the algebra generated by a is F paq “ F `Fa, and this algebra is associative
and commutative. For x, y P F paq and v P C we have xpyvq “ pxyqv, and C is a left
module over F paq. In particular, if the restriction of the norm to F paq is anisotropic then
F paq is a commutative field, and C is a (left) vector space over F paq.
Similarly, we may consider C as a right module over F paq.

(h) [18, 1.3] Every F -semilinear automorphism of C commutes with the standard involution.
If dimF C ě 4 then every Z-linear automorphism of C is F -semilinear. Consequently,
every Z-linear automorphism of such a C is a semi-similitude of the norm form, and every
F -linear automorphism is an orthogonal map. We write AutpCq “ AutZpCq for the group
of all Z-linear automorphisms, and AutF pCq for the group of all F -linear automorphisms.

(i) [23, 1.5.3] If D is a subalgebra of C with dimF C “ 2 dimF D and such that DK XD “

t0u then DK “ Dw holds for each w P DK with NCpwq ‰ 0, and the multiplication in
C “ D ‘DK is given by px` ywqpu` vwq “ pxu´NCpwqvyq ` pvx` yuqw.

2.3 Lemma. Let O be an octonion division algebra over F , and let S be an F -subalgebra. Then
the following hold.

(a) If the restriction of the polar form of the norm form to S is non-zero then it is not degener-
ate, and S is a composition algebra.

(b) If the restriction of the polar form to S is zero then S is a commutative field, in fact, it is a
totally inseparable extension of degree dimF S P t1, 2, 4u.

(c) In any case, we have dimF S P t1, 2, 4, 8u.

Proof. Assertion (a) has been proved in [17, 1.4]. Now assume that the polar form is trivial
on S. Then 1 P S Ď 1K implies charF “ 2, and 1K “ Fixpκq. Non-degeneracy of the polar
form on O implies that its Witt index (and thus also dimS) is bounded by 1

2 dimO “ 4. For
x, y P S we obtain 0 “ px|yq “ xy ` yx “ xy ` yx and then yx “ ´xy “ xy. Thus S is
commutative (and associative by [21, 6.1.6]). Moreover, we have a2 “ Npaq P F for each
a P S. Thus S is a totally inseparable extension of F , and dimF S is a power of 2 because S is
obtained by a series of quadratic extensions.

The last assertion follows from the fact that composition algebras only occur in dimen-
sions 1, 2, 4, and 8, cf. [23, Thm. 1.6.2].

2.4 Remark. The results in 2.3 heavily depend on the fact that our algebra has no divisors
of zero; indeed there are subalgebras of dimensions 5 and 6 in split octonion algebras, and
some of the six-dimensional ones even occur as fixed point sets of involutory automorphisms
(see [10, 4.11]).

3 The Clifford parallelisms defined by quaternions or octonions

Consider an arbitrary projective space. A set S of lines is called a (line) spread if each point
lies on exactly one line of S. An equivalence relation on the set of lines of the space is called
a parallelism if each equivalence class (called parallel class) is a spread, i.e., if through each
point there is exactly one line of each parallel class.
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In a three-dimensional pappian projective space, any three pairwise skew lines belong to a
unique regulus (one of the two maximal sets of pairwise skew lines on a hyperbolic quadric).
A spread S of a three-dimensional pappian projective space is called regular if with any three
lines also the entire regulus through these lines belongs to S. A spread of a pappian projective
space of dimension greater than three is called regular if its intersection with the line space
of the span of any two of its elements is a regular spread. A parallelism is called regular if all
its parallel classes are regular spreads.

Recall that a spread of a pappian projective space of dimension 3 is regular if, and only
if, the translation plane defined by that spread is pappian, and that these two conditions are
equivalent to the existence of quadratic extension of the ground field such that the members
of the spread are the one-dimensional subspaces over the extension field. See [16, Ch. 4,
Prop. 4.13, p. 57].

The pd ´ 1q-dimensional projective space with homogeneous coordinates from a vector
space V of dimension d over a field F will be denoted as PpV q “ PF pV q – PpF dq, and L
always denotes the set of lines. We will concentrate on pappian projective spaces; i.e. the
field F will be commutative throughout.

Let C be a non-split composition algebra of dimension at least 4 (i.e., a quaternion or oc-
tonion division algebra) over the field F . The existence of such a division algebra over F
imposes serious restrictions. For instance, the field F cannot be finite, it cannot be quadrati-
cally closed, and an octonion division algebra over F does not exist if F is a local field (i.e.,
a non-discrete locally compact Hausdorff field, like a p-adic field, for instance) unless F – R.
See [23, 1.10].

Consider the (three- or seven-dimensional) projective space PpCq – PpF dimCq as a point-
line geometry; the point set consists of the one-dimensional subspaces and the line set consists
of the two-dimensional subspaces of the vector spaceC. LetK be any line through the point 1.
Then K is a commutative subfield of C, and C is a left vector space over K, see 2.2.(g).

If ϕ : V Ñ W is an injective semilinear map we write Ppϕq : PpV q Ñ PpW q for the
induced map between projective spaces. For any u P C˚ the maps λu : C Ñ C : x ÞÑ ux
and ρu : C Ñ C : x ÞÑ xu are F -linear bijections and hence induce automorphisms Ppλuq
and Ppρuq, respectively, of PpCq. In particular, they map lines to lines. We write ΓLF pCq for
the group of all semi-linear bijections of the F -vector space C. Thus PΓLF pCq “ PpΓLF pCqq
is the full group of automorphisms of the projective space.

3.1 Definition. We consider two relations � and  on the set of lines, defined by

L �M ðñ DK Ď C : L,M P
 

Ku
ˇ

ˇ u P C˚
(

^ 1 P K

and L M ðñ DK Ď C : L,M P
 

uK
ˇ

ˇ u P C˚
(

^ 1 P K ,

respectively. Clearly, the sets K involved in the definition have to be two-dimensional vector
subspaces of C. The relations � and  are called the right and the left (Clifford) parallelism,
respectively. The following result is already contained in [28, (17)(c) and (10)], it shows that
the two Clifford parallelisms are parallelisms, indeed.

3.2 Theorem. (a) For each line L there exists a unique pair pK,K#q of subfields in C such
that L is a one-dimensional subspace of the left vector space C over K (see 2.2.(g)), and
also a one-dimensional subspace of the right vector space over K#.

(b) Both � and  are equivalence relations, and their equivalence classes are spreads. In fact,
the class of a line K through 1 with respect to � is the set of one-dimensional subspaces
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of the left vector space C over K, and the class of K with respect to  is the set of one-
dimensional subspaces of the right vector space over K.

Proof. We only discuss the relation �, arguments for  are completely analogous.
Let L be an arbitrary line. Let u P L r t0u. Then K :“ Lu´1 is a line through 1 and

L “ Ku, cf. 2.2.(e). Assume that Ku “ K 1u1. Then u1 P Ku, whence Ku “ Ku1, the
unique one-dimensional left K-subspace of C containing u1. So Ku1 “ Ku “ K 1u1, and
multiplication by pu1q´1 from the right implies K “ K 1. Thus assertion (a) is established.

From L � M � N we infer that L,M,N are one-dimensional subspaces of the left vector
space over the field K obtained for L in assertion (a). This description of the relation � yields
that � is an equivalence relation, with classes as claimed in assertion (b).

3.3 Remark. The parallelisms � and  are also considered in [14, Remark 1, p. 486].

4 The automorphism group of a Clifford parallelism

We want to determine the automorphism groups Autp�q and Autpq of the right and left
Clifford parallelisms, i.e. the groups of collineations of PpCq that leave � (or , respectively)
invariant. First we collect some examples.

4.1 Lemma. Let C be a quaternion or octonion division algebra.

(a) Each α P AutpCq induces an element Ppαq of Autpq XAutp�q.
We obtain a subgroup A :“

 

Ppαq
ˇ

ˇ α P AutpCq
(

in Autpq XAutp�q.

(b) For each a P PuC r t0u we have Ppλaq P Autp�q, and Ppρaq P Autpq.
In fact, we have λapKuq “ paKa´1qpauq for each line K through 1 and each u P C˚.
The group Λ generated by left multiplications with nontrivial pure elements thus induces a
subgroup1 PpΛq of Autp�q.

Proof. Assertion (a) is clear from the definition of  and �; recall from 2.2.(h) that each
element of AutpCq is F -semilinear.

In order to prove assertion (b), we show that Ppλaq maps the right parallel class of K to
the parallel class of aKa´1: For u P C˚ we have λapKuq “ apKuq “ paKa´1qpauq, where
the last equality can be shown as follows: Since a P PuC, we have a´1 “ NCpaq

´1a “
´NCpaq

´1a. Using 2.2.(c), (d), and (e) we find paka´1qpauq “ ´NCpaq
´1pakaqpauq “

´NCpaq
´1papkpapauqqqq “ apkpa´1pauqqq “ apkuq.

4.2 Remark. We note a new phenomenon if C is an octonion division algebra rather than a
quaternion field: In general, Ppρaq is not in Autp�q, even if a P PuC. In fact, ρa P Autp�q
implies that Kpcaq “ pKcqa holds for each c P C˚. If C “ O is an octonion algebra, that
equality is not true in general. For example, pick c P OrF with c`c “ 1 and b P t1, cuKrt0u.
Then L :“ F ` Fc is a separable extension, and H :“ L ` Lb is a quaternion field. Put
K :“ F ` Fb, and pick a P HK r t0u. Then the multiplication formula for O (obtained as
O “ H ` Ha by doubling, see 2.2.(i)) yields pKcqa X Kpcaq “ F pcaq, and pKcqa ‰ Kpcaq
follows.

1 It turns out that, in a roundabout way, the group PpΛq is isomorphic to SOpPuC,N|Pu Cq. See [5, 5.2(f), 6.1].
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In fact, the image of � under ρa is another parallelism, it turns out that there is a large orbit
of such parallelism if C is an octonion algebra, and that these parallelisms form an interesting
and enlightening geometry. See Sections 6 and 7 below.

If C is a quaternion field then associativity of the multiplication yields that the conjugate
Ppκ ˝ Λ ˝ κq “

〈
Ppρaq

ˇ

ˇ 0 ‰ a P PuC
〉

of PpΛq also belongs to Autp�q.

We obtain that the two subgroups A and Λ found in 4.1 make up all of Autp�q:

4.3 Theorem. The stabilizer of 1 in Autp�q is A, and this is also the stabilizer of 1 in Autpq.
Therefore, we have Autp�q “ PpΛq ˝A and Autpq “ Ppκ ˝ Λ ˝ κq ˝A.

Proof. The group PpΛq is contained in Autp�q by 4.1.(b), and it is transitive on the points
of PpCq by [5, 1.4]. So Autp�q is transitive on the set of points, and the full group is the
product of the stabilizer Autp�q1 with the transitive subgroup: Autp�q “ PpΛq ˝ Autp�q1.
In 4.1.(a) we have also seen that A “ PpAutpCqq is contained in the stabilizer Autp�q1 of the
point 1 in Autp�q. It remains to show Autp�q1 ď A.

Consider α P ΓLF pCq with Ppαq P Autp�q, and assume that Ppαq fixes 1. Without loss of
generality, we may then assume αp1q “ 1.

Let K be a line through 1. The image K 1 :“ αpKq is also a line through 1, and thus
another quadratic field extension. By 3.2.(b), α maps one-dimensional K-subspaces to one-
dimensional K 1-subspaces. As α is additive, it induces an isomorphism from C considered as
an affine space over K onto C considered as an affine space over K 1. By the Fundamental
Theorem of Affine Geometry (e.g., see [2, 2.6.3]), we have that α is a K-K 1-semilinear map,
i.e., there is a field isomorphism ϕK : K Ñ K 1 such that αpxyq “ ϕKpxqαpyq holds for all
x P K and all y P C. The companion ϕK coincides with the restriction of α because αp1q “ 1.

For any x, y P C we choose a line K through 1 and Fx. Then αpxyq “ ϕKpxqαpyq “
αpxqαpyq, and we see that α is multiplicative. Thus we have proved Autp�q1 “ A, and
Autp�q “ PpΛq ˝A.

The anti-automorphism κ induces a collineation Ppκq centralizing A and interchanging the
parallelism � with . This yields our statement about Autpq.

If C is a quaternion field, then AutF pCq consists of inner automorphisms (by the Skolem-
Noether Theorem, see [1, Cor. 7.2D] or [13, §4.6, Cor. to Th. 4.9]). This means AutF pCq ď
Λ ˝ κ ˝ Λ ˝ κ. Note that Λ ˝ κ ˝ Λ ˝ κ “

 

λa ˝ ρb
ˇ

ˇ a, b P C˚
(

holds if C is associative. If C is a
quaternion field, we have PpΛq – pC˚{F ˚q2 – PGO`pC,Nq, see [5, 5.2(e)].

For the octonion case, the group Λ is studied in detail in [5]. We prove in that paper:
AutF pOq ď Λ, see [5, 5.7], and PpΛq – SOpPuO, N|PuOq, see [5, 6.1]. Therefore, we obtain:

4.4 Theorem. Let AutF p�q :“ Autp�q X PGLF pCq denote the group of all automorphisms of
the parallelism � that are induced by F -linear maps.

(a) If C is a quaternion field then AutF p�q “ PpΛ ˝ κ ˝ Λ ˝ κq “ AutF pq – pC˚{F ˚q2 –
PGO`pC,Nq.

(b) If C is an octonion division algebra then AutF p�q “ PpΛq – SOpPuO, N|PuOq.

4.5 Corollary. If AutpF q is trivial then Autp�q “ AutF p�q. In particular, if C is the standard
quaternion field over F “ R then Autp�q “ Autpq – PGO`pR4q “ PSO4pRq, and we have
Autp�q – SO7pRq if C is the (standard) octonion division algebra over R.

See [3, Sect. 9] for an alternative approach to 4.5 for the special case where C is the
quaternion field over F “ R.
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5 Geometric description

The aim of this section is to find indicator spaces for all parallel classes of our Clifford paral-
lelisms. We shall make use of a description of regular spreads found in [4], but concentrate
on the only case we need.

For any field extension E : F and any algebra C over F , we consider the tensor product
CE :“ EbC over F as an algebra over E, with multiplication pebxqpe1bx1q “ pee1qb pxx1q.
If C is a composition algebra with standard involution x ÞÑ x then CE is also a composition
algebra, with (E-linear) standard involution extending eb x ÞÑ eb x “ eb x. The norm NC

of a composition algebra C over F extends naturally to the norm of CE “ E b C: we have
NCE

peb xq “ e2NCpxq.
Now let C be a quaternion or octonion division algebra, and let m :“ 1

2 dimF C P t2, 4u.
Via U ÞÑ E b U we embed PpCq “ PF pCq as a subspace of PpCEq “ PEpCEq. If E : F is a
quadratic field extension, then PpCq is a Baer subspace of PpCEq, i.e., through each point p of
PpCEq that does not belong to PpCq there is a unique line of PpCq passing though p (the line
indicated by p).

Let I be an pm´ 1q-dimensional projective subspace of PpCEq that does not contain points
of PpCq. We define SpIq to be the set of all the lines indicated by the points of I.

5.1 Lemma ([4, 1.2]). For each pm´ 1q-dimensional projective subspace I of PpCEq that does
not contain points of PpCq, the set SpIq is a regular spread in PpCq.

Following the ideas of [6], where the quaternion case was considered, we study PpCEq –
PEpE2dq as a Baer superspace of PpCq – PF pF 2dq.

5.2 Theorem ([4, Thm. 1.2]). Let S be a regular spread in a p2m ´ 1q-dimensional pappian
projective space PpF 2mq. Then there is a quadratic extension E of F and an pm´1q-dimensional
projective subspace I of PpE2mq such that I contains no point of PpF 2mq and S “ SpIq. The
space I is called an indicator space of S.

If E : F is separable, then there are exactly two indicator spaces I, I 1 of S, and I 1 “ βpIq,
where the Baer involution β is induced by the generator of the Galois group GalpE : F q of E : F .
If E : F is inseparable, then there is exactly one indicator space of S.

Note that the quadratic extension in 5.2 depends on the spread. In general, there will not
be a universal Baer superspace PpE2mq providing indicator spaces for all spreads of the par-
allelisms simultaneously. See 9.1 below, and also [6] for the three-dimensional case (where
m “ 2).

Let again E : F be a quadratic field extension. We study the geometric interpretation of the
norm form NCE

of CE in more detail. If CE is split then the norm form NCE
is hyperbolic

(i.e., it is not degenerate, and its Witt index is 1
2 dimEpCEq “

1
2 dimF C “ m). We are then

interested in the associated quadric QE in PpCEq – PpE2mq; this quadric is hyperbolic, i.e., it
is not degenerate and contains projective pm´ 1q-spaces.

On the quadric QE there are two familiesM`,M´ of maximal totally isotropic subspaces.
If m “ 2 then CE – E2ˆ2, and NE2ˆ2pxq “ detx (cf. [23, p. 19 f]). The two families form the
two reguli on a hyperbolic quadric in projective 3-space. If m “ 4, however, two elements of
the same family have non-trivial intersection in general; this follows readily from the algebraic
description given in the next paragraph.
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As CE is a split quaternion or octonion algebra, the members of the two families admit a
nice algebraic description (see2 [26, Thm. 3]): up to a change of names for the families (or
an application of the standard involution), we have

M` “
 

aCE
ˇ

ˇ a P CE r t0u, NCE
paq “ 0

(

, andM´ “
 

CEa
ˇ

ˇ a P CE r t0u, NCE
paq “ 0

(

,

and aCE “ bCE ðñ Ea “ Eb ðñ CEa “ CEb if NCE
paq “ 0 “ NCE

pbq; cf. [26, Thm. 4].
In the sequel, we assume that some quadratic field extension E : F is chosen such that CE

splits. We consider the projective space PpCEq and the Baer subspace PpCq. Since the norm
form NC is anisotropic on C, the quadric QE has empty intersection with the Baer sub-
space PpCq. So according to 5.1 each element of M` YM´ indicates a regular spread
in PpCq.

If E : F is a quadratic extension and C is a non-split composition algebra then CE splits
if, and only if, the algebra C contains an F -subalgebra isomorphic to E. We put this in the
geometric context studied here:

5.3 Proposition. Let E : F be a quadratic field extension. Let L be any line in PpCq, and let K
be its right parallel passing through 1. Then the following hold.

(a) For each e P E and each y P K we have NCE
peb 1´ 1b yq “ e2 ´ TCpyqe`NCpyq.

(b) The line E bK of PpCEq meets QE in at least one point if, and only if, the algebra E bK
contains divisors of zero. This happens precisely if the extensions E : F and K : F are
isomorphic, i.e., if there exists an F -linear isomorphism from E onto K.

Another equivalent condition is that the restriction NK “ NC |K is similar to the norm NE

of the field extension E : F .

(c) The line E b L meets the quadric QE if, and only if, the field extensions E : F and K : F
are isomorphic as F -algebras. This happens precisely if N|L and NE are similar.

(d) Assume that N|L and NE are similar. If Eq is a point of pE bKq X QE and S denotes
the �-class of L then S “ SpIq PM` for I “ qCE , and q :“ eb 1 ´ 1b ϕpeq for some
F -linear homomorphism ϕ : E Ñ C of algebras mapping E onto L, and any e P E r F .

(e) Analogously, the left parallel class of L is indicated by J :“ CEpeb 1´ 1b ϕpeqq PM´.

Proof. We compute peb 1´ 1b yqpeb 1´ 1b yq “ peb 1´ 1b yqpeb 1´ 1b yq “ e2 b 1´
eb y ´ eb y ` 1b yy “

`

e2 ´ TKpyqe`NKpyq
˘

b 1 and thus verify assertion (a).
Note that E bK splits if, and only if, the line E bK meets QE . Hence, it remains to show

that the algebra E b K splits precisely if the extensions E : F and K : F are isomorphic.
Choose y P K rF ; then 1 and y form a basis for K over F . Thus 1b 1 and 1b y form a basis
for E bK over E.

If E bK splits then there exist e, d P E such that w :“ e b 1 ´ d b y is not trivial, but has
norm 0. If d “ 0 then NCE

pwq “ NCE
peb 1q “ e2 gives e “ 0, contradicting our choice of w.

Replacing w by d´1w we may therefore assume d “ 1. Now assertions (a) and 2.2.(f) yield
that e and y have the same minimal polynomial over F , and the extensions E : F and K : F
are isomorphic.

2 For the case of a split quaternion algebra CE – E2ˆ2, it is easy to verify that each a P E2ˆ2 r pGL2pEq Y t0uq
gives one-sided ideals aE2ˆ2 and E2ˆ2a which are two-dimensional totally isotropic subspaces, and that every
such subspace is such an ideal.
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Conversely, assume that the extensions are isomorphic, and let ϕ : E Ñ K be an F -linear
multiplicative bijection. Then ϕ conjugates GalpE : F q onto GalpK : F q. For the sake of
clarity, we write the (possibly trivial) generator of the Galois group GalpE : F q as x ÞÑ x̃.
We pick e P E r F , and put q :“ e b 1 ´ 1 b ϕpeq P CE . Then ϕpeq “ ϕpẽq yields
NCE

pqq “ qq “ peb 1´1b ϕpeqqpeb 1´1b ϕpẽqq “ e2b1´eb TKpϕpeqq`1bNKpϕpeqq “
`

e2 ´ TEpeqe`NEpeq
˘

b1 “ 0. Thus NCE
pqq “ 0, the algebra EbK is split, and qCE belongs

toM`. The point Eq of qCE lies on E bK, and indicates K because E bK is the E-linear
span of 1b 1 and 1b ϕpeq.

Any other member of the parallel class S is of the form Ku with u P C˚. Now Ku is
embedded in the line E bKu “ pE bKqp1b uq which contains the vector qp1b uq P qCE .
This shows S Ď SpqCEq. As a spread is never properly contained in another spread, we have
equality.

Assertion (e) follows by an application of the standard involution on CE .

5.4 Proposition. Let E : F be a quadratic field extension such that CE splits. Then AutF p�q
acts transitively on the quadric QE , and also transitively on the set of all lines L in PpCq such
that N|L is similar to NE .

Proof. Choose w P E r F , and let ϕ : E Ñ C be an F -linear homomorphism. We claim
that QE is the orbit of Epw b 1´ 1b ϕpwqq.

Every point Eq P QE lies on (the extension of) a line of the Baer subspace, and every such
line is of the form Ep1b xq ` Ep1b yq with x, y P C˚. As QE contains no points of the Baer
subspace, we may assume that q “ eb x` 1b y, with e P E r F . Moreover, we may choose
x P PuC r t0u because the Baer line meets the hyperplane PpPuCq.

Applying Ppλ´1x q P PpΛq ď AutF p�q we obtain the point Epeb 1´ 1b vq, with v “ ´x´1y.
As that point lies in QE , we find that e and v have the same minimal polynomial over F ,
cf. 5.3.(a) and 2.2.(f). This means that there exists α P AutF pCq ď AutF p�qwith αpvq “ ϕpeq.
Applying the natural E-linear extension of α, we obtain Epeb 1´ 1bϕpeqq in the orbit of Eq
under AutF p�q.

By our choice of w P E r F , there exist s, d P F such that e “ sw ` d with s ‰ 0. Now
we compute Epe b 1 ´ 1 b ϕpeqq “ Epw b 1 ´ 1 b ϕpwqq, and obtain transitivity of AutF p�q
on QE . Transitivity on the given set of lines follows from the fact (see 5.3) that these are just
those lines of the Baer subspace that meet the quadric QE , and that the point on the quadric
indicates the line in question.

5.5 Remark. Proposition 5.3 says that each right (or left) parallel class whose representative
through 1 is isomorphic (as an extension of F ) to E is indicated by exactly two elements
of M` (or M´, respectively) in the case that E : F is separable and by exactly one such
element if E : F is inseparable.

Since any two such right (left) parallel classes are disjoint, the indicator sets form a partial
spread3 I` (or I´, respectively) of QE . On the other hand, each point of QE indicates a
line. From 5.3 we know that these lines are exactly those whose unique parallel through 1 is
isomorphic to E. This means that I` (or I´, respectively) is a spread of QE .

3 A partial spread of a quadric is a collection of mutually disjoint maximally totally isotropic subspaces. Such a
collection is called a spread if it covers the whole quadric.
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We are going to introduce a Baer subspace PpV Eq of PpCEq and an ovoid QE in that Baer
subspace next. Suitable versions of triality will show that this ovoid corresponds to the two
systems I` and I´ of indicator sets for the left or right parallelism, respectively. See also 8.2
below.

5.6 Lemma. Let E : F be a separable quadratic field extension such that CE splits. Then

V E :“
 

eb 1´ 1b y
ˇ

ˇ e P E, y P C, TEpeq “ TCpyq
(

is an F -subspace of F -dimension 2m in CE , and the following hold.

(a) The projective space PpV Eq is a Baer subspace in PpCEq.

(b) The restriction of NCE
to V E takes its values in F , and may be considered as a quadratic

form (over F ) on V E .

(c) The quadric QE induced on PpV Eq is an ovoid in PpV Eq; i.e., every line of PpV Eq

meets QE in at most two points.

(d) Every maximal totally isotropic subspace in QE meets the projective space PpV Eq in a
unique point. In other words, the quadric QE is an ovoid of the quadric QE .

Proof. Pick a hyperplane W in C such that 1 R W ‰ PuC. Then there exists w2 P W with
Tpw2q “ 1. We find a basis w1 “ 1, w2, w3, . . . , w2m for C where the elements w3, . . . , w2m

form a basis for W X PuC. Now pick p, u P E˚ with Tppq “ 0 and Tpuq “ 1. Then pb 1,
ub 1´ 1b w2, ´1b w3, . . . , ´1b w2m form an F -basis for V E and also an E-basis for CE .
Thus PpV Eq is a Baer subspace of PpCEq, and assertion (a) is established.

Consider an arbitrary element w “ e b 1 ´ 1 b x P V E . From 5.3.(a) we know NCE
pwq “

e2 ´ eTCpxq `NCpxq. Now TEpeq “ TCpxq yields e2 ´ eTCpxq `NCpxq “ eTEpeq ´NEpeq ´
eTCpxq ` NCpxq “ ´NEpeq ` NCpxq P F , and NCE

pwq P F follows. Thus assertion (b) is
proved.

The restriction of the norm form to the hyperplane V E X p1 b Cq “
 

1b p
ˇ

ˇ TCppq “ 0
(

in V E is anisotropic. Thus the Witt index of the form on V E is one, and the quadric QE
in PpV Eq is an ovoid, as claimed in assertion (c).

We consider the F -subspace U :“ Eb 1` 1bC. This subspace has dimension 2m` 1, and
its intersection with any maximal totally isotropic subspace M of CE has dimension at least
one because dimF pMq “ 2m and dimF pCEq “ 4m. This shows dimF pM X Uq ě 1.

We claim that every isotropic vector in U is actually contained in V E . Consider e P E and
y P C such that w :“ e b 1 ´ 1 b y has norm 0. From 5.3.(a) we infer that e is a root of the
polynomial X2 ´ TCpyqX `NCpyq.

We distinguish two cases: If e P F then w “ 1b pe´ yq with e´ y P C, and 0 “ NCE
pwq “

NCpe ´ yq yields e ´ y “ 0 because NC is anisotropic. Then w “ 0 P V E . If e R F then the
minimal polynomial of e over F has degree two, and coincides with X2 ´ TCpyqX `NCpyq.
By 2.2.(f), this yields that e and y have the same norm and trace, and w P V E follows, again.
SoMXV E “MXU and dimF pMXV

Eq ě 1. From assertion (c) we know dimF pMXV
Eq ď 1,

and assertion (d) is proved.
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6 The set of all Clifford parallelisms: orbits under similitudes

The definition of parallelisms in 3.1 appears to depend on the choice of a point of reference
(namely, the point 1). If we use an octonion algebra O for C, this is indeed serious, while
associativity of the multiplication in a quaternion field can be used to see that this choice does
not affect the resulting parallelism. In fact (as we shall see below), the group PGOpO, NOq

does not normalize the set tAutF p�q,AutF pqu “ tPpΛq,Ppκ˝Λ˝κqu of stabilizers of the two
parallelisms � and  defined in 3.1, see 4.3. This is in marked contrast to the situation for the
Clifford parallelisms obtained from a quaternion field H playing the role of C: in that case,
the group GOpH, NHq normalizes the set tΛH, κ˝ΛH˝κu, where ΛH :“ tλa | a P H˚u coincides
with our group Λ “

〈
λu

ˇ

ˇ u P PuC r t0u
〉

from 4.1.(b). The groups ΛH and κ ˝ ΛH ˝ κ cen-
tralize each other, and it is known4 that their product is a subgroup of index 2 in GOpH, NHq.
The proof of these observations makes essential use of associativity in H. Now take an octo-
nion algebra O for C. While it is still true that the groups ΛO :“

〈
λa

ˇ

ˇ a P O˚
〉

and κ ˝ ΛO ˝ κ
normalize each other (cf. [5, 3.12]) and that GO`pO, Nq is generated by ΛYpκ˝Λ˝κq (cf. [5,
3.13(e)]), our group Λ may be a proper subgroup of ΛO, and the union ΛYpκ˝Λ˝κq will not
be invariant under conjugation in GO`pO, Nq. If we apply an element of PGOpO, NOq to �,
say, we will thus in general obtain a regular parallelism different from both � and .

6.1 Definitions. The orbit Π of � under the group GOpO, NOq of similitudes of the norm
form is called the set of all Clifford parallelisms in PpOq. In order to describe the elements
of Π, we generalize our definitions of � and of , putting �a :“

  

Lu
ˇ

ˇ u P O˚
( ˇ

ˇ a P L P L
(

and a :“
  

uL
ˇ

ˇ u P O˚
( ˇ

ˇ a P L P L
(

. In fact, we have � “ �1 and  “ 1.

6.2 Remarks. Clearly, κp�q “ . We will verify that �a and a are parallelisms; in fact
they lie in the orbits of � and  under the group of direct similitudes, see 6.14 below. We use
autotopisms to understand the action of that group on lines, parallel classes, and parallelisms.

One could also consider the images of � under the group ΓOpO, Nq of all semi-similitudes.
However, that orbit is not larger than the orbit under GOpO, Nq because every companion
automorphism ϕ P AutpF q occurring with a semi-similitude in GOpO, Nq can already be
realized as the companion of an automorphism of O (cf. [23, 1.7.2]), which stabilizes the
parallelism � by 4.1.(a).

6.3 Definition. For each line L in PpOq and each a P O˚ we denote the parallel classes by
rLs

a :“
 

M
ˇ

ˇ M aL
(

and by rLs�a :“
 

M
ˇ

ˇ M�a L
(

. We also introduce names for special
choices of classes, writing L :“

 

xL
ˇ

ˇ x P O˚
(

and L� :“
 

Lx
ˇ

ˇ x P O˚
(

. For each a P Lrt0u
we then have L “ rLs

a and L� “ rLs�a .

Clearly, every parallel class is of the form L or L�, respectively. We study the map L ÞÑ L�

in 7.5 below.

6.4 Definition. Let C be any algebra. An autotopism of C is a triplet5 pα|β|γq of additive
bijections of C such that βpsxq “ γpsqαpxq holds for all s, x P C.

4 In fact, the group Λ is a transitive subgroup of GOpH, NHq, the conjugacy class κΛ of hyperplane reflections
generates OpH, NHq (by the Cartan-Dieudonné Theorem, see [9, Prop. 8, p. 20, Prop. 14, p. 42, Prop. 17, p. 55],
cf. [11, 14.16, p. 135]), and that group contains the stabilizer of 1 in GOpH, NHq. A Frattini argument yields
GOpH, NHq “ xtκu Y Λy. Now Λ ˝ pκ ˝ Λ ˝ κq is a normal subgroup, of index 2 in GOpH, NHq.

5 As a reminder for the reader, triplets that are autotopisms will be written as pα|β|γq rather than pα, β, γq.

12



Clifford parallelisms defined by octonions A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel

6.5 Examples. Each automorphism α P AutpOq yields an autotopism pα|α|αq.
For each u P O˚, the triplet pρu|λu ˝ ρu|λuq is an autotopism of O. In fact, we have

pλu ˝ ρuqpsxq “ upsxqu “ pusqpxuq “ λupsqρupxq by one of Moufang’s identities.
Using Moufang’s identities in the forms pupsuqqpuxq “ upspupuxqqq and psuqpupxuqq “

pppsuquqxqu, respectively, we also see that the two triplets pNpuq´2λu|λu|Npuqλu ˝ ρuq and
pλu ˝ ρu|Npuq

´2ρu|Npuq
´3ρuq are autotopisms. See 8.1.(a) for a deeper understanding how

these two autotopisms arise from the first one.

6.6 Remarks. If C “ O, then each autotopism is semilinear, see [18, 1.9] and 6.11 below.
Every linear autotopism of O has a uniqueE-linear extension toEbO, for each field extension
E : F . For semilinear autotopisms (even for automorphisms) it is not true in general that the
companion extends to the extension field E.

Using the defining property of autotopisms, we obtain the following.

6.7 Lemma. For every autotopism pα|β|γq of O we have βp xq “ αpxq and βp�x q “ �γpxq .
The action on the set of parallel classes is given by βpLq “ pαpLqq and βpL�q “ pγpLqq�; here
we use the special representatives introduced in 6.3.

6.8 Definition. The subgroup generated by tλu | u P O˚u Y tρu | u P O˚u Ă GOpO, NOq is
called the group of direct similitudes of the norm form, and denoted by GO`pO, NOq.

6.9 Remarks. From [5, 3.11] we infer GOpO, NOq “
〈
tκu YGO`pO, NOq

〉
. As conjuga-

tion by κ interchanges multiplications from the left with multiplications from the right, the
group GO`pO, NOq is normalized by κ, and we obtain a semi-direct product GOpO, NOq “

xκy ˙GO`pO, NOq. Similarly, we know from [5, 3.13.(d)] that the stabilizer of the vector 1
is GOpO, NOq1 “ xκy ˙GO`pO, NOq1.

The intersection O`pO, NOq “ GO`pO, NOq X OpO, NOq is the kernel of the Dickson in-
variant, cf. [5, 3.13.(a)]. So O`pO, NOq “ SOpO, NOq if charF ‰ 2 but O`pO, NOq ă

SOpO, NOq “ OpO, NOq if charF “ 2. In any case, O`pO, NOq has index 2 in OpO, NOq,
and κ represents the coset OpO, NOqr O`pO, NOq.

6.10 Lemma. Let C be a composition algebra over F , and assume dimC ě 4. Then every
element of norm 0 is the sum of two invertible elements of the same norm.

Proof. Consider x P C with Npxq “ 0. As 0 “ 1 ` p´1q we may assume x ‰ 0. There
exists a quaternion subalgebra H ď C which contains x. This quaternion algebra is split,
and thus isomorphic to F 2ˆ2. A corresponding isomorphism carries x to a conjugate either of
s p 1 0

0 0 q “ s
`

1 1
´1 0

˘

` s
`

0 ´1
1 0

˘

or of s p 0 0
1 0 q “ s p 1 0

1 1 q` s
`

´1 0
0 ´1

˘

; here s is a suitable scalar, and
the two invertible summands have norm s2 in any case.

6.11 Lemma. Let C be a composition algebra with dimC ě 4. Then every autotopism pα|β|γq
of C is built from semi-similitudes α, β, γ, and these three semi-linear maps have the same
companion.

Proof. Let pα|β|γq be an autotopism of C. Then both αp1q and γp1q are invertible (see [19,
2.6.2]). Multiplying the given autotopism with the autotopism pρu|λu ˝ρu|λuq for u “ γp1q´1,
we obtain an autotopism pα1|β1|γ1q with γ1p1q “ 1. We multiply with up to two autotopisms
of the form pλv|λv| ´ Npvq´1λv ˝ ρvq with v P PuC and obtain a product pα2|β2|γ2q with
α2p1q “ 1 and γ2p1q “ 1. Now α2 “ β2 “ γ2 is an automorphism of C. As the center F of C
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is invariant under each automorphism, α2 is semilinear. From 2.2.(h) we know that α2 is a
semi-similitude, and so are the components α, β, γ. Each one of these semi-linear maps has
the same companion as α2.

6.12 Remarks. If AutpF q contains a non-trivial element α then the automorphism group of
the two-dimensional composition algebra F ˆ F contains elements that are not F -semilinear.
For instance px, yq ÞÑ px, αpyqq maps F p1, 1q to a subset which is not an F -subspace.

It also happens that a two-dimensional non-split composition algebra (i.e., a separable
quadratic field extension E : F ) admits automorphisms that are not F -linear. E.g., one knows
(see [22, 14.15]) that AutpCq contains conjugates κα of the standard involution, with fixed
fields αpRq that are different from (though isomorphic to) R.

6.13 Lemma. Let pα|β|γq be any autotopism of a composition algebra C with dimC ě 4. Then
βpCxq “ Cαpxq and αpxCq “ γpxqC holds for each x P C.

Proof. Both equations are trivial if x “ 0 or if x is invertible. So assume x ‰ 0 and Npxq “ 0.
In particular, we only consider the split case.

The definition of autotopism gives βpCxq “ γpCqαpxq “ Cαpxq. We have to be more
careful with the second equality because x is not invertible. By 6.10 there are u, v P C˚

with Npuq “ Npvq such that x “ u ` v. The semilinear maps α, β, γ involved in the au-
totopism have the same companion ϕ, see 6.11. We define s, t P F by ϕpsq “ Npγpuqq´1

and t “ ϕpNpuqsq. Consider c P C. Using Npuq “ Npvq we compute αpxcq “ αppu ` vqcq “
ϕpsq´1 pαpsucq ` αpsvcqq “ γpuqγpuqαpuscq`γpvqγpvqαpvscq “ γpuqβpuuscq`γpvqβpvvscq “
γpu` vqβpNpuqscq “ γpxqtβpcq and then infer αpxCq “ γpxqC because tβpCq “ C.

6.14 Theorem. (a) For each a P PuOr t0u and each u P O˚, we have pλa ˝ ρ´1a qp�u q “ �au .

(b) The stabilizer GOpO, NOq1 of 1 in GOpO, NOq acts transitively on Π, and the stabilizer
GO`pO, NOq1 acts transitively both on Π` :“

 

�y
ˇ

ˇ y P O˚
(

and on Π´ :“
 

y
ˇ

ˇ y P O˚
(

.
In particular, every element of Π is a parallelism.

(c) We have Π “ Π´ YΠ`.

(d) The stabilizer of the set Π` in GOpO, NOq is the group GO`pO, NOq.

(e) Let P be any member of Π, and let C be any parallel class in P . Then the stabilizer of P
and C acts transitively on the set of lines in C.

Proof. Let a P PuO r t0u. We use the autotopism pρa|λa ˝ ρa|λaq, see 6.5. Since a P PuO
yields that a´1 P Fa, the action described in 6.7 gives pλa ˝ ρ´1a qp�u q “ pλa ˝ ρaqp�u q “ �au ,
as claimed in assertion (a).

We abbreviate σa :“ λa ˝ ρ
´1
a ˝ κ. Then σap�u q “ pλa ˝ ρ

´1
a qp uq “ ua, see 6.7. For

each γ P GOpO, NOq1 there exists (cf. [5, 3.13.(d)]) some sequence a1, . . . , am in PuO such
that γ “ σam ˝ ¨ ¨ ¨ ˝ σa2 ˝ σa1 . If m “ 2k is even, we obtain γp�u q “ �νpuq with νpuq :“

p´1qk am ¨ ¨ ¨ pa2pa1uq . . . q. If m “ 2k ` 1 is odd, we use the map ν just defined for the
sequence a1, . . . , a2k “ am´1 and find γp�u q “ σamp�νpuq q “ w for w “ νpuq am. In any case,
we have γp�u q P

 

�y
ˇ

ˇ y P O˚
(

Y
 

y
ˇ

ˇ y P O˚
(

. As every element of O˚ is a product of two
pure elements (cf. [5, 1.2]), we find that

 

�y
ˇ

ˇ y P O˚
(

Y
 

y
ˇ

ˇ y P O˚
(

is the orbit of � “ �1
under the stabilizer GOpO, NOq1. Analogously, we see that Ψ :“ GO`pO, NOq1 “ SOpO, NOq1
acts transitively on

 

�y
ˇ

ˇ y P O˚
(

. A Frattini argument shows GOpO, NOq “ GOpO, NOq1 ˝
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Λ. As Λ ď Autp�q leaves � invariant, we find Π :“ GOpO, NOqp�q “ GOpO, NOq1p�q, as
claimed. We have proved assertions (b) and (c).

Assertion (d) follows in a similar way, using GO`pO, NOq “ Ψ ˝ Λ, transitivity of Ψ on the
set Π` “

 

�y
ˇ

ˇ y P O˚
(

, and the fact that Λ fixes �1 .
It remains to study the stabilizer of some parallel class C in a member of Π. Using

transitivity of GOpO, NOq, we reduce this problem to the case where the parallelism is �.
Then C “ K� “

 

Kx
ˇ

ˇ x P O˚
(

with a line K through 1, i.e., a commutative subfield K
of O. For a P KK Ď PuO with a ‰ 0 we observe aK “ Ka. Using 4.1.(b) we infer
λapKxq “ paKa´1qpaxq “ Kpaxq. Thus C is invariant under λa. For any u P O˚, we find
(cf. [5, 1.2]), a, b P KK such that u “ ab. Now λa ˝ λb fixes both C and � (cf. 4.1), and
pλa ˝ λbqpKq “ λapKbq “ Kpabq “ Ku shows that the stabilizer ΛC of C and � is indeed
transitive on C.

7 The space of all Clifford parallelisms

In this section, we interpret the set Π of all Clifford parallelisms (cf. 6.1) in terms of incidence
geometries. The application of trialities (see Sec. 8 below) will shed further light on this.

7.1 Lemma. For any a, b P O˚, the equalities �a “ �b and Fa “ Fb are equivalent.

Proof. Quite obviously, we have �sa “ �a for each s P F ˚. It remains to show that �a “ �b
implies Fa “ Fb. Without loss, we may assume b “ 1; cf. 6.14.(b). Let H be a quaternion
subalgebra containing a (cf. [23, 1.6.4]), and pick u, v P PuH such that a “ vu (this is
possible by [5, 1.2]. Then pλv ˝ ρ´1v q

`

pλu ˝ ρ
´1
u q p�1 q

˘

“ pλv ˝ ρ
´1
v q p�u q “ �vu “ �a “ �1 . In

other words, α :“ λv ˝ ρ
´1
v ˝ λu ˝ ρ

´1
u belongs to the stabilizer Λ of �1 , cf. 4.4. From αp1q “ 1

we then infer α P AutF pOq, cf 4.3.
Now Fixpαq contains the subspace t1, u, vuK of dimension at least 5, and generates O as an

algebra. Thus α “ id. The restriction of α to H is conjugation by a, and we find that a lies in
the center F of H. So Fa “ F “ Fb, as claimed.

7.2 Lemma. Consider a, c P O˚. If Fa ‰ Fc then there is exactly one parallel class belonging
to both �a and �c , namely, the class rFa` Fcs�a “ rFa` Fcs�c “ pFa` Fcq

�.

Proof. Without loss, we may assume c “ 1. We abbreviate K :“ F ` Fa.
Since K contains both 1 and a, the classes rKs�1

“
 

Ky
ˇ

ˇ y P O˚
(

“ rKs�a coincide.
Aiming at a contradiction, we assume that there is another line L ‰ K through 1 such that
rLs�1

is also a class in �a . We pick some b P LrF , then L “ F `Fb. The union K YL spans
a subalgebra H :“ F ` Fa` Fb` Fab in O.

For each y P O˚, the line pLaqy is the (unique) �a -parallel to L through F payq, and Lpayq
is the �1 -parallel to L through F payq. Therefore, we have pLaqy “ Lpayq for each y P O˚.
This implies that the vector bpayq P Lpayq “ pLaqy is a linear combination of the vectors
ay “ p1aqy and pbaqy. Equivalently, we have pbpayqqy P Fa` F pbaq ď H.

There are two cases, cf. 2.3:
Case 1: The subalgebra H is a quaternion subfield. For each w P HK r t0u we obtain
our octonion algebra as the double O “ H ` Hw, see 2.2.(i). We choose y :“ 1 ` w.
Using the multiplication formula from 2.2.(i), we compute pbpayqqy “ pbpap1` wqq p1` wq “
pba` bpawqq p1´wq “ pba` pabqwq p1´wq “ pba`Npwqpabqq ` p´ba` abqw. Our condition
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pbpayqqy P Fa ` F pbaq ď H now yields ´ba ` ab “ 0, contradicting the fact that H is not
commutative.
Case 2: The subalgebra H is commutative. Then H is totally isotropic, and a totally insep-
arable field extension of degree 4 over F . In particular, we have charF “ 2, and H “ HK.
Choose y P OrH perpendicular to 1, a, and b. Then y is not perpendicular to ab but ay K 1.

Using pb|ayq “ bpayq ` payqb and one of Moufang’ identities, we compute pbpayqq y “
pbpayqq y “ ppb|ayq ` payqbq y “ pb|ayqy`ppayqbq y “ pb|ayqy`apy2bq “ pb|ayqy`y2pabq. Now
y R H Q ab yields that this linear combination of y and ab lies in H precisely if pb|ayq “ 0.
However, using the general property pcx|yq “ px|cyq (see [23, 1.3.2]) we obtain pb|ayq “
pab|yq “ pab|yq, and the latter is nonzero by our choice of y. This contradiction yields the
claim also in the inseparable case.

7.3 Theorem. Let K be a line through 1 in PpOq. If E b K meets QE then the parallel
class rKs�a

is indicated by an element of M`, and the parallel class rKsa
is indicated by

an element of M´. Conversely, each element of M` indicates a right parallel class, and each
element of M´ indicates a left parallel class. Explicitly, the spread indicated by bOE P M` is
the parallel class L� for the unique line L indicated by Eb.

Proof. Recall from 5.3 that EbK meets QE if, and only if, K is (as an F -algebra) isomorphic
to E. The parallel class rKs�a

is equal to L� “
 

Lu
ˇ

ˇ u P O˚
(

, where a P L and K “ Lx for
some x P O˚. Then L “ Kx´1. We know that E bK meets QE in some point Ec. Thus
E b L meets QE in Eb, where b “ cp1b x´1q, and Eb indicates L.

For an arbitrary line Lv P L� we get that the line E b pLvq “ pE b Lqp1b vq meets QE in
pEbqp1b vq “ Epbp1b vqq “ bpEp1b vqq Ď bOE P M`. So each line of L� is indicated by
some element of bOE PM`. As in the proof of 5.3 we see that L� coincides with the spread
indicated by the subspace bOE PM`.

Conversely, each element ofM` has the form bOE for some b P OEr t0u with NOE
pbq “ 0.

The computation above shows that the spread indicated by bOE PM` is the parallel class L�

for the unique line L indicated by Eb.

7.4 Definitions. We denote the set of all lines of PpOq by L. The set of all parallel classes (of
all Clifford parallelisms) is denoted C :“ C´ Y C`, where C´ :“

 

rLs
a
ˇ

ˇ L P L, a P O˚
(

and
C` :“

 

rLs�a
ˇ

ˇ L P L, a P O˚
(

, respectively.

Note that the union C´ Y C` is disjoint because the indicator sets for the parallel classes
belong to different parts ofM` YM´; see 7.3.

7.5 Proposition. The projective space PF pOq (considered as the incidence geometry pP,L,ăq
with points and lines) is isomorphic to the incidence geometry pΠ`, C`, Qq and to pΠ´, C´, Qq.
The corresponding point maps are η` : P Ñ Π` : Fx ÞÑ �x and η´ : P Ñ Π´ : Fx ÞÑ x ,
the line maps are π` : L Ñ C` : L Ñ L� and π´ : L Ñ C´ : L Ñ L, respectively (cf. 6.3). In
particular, these maps are bijections.

Proof. Define η`pFxq :“ �x ; this gives a bijection η` : P Ñ Π` by 7.1. For any line L P L,
choose x, y P O such that L “ Fx ` Fy. Then �x X �y “

Ş

wPLrt0u �w contains a unique
parallel class (namely, rFx`Fys�x “ L�, cf. 7.2). We denote this class by π`pLq, and obtain
a bijection π` : LÑ C`.

We have Fx ă L ðñ x P L r t0u ðñ π`pLq P η`pFxq. This means that η “ pη`, π`q
is an isomorphism from pP,L,ăq onto pΠ`, C`, Qq. The proof for pΠ´, C´, Qq is obtained by
applying κ.
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8 Triality

The famous principle of triality occurs in various guises: as a non-inner automorphism of
order three on simple algebraic groups of split type D4 (cf. [23, 3.3.2]), or as a non-type
preserving automorphism of the polar space of split type D4 (cf. [26, §2]). The group version
also has a non-split version (for instance, on the compact real form of the simple complex Lie
group of type D4).

We extend these notions of triality to groups of linear autotopisms (in the anisotropic case,
that group is related to the group of direct similitudes, cf. 6.8 and [23, 3.2.1]), and give a
new geometric variant of triality in the anisotropic case, in terms of the spaces of Clifford
parallelisms that we have introduced.

The various notions of triality fit together quite neatly:

8.1 Theorem (Triality for autotopisms, parallelisms, and quadrics).
Let O be an octonion field over some field F , and let E : F be a quadratic field extension such
that OE :“ E bO splits. For any similitude ξ P GOpO, Nq, we denote the multiplier by µξ.

(a) For each autotopism pα|β|γq of O, the triplet τpα|β|γq :“ pγ|µ´1α κ ˝ α ˝ κ|µ´1β κ ˝ β ˝ κq is
an autotopism, as well. The map τ is an automorphism of the group ∆ of all autotopisms
of O, and has order three.

(b) Putting pα|β|γq . p x, Fy,�z q :“
`

αpxq, Fβpyq,�γpzq
˘

and pα|β|γq . pK, L,M�q :“

pαpKq, βpLq, γpMq�q we obtain an action of the group ∆ on the set Π´ ˆ P ˆ Π` and
also on C´ˆLˆC`. Note that this is an action by triplets of collineations (of the projective
spaces pΠ´, C´q, pP,Lq, and pΠ`, C`q, respectively).

(c) The map ∇ : Π´ˆP ˆΠ` Ñ Π´ˆP ˆΠ` : p x, Fy,�z q ÞÑ
`

z, Fx,�y
˘

is well-defined,
and has order three. For each autotopism pα|β|γq we have ∇

`

pα|β|γq . p x, Fy,�z q
˘

“

τpα|β|γq .∇ p x, Fy,�z q.

(d) We obtain a map ∇̃ : C´ ˆ L ˆ C` Ñ : C´ ˆ L ˆ C` : pK, L,M�q ÞÑ pM,K, L�q, and
∇̃
`

pα|β|γq . pK, L,M�q
˘

“ τpα|β|γq . ∇̃pK, L,M�q.

(e) Every linear autotopism pα|β|γq has a unique E-linear extension pα|β|γqE which is an
autotopism of the composition algebra OE , and the restriction of the triality map τ to the
group of linear autotopisms extends to an automorphism τE of order three on the group of
all linear autotopisms of OE .

(f) For each linear autotopism pα|β|γq of O, the extension pα|β|γqE acts onM´ˆQE ˆM`

via pα|β|γqE . pOE x,Ey, zOEq :“ pOE αpxq, Eβpyq, γpzqOEq.

(g) The map∇E : M´ˆQEˆM` ÑM´ˆQEˆM` : pOE x,Ey, zOEq ÞÑ pOE z, Ex, yOEq

is well-defined, and has order three. (This is the classical triality of the polar space — of
split type D4 — defined by the quadratic form NCE

.)

(h) For each linear autotopism pα|β|γq of O we obtain ∇E
`

pα|β|γqE . pOE x,Ey, zOEq
˘

“

τE ppα|β|γqEq .∇E pOE x,Ey, zOEq “ pτpα|β|γqqE .∇E pOE x,Ey, zOEq.

(i) For ε P t`,´u, let indε : Mε Ñ Cε be the indicating map (in the sense of 7.3), and let
indQ : QE Ñ L map each point of the quadric to the unique Baer line containing it. Then
pind´, indQ, ind`q ˝∇E “ ∇̃ ˝ pind´, indQ, ind`q.
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Proof. Assertion (a) is proved in [5, 3.4] (see also [23, 3.3.2], but note that the maps given
there do not have order three). In order to verify the remaining assertions, we use 6.13, 6.7,
and 7.3.

8.2 Proposition. Assume that E : F is a separable quadratic field extension such that CE splits.
Then the triality ∇E maps the points of the ovoid QE in the Baer subspace PpV Eq introduced
in 5.6 to the sets of indicator sets for 1 and �1 , respectively (cf. 5.5). The sets of indicator sets
for other parallelisms are then obtained from the images of the ovoid under similitudes.

If F “ R then these ovoids, and thus these sets of indicator sets, are homeomorphic to the
sphere of dimension 6.

Proof. By the proof of 5.6, the points ofQE have the formEpeb 1´1b yqwith TEpeq “ TOpyq
andNEpeq “ NOpyq. Now∇E mapsEpeb 1´1b yq to peb 1´ 1b yqOE “ peb 1´1b yqOE

and then to OEpeb 1´ 1b yq.
These are exactly the indicator sets of 1 and �1 , respectively, as described in 5.3 because

TEpeq “ TOpyq “ TOpyq and NEpeq “ NOpyq “ NOpyq holds precisely if there is an (F -linear)
algebra homomorphism ϕ : E Ñ O with ϕpeq “ y. The statement about the other parallelisms
follows from the very definition 6.1, cf. 6.14.

9 Remarks on the literature

Van Buggenhaut [25], [24] considers geometric descriptions of our parallelisms for the special
case where F “ R, using the complex quadric QC and triality. He actually claims that his
arguments extend easily to arbitrary ground fields F with charF ‰ 2 (and such that an
octonion field exists over F ), but as he only works with a single quadratic extension, this will
not work unless the octonion algebra contains only one single isomorphism type of quadratic
extensions of F . This is a severe restriction, one obtains that F is a pythagorean field (i.e.,
every sum of squares is a square in F , cf. [22, 12.8]) and formally real (i.e., ´1 is not a sum
of squares in F , cf. [22, Ch. 12]):

9.1 Theorem. Let C be a composition algebra of dimension at least four over F . If all the
two-dimensional subalgebras belong to a single isomorphism type, then F is a formally real
pythagorean field, and the norm form of C is equivalent to the standard euclidean form (sum of
squares).

Proof. If C is split then C contains a split quaternion algebra (isomorphic to F 2ˆ2), and there
exist x, y P C r F with x2 “ 0 and y2 “ y. Then F ` Fx – F rXs{pX2q fl F ˆ F –

F rXs{pX2 `Xq – F ` Fy. Thus we concentrate on the non-split case. If charF “ 2 then C
contains both separable and inseparable field extensions of F . Thus we exclude charF “ 2
in the sequel.

Assume now that the two-dimensional subalgebras are all isomorphic. Pick a P 1K r t0u
(i.e., a P C r F with Tpaq “ 0). For any x P 1K r t0u, the algebras F ` Fa and F ` Fx are
isomorphic, whence we find r P F such that Npaq “ Nprxq “ r2Npxq.

Choose x P pF ` FaqK r t0u, and pick r as above. Then p1|a´1rxq “ Npaq´1pa|rxq “ 0,
and Npaq “ Nprxq yields Npa´1rxq “ Npaq´1Nprxq “ 1. Thus a´1rx P 1K has norm 1.
Consequently, the norms of arbitrary elements of 1K are squares in F , and we infer that there
exists an orthonormal basis 1, b2 :“ a´1rx, b3, . . . for C. In particular, the norm form is the
standard euclidean form.
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For s, t P F we now note that s2 ` t2 “ Npsb2 ` tb3q is a square because sb2 ` tb3 P 1K, and
obtain that the field F is pythagorean. As F `Fa is not split, we have that ´1 is not a square,
and F is formally real.

Note also that “parallélisme de Clifford” in Van Buggenhaut’s notation means a symmetric,
reflexive but not transitive relation6; our Clifford parallelisms are called “parallélismes de
Vaney–Cartan” in [24] (referring to [27]).
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