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Transitive groups of similitudes
generated by octonions

Andrea Blunck, Norbert Knarr,
Bernhild Stroppel, Markus J. Stroppel

Abstract

We study the structure of various groups generated by (left) multiplications in alternative
division algebras, and construct epimorphisms onto orthogonal and special orthogonal
groups. Throughout, we include the characteristic two case in our treatment.

Mathematics Subject Classification (MSC 2000): 11E57, 17A75, 20G15, 20G20, 11E04,
11E39.
Keywords: octonion, quaternion, division algebra, composition algebra, orthogonal group,
unitary group, similitude, autotopism

Introduction

We study groups generated by certain sets of (left) multiplications by non-zero elements of
an octonion field O of arbitrary characteristic. These groups are contained in the group
GOpO, Nq of similitudes of the norm form N of the octonion field. Among our results, we
have the following:

(a) The group ΛO generated by all left multiplications is normalized by all right multi-
plications (see 3.12), and together the left and right multiplications generate a sub-
group GO`pO, Nq of index two in GOpO, Nq (Def. 3.8, see 3.11 and 3.13). The group
GO`pO, Nq consists of all elements of GOpO, Nq that occur as entries in triplets that
form autotopisms of O (see 3.11).

(b) Using an embedding into the group of autotopisms, we show (in 4.2, 4.5.(c)) that the
group ΛPuO generated by left multiplications by non-zero elements from the space PuO
of pure octonions has a quotient isomorphic to SOpPuO, N|PuOq; i.e. a special orthog-
onal group of a suitable form in seven variables, see 6.1.

(c) For each quadratic separable subfield K in O (i.e., every two-dimensional subalgebra K
with K ď 1K), the left multiplications by non-zero elements from the space KK gener-
ate a subgroup ΛKK of the group ΓUKpO, gq of semi-similitudes of a certain hermitian
form g on O (considered as a vector space over K, see 2.9, 6.2, and 6.3). We show
(in 6.3) that said subgroup of ΓUKpO, gq has a quotient isomorphic to OpKK, N|KKq;
i.e. an orthogonal group of a suitable form in six variables.

1

http://www.ams.org/mathscinet/search/mscbrowse.html?code=11E57
http://www.ams.org/mathscinet/search/mscbrowse.html?code=17A75
http://www.ams.org/mathscinet/search/mscbrowse.html?code=20G15
http://www.ams.org/mathscinet/search/mscbrowse.html?code=20G20
http://www.ams.org/mathscinet/search/mscbrowse.html?code=11E04
http://www.ams.org/mathscinet/search/mscbrowse.html?code=11E39


A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel Transitive groups of similitudes

(d) For each quaternion subfield H in O, we choose a three-dimensional subspace W ď H
and show (in 6.6) that the left multiplications by non-zero elements from the space WK

generate a subgroup ΛWK of the group ΓUHpO, hq of semi-similitudes of a certain her-
mitian form h on O (considered as a vector space over H, see 2.12). We show (in 6.6)
that said subgroup of ΓUHpO, hq has a quotient isomorphic to SOpWK, N|WKq; i.e. a
special orthogonal group of a suitable form in five variables. The group of all semi-
similitudes of h with F -linear companions is obtained as the product ΛW ˝ Λ`

WK .

The isomorphisms onto orthogonal groups in seven, six and five variables are rather well
known in the case where the forms are isotropic (see [8, Ch. 4, §8, p. 102–106]) and in the
case where the ground field is the field R of real numbers. In the latter case, our methods lead
to explicit constructions of certain coverings and exceptional isomorphisms between compact
Lie groups, namely Spin7pRq Ñ SO7pRq, SU4pCq Ñ SO6pRq, U2pHq Ñ SO5pRq.

In fact, the present investigation has been inspired by ideas of Hermann Hähl (see [13,
3.2(b) and (c)], [14, 3.1, 3.2], cp. [26, proof of 81.17, pp. 471 f]) who used (over the ground
field R) descriptions of Spin7pRq and SU4pCq as groups generated by (right) multiplications
in O, together with their interpretation as components of autotopisms (viz., elements of a
triangle stabilizer) and the resulting homomorphisms onto SO7pRq and SO6pRq, respectively.

Considering groups of semi-similitudes rather than orthogonal or unitary groups allows us
to extend the results to arbitrary ground fields (subject only to the condition that an octonion
field exists). The restriction to subgroups of OpO, Nq rather than GOpO, Nq makes it much
more difficult to determine the range of the homomorphisms that we obtain.

It is a general observation that the theory of isometry groups of anisotropic forms is much
more involved than the theory for the isotropic case. Many results depend crucially on prop-
erties of the ground field. For instance, there exist examples of anisotropic quadratic forms
over non-archimedean ordered fields where the orthogonal group has a sequence pNjqjPN
of normal subgroups such that

Ş

jPNNj is trivial and each one of the quotients Nj{Nj`1 is
abelian (see [7, p. 345 ff], cf. [1, Ch. V, §3, pp. 179–186]). In particular, these orthogonal
groups do not contain any simple subgroups, and the same assertion holds for the groups of
linear automorphisms of corresponding quaternion or octonion fields. See also [16, p. 67 f].

The quadratic forms (in seven, six and five variables) that play their role in the present
investigation have been characterized in a separate paper [23]. The forms in six variables, in
particular, are important in the theory of spherical Tits buildings of low rank, where they are
known as forms of type E6 (see [30, Ch. 12] and [5]). .

Some results of the present paper (in particular, information about the action and the
structure of ΛPuO) are applied in [4].

1 Composition algebras

Let F be a commutative field. A composition algebra over F is a vector space C over F with a
bilinear multiplication (written as xy) and a multiplicative quadratic form N :“ NC : C Ñ F
such that the polar form of N is not degenerate. The polar form will be written as px|yq :“
Npx ` yq ´ Npxq ´ Npyq. We also assume that the algebra contains a neutral element for
its multiplication, denoted by 1. As usual, the ground field F is embedded as F1 in C. The
composition algebra is called split if it contains divisors of zero.

The first chapter of [27] gives a comprehensive introduction into composition algebras over
arbitrary (commutative) fields, including the characteristic two case.

We collect the basic facts that we need in the present paper (for proofs, consult [27]):
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1.1 Properties of composition algebras. Let C be a composition algebra over F .

(a) The map κ : C Ñ C : x ÞÑ x :“ px|1q1 ´ x is an involutory anti-automorphism, called
the standard involution of C. Note that ´κ is the hyperplane reflection with center F1,
see 2.3.

(b) The norm and its polar form can be recovered from the standard involution as NCpxq “
xx “ xx and px|yq “ xy ` yx. In particular, we have the hyperplane PuC :“ 1K “
 

x P C
ˇ

ˇ x “ ´x
(

of pure elements.

(c) For all c, x, y P C, we have pcx|yq “ px|cyq and pxc|yq “ px|ycq, see [27, 1.3.2].

(d) In general, the multiplication is not associative, but weak versions of the associative law
are still valid; among them Moufang’s identities [27, 1.4.1, 1.4.2]

paxqpyaq “ appxyqaq, apxpayqq “ ppaxqaqy, xpapyaqq “ ppxaqyqa.

(e) Artin’s Theorem (see [27, Prop. 1.5.2]): For any two elements x, y P C, the subalgebra
generated by x and y in C is associative.

(f) An element a P C is invertible if, and only if, its norm is not zero; we have a´1 “ NCpaq
´1 a

in that case. Thus a non-split composition algebra is a division algebra. Note that Artin’s
Theorem then implies a´1paxq “ x “ apa´1xq “ pxaqa´1 “ pxa´1qa, for each x P C. If C
is not split then C˚ :“ Crt0u is closed under multiplication, and forms a (Moufang) loop.

(g) Each element a P C is a root of a polynomial of degree 2 over F , namely, the polynomial
X2 ´ pa` aqX `NCpaq P F rXs. We call TCpaq :“ a` a the trace of a in C.

(h) In particular, for each a P C the algebra generated by a is F paq “ F ` Fa, and this
algebra is associative and commutative. For x, y P F paq and v P C we have that v, x, y lie
in the algebra generated by v and a. Thus vpxyq “ pvxqy by (e), and C is a left module
over F paq. If the restriction of the norm to F paq is anisotropic then F paq is a commutative
field, and C is a (left) vector space over F paq.
Similarly, we may consider C as a right module over F paq.

(i) [27, 1.9] If dimF C ą 2 then F is the center of C; i.e. F “
 

z P C
ˇ

ˇ @x P C : zx “ xz
(

.
If dimF C ą 4 then F coincides with each one of the nuclei of C; i.e.

F “
 

z P C
ˇ

ˇ @x, y P C : zpxyq “ pzxqy
(

“
 

z P C
ˇ

ˇ @x, y P C : pxzqy “ xpzyq
(

“
 

z P C
ˇ

ˇ @x, y P C : pxyqz “ xpyzq
(

.

(j) [21, 1.3] Every F -semilinear automorphism of C commutes with the standard involution.
If dimF C ě 4 then every Z-linear automorphism of C is F -semilinear. Consequently,
every Z-linear automorphism of such a C is a semi-similitude of the norm form, and every
F -linear automorphism is an orthogonal map (cf. 5.4 below).

We write AutpCq for the group of all Z-linear automorphisms (i.e., all additive and multi-
plicative bijections), and AutF pCq for the group of all F -linear automorphisms.

(k) [27, 1.5.3] If D is a subalgebra of C with dimF C “ 2 dimF D and such that DK XD “

t0u then DK “ Dw holds for each w P DK with NCpwq ‰ 0, and the multiplication in
C “ D ‘DK is given by px` ywqpu` vwq “ pxu´NCpwqvyq ` pvx` yuqw.

3
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For a reader versed in associative algebras, the construction of the module structures
in 1.1.(h) will appear natural, and one might conjecture a straightforward extension to any
subalgebra of C. However, the lack of associativity in octonion algebras prevents this. A
pertinent construction will be given in 2.10 below.

We need a variant of the result [21, 1.6], as follows.

1.2 Lemma. Let C be a non-split composition algebra, and let X,Y be vector subspaces such
that dimX ` dimY ą dimC. Then C “ XY :“

 

xy
ˇ

ˇ x P X, y P Y
(

.

Proof. For c P C r t0u, the sets X and cY are vector subspaces; their intersection has di-
mension at least 1. For x P pX X cY q r t0u there exists v P Y such that x “ cv. Now
y :“ v´1 “ Npvq´1v belongs to Y , and c “ xv´1 “ xy P XY yields the claim.

1.3 Definition. Let V be any vector subspace of a non-split composition algebra C. By ΛV :“〈
λv

ˇ

ˇ v P V r t0u
〉

we denote the group generated by all left multiplications with non-trivial
elements of V . The subgroup Λ`V :“

〈
λv ˝ λw

ˇ

ˇ v, w P V r t0u
〉

is generated by all products
of an even number of left multiplications by elements of V r t0u.

1.4 Lemma. Let V ď C be a vector subspace with dimV ą 1
2 dimC. Then Λ`V acts transitively

on C˚.

Proof. From 1.2 we know V V “ C, and C˚ Ď Λ`V p1q gives transitivity, as claimed.

2 Similitudes of the norm and related forms

Notation and terminology for quadratic and hermitian forms is fairly standard. However, the
literature contains different notions of degeneracy for quadratic forms in characteristic two.
We call a quadratic form q on a vector space V degenerate if there exists a non-zero vector
v P V K with qpvq “ 0. The orthogonal space XK :“

 

w P V
ˇ

ˇ @x P X : fqpw, xq “ 0
(

is meant
with respect to the polar form given by fqpx, yq :“ qpx` yq ´ qpxq ´ qpyq, as usual.

In this section, we only consider vector spaces of finite dimension.

2.1 Definitions. Let V be a left1 vector space over some (not necessarily commutative)
field K, and let σ : K Ñ K be an anti-automorphism with σ2 “ id.

(a) Let h : V ˆ V Ñ K be a σ-hermitian form, i.e., a bi-additive map such that hpw, vq “
σphpv, wqq and hpsv, wq “ shpv, wq hold2 for all v, w P V and each s P K. A semi-
similitude of hwith multiplier µψ and companion ϕψ is a semi-linear bijection ψ : V Ñ V
such that hpψpvq, ψpwqq “ ϕψphpv, wqqµψ holds for all v, w P V .

(b) Let q : V Ñ K be a quadratic form. Then a semi-similitude of q with multiplier µψ and
companion ϕψ is a semi-linear bijection ψ : V Ñ V such that qpψpvqq “ ϕψpqpvqqµψ
holds for each v P V .

(c) In any case, a similitude is a semi-similitude with trivial companion.
1 Right vector spaces (coordinatized by spaces of columns) generally fit better with mappings applied from the

left. However, it turns out in 2.10 below that left vector spaces over quaternions are what we need here.
2 Then hpv, swq “ hpv, wqσpsq.
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If ψ is a semi-similitude of a non-zero hermitian form then its companion ϕψ is a field
automorphism, and coincides with the companion of the semi-linear bijection. In particular,
it is uniquely determined.

Note that each semi-similitude of a quadratic form is a semi-similitude of the corresponding
polar form, with the same multiplier and companion. If the quadratic form is non-zero then
the companion of the semi-similitude is the companion of the semi-linear bijection.

2.2 Definition. If h : V ˆ V Ñ K is a non-zero hermitian form then the set of all semi-
similitudes of h forms a group which we denote by ΓUKpV, hq. The subgroups GUKpV, hq of
all similitudes and UKpV, hq of all isometries (i.e., similitudes with multiplier 1) clearly form
normal subgroups in ΓUKpV, hq; these are the kernels of the homomorphisms ψ ÞÑ ϕψ and
ψ ÞÑ pϕψ, µψq, respectively.

Analogously, for a quadratic form q : V Ñ K with non-zero polar form, we have the group
ΓOpV, qq of all semi-similitudes, with normal subgroups GOpV, qq and OpV, qq of similitudes
and isometries, respectively.

As we want to include the characteristic two case, some caution is required when dealing
with involutions in orthogonal groups:

2.3 Definition. Let q : V Ñ F be a quadratic form on a vector space V with corresponding
polar form fq : V ˆ V Ñ F (we allow the case where fq is degenerate). For each v P V with
qpvq ‰ 0 we call

σv : V Ñ V : x ÞÑ x´
fqpx, vq

qpvq
v

the hyperplane reflection with center Fv (and axis vK).

It is easy to verify that σv P OpV, qq with σ2
v “ id and Fixpσvq “ vK. If charF ‰ 2 then

the hyperplane reflection’s axis and center are already determined by its space of fixed points
(which is the axis, and forms the orthogonal complement of the center). The situation is quite
different if charF “ 2, see 2.7 below.

If charF ‰ 2 then a product of a sequence of hyperplane reflections on V has determinant 1
if, and only if, the number of factors is even. If charF “ 2 then the determinant does not
impose any restrictions on members of the orthogonal group.

2.4 Remarks on special orthogonal groups, and the Dickson invariant. Let q : V Ñ F be
a non-degenerate quadratic form, and let h : V ˆ V Ñ F denote a hermitian form. As usual3

we write SOpV, qq :“
 

ψ P OpV, qq
ˇ

ˇ detψ “ 1
(

and SUpV, hq :“
 

ψ P UpV, hq
ˇ

ˇ detψ “ 1
(

.
If charF ‰ 2 and dimV ‰ 0 then SOpV, qq is a (normal) subgroup of index 2 in OpV, qq.

However, we have SOpV, qq “ OpV, qq if charF “ 2.
We recall the definition of Dickson’s invariant ([9], cf. [29, 11.43]): for a quadratic form q

on a vector space V of arbitrary characteristic and with non-degenerate polar form, this is
the (multiplicative!) map D: OpV, qq Ñ t1,´1u : γ ÞÑ p´1qd, where d :“ dimpV {Fixpγqq “
dimtγpvq ´ v | v P V u. If the characteristic is different from two then Dpγq “ det γ.

3 The mathematical community is unanimous in its interpretation of “SOpV, qq” as long charF ‰ 2, and confu-
sion starts if that restriction is dropped. The reader should be warned against the fact that the definitions of
SOpV, qq for the characteristic two case wildly vary in the existing literature; some sources use this name for
the kernel of the Dickson invariant.

5
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In any case, it is obvious that the kernel of the Dickson invariant D contains the subgroup
consisting of products of an even number of hyperplane reflections. See 2.5 for a more precise
statement.

If the characteristic is two then non-degeneracy of the polar form implies that dimV is
even. In this case, the kernel ker D of the Dickson invariant is a (normal) subgroup of index 2
in OpV, qq. If the polar form is degenerate (but not zero) then every product of hyperplane
reflections can be written as a product of an even number of reflections, see 2.5 below.

The following result is based on the Cartan-Dieudonné Theorem. There is an exceptional
case in that theorem, namely the case where V has dimension 4 over F “ F2 and the Witt
index is 2. This is why we make the extra assumption on V in 2.5 below. As we are interested
mainly in anisotropic forms (over infinite fields), that special case is not really relevant for us.

2.5 Lemma. Let q : V Ñ F be a non-degenerate quadratic form, let A :“
 

v P V
ˇ

ˇ qpvq ‰ 0
(

,
and put O`pV, qq :“

〈
σu ˝ σv

ˇ

ˇ u, v P A
〉
. If |F | “ 2 and dimV “ 4, assume in addition that

the Witt index of q is not 2.

(a)
〈
σu

ˇ

ˇ u P A
〉
“ OpV, qq.

(b) If the polar form fq is not degenerate then O`pV, qq is a normal subgroup of index 2 in
OpV, qq. Indeed O`pV, qq is the kernel of the Dickson invariant, and O`pV, qq “ SOpV, qq
if charF ‰ 2.

(c) If fq ” 0 then OpV, qq is trivial, and so is O`pV, qq.

(d) If fq is degenerate (in particular, if charF “ 2 and dimV is odd) then O`pV, qq “ OpV, qq
unless |F | “ 2 and dimV P t3, 5u.

Proof. Assertion (a) is the Cartan-Dieudonné Theorem (see [7, Prop. 8, p. 20, Prop. 14, p. 42,
Prop. 17, p. 55], cf. [29, 11.39, 11.41] or [11, 14.16, p. 135]).

If the polar form is not degenerate then the Dickson invariant is defined, we clearly have
Dpσuq “ ´1, and the Dickson invariant of any product of hyperplane reflections is p´1qd

where d is the number of factors. This yields assertion (b).
If fq is zero then charF “ 2 (because q is not degenerate but 2qpvq “ fqpv, vq “ 0 holds

for each v P V ). Now q is a semilinear map from V to F ; the companion is the Frobenius
endomorphism. That map is injective because its kernel is the radical

 

v P V K
ˇ

ˇ qpvq “ 0
(

of q. That radical is trivial by our hypothesis. As the group OpV, qq preserves the values
under q, that group is trivial, and so is O`pV, qq (cf. [8, Ch. I, §16, p. 35]).

Finally, assume that fq is degenerate (then charF “ 2) but fq is not zero. Choose z P
V K r t0u; then qpzq ‰ 0 because q is not degenerate. For x P V the map dx : F Ñ F : s ÞÑ
qpx` szq “ qpxq ` s2qpzq is injective.

If |F | ą 2 then there exists y P V r V K with qpyq R t0, qpzqu. We put w :“ qpzqy ` qpyqz
and note qpy` zq “ qpyq` qpzq ‰ 0 ‰ qpyqqpzqqpy` zq “ qpwq. For x P V , we use z P V K and
fq|Fy`Fz “ 0 to compute

σy pσy`zpxqq “ σy

´

x´
fqpx,y`zq
qpy`zq py ` zq

¯

“ x´
fqpx,yq
qpy`zq py ` zq ´

fqpx,yq
qpyq y “ x´

fqpx,yq
qpyqqpy`zq ppqpyq ` qpy ` zqqy ` qpyqzq

“ x´
fqpx,yq

qpyqqpy`zq pqpzqy ` qpyqzq “ x´
fqpx,qpzqy`qpyqzq
qpyqqpzqqpy`zq w

“ σwpxq .

6
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Thus σw “ σy ˝ σy`z, and O`pV, qq “ OpV, qq follows in this case.
If |F | “ 2 and dimV “ 2n ` 1 then OpV, qq – Sp2npF2q (see [11, 14.2]). That group

is simple if n ě 3 (see [11, 3.11]), and coincides with its normal subgroup O`pV, qq. This
completes the proof of assertion (d).

Up to similitude, there is just one non-degenerate quadratic form qd on Fd2 if d is odd. The
cases OpF3

2, q3q – S3 and OpF5
2, q5q – S6 are true exceptions in 2.5.(d); we have O`pF3

2, q3q –

A3 and O`pF5
2, q5q – A6, respectively. In fact, there are 25 ´ 1 ´ 1 ´ 15 “ 15 non-trivial

reflections in OpF5
2, q5q – S6. The set of these reflections is a union of conjugacy classes

of involutions, and S6 contains three conjugacy classes of invoutions, with 15, 45, and 15
elements, respectively. Up to (possibly outer) automorphisms, the set of reflections is thus
the class of transpositions.

2.6 Lemma. Let C be any non-split composition algebra of dimension at least two over F . For
each u P C, we consider the left and right multiplications λu and ρu, respectively, and the map
δu :“ Npuq´1λu ˝ ρu.

(a) For each u P C r F the map δu is the product of two hyperplane reflections, namely
δu “ σu ˝ σ1, where σ1 “ ´κ and σu “ ´λu ˝ κ ˝ λ´1

u .

(b) Let V be a vector subspace of C, and assume V “ V . Then
〈
δu ˝ δv

ˇ

ˇ u, v P V r t0u
〉
“〈

σx ˝ σy
ˇ

ˇ x, y P V r t0u
〉
. This group induces O`pV,N|V q on V , and acts trivially on V K.

(c) For each vector subspace V ď C with 1 P V the group O`pV,N|V q is generated by
 

δu|V
ˇ

ˇ u P V r t0u
(

.

Proof. We know that σ1 “ ´κ is a hyperplane reflection, see 2.3. Therefore, its conjugate
λu˝p´κq˝λ

´1
u “ λu˝σ1˝λ

´1
u “ σu is another reflection, and σu˝σ1 “ p´λu˝κ˝λ

´1
u q˝p´κq “

λu ˝ κ ˝ λ
´1
u ˝ κ “ δu, as claimed in assertion (a).

Let V ď C be any vector subspace. For each x P V and each u P V r t0u we have
σupxq P x ` Fu Ď V . Thus V is invariant under σu, and σu|V P OpV,N|V q is either a
hyperplane reflection on V , or trivial on V .

We observe δu “ ´σu ˝ κ “ ´κ ˝ σu. Thus δu ˝ δv “ σu ˝ σv, and V “ V implies〈
δu ˝ δv

ˇ

ˇ u, v P V r t0u
〉
“

〈
σx ˝ σy

ˇ

ˇ x, y P V r t0u
〉
. Each product σx ˝ σy with x, y P V

leaves V invariant and acts trivially on V K. So assertion (b) follows.
Now assume 1 P V ; then V is invariant also under σ1, and δu|V belongs to O`pV,N|V q. In

order to show that the set
 

δu|V
ˇ

ˇ u P O˚
(

generates O`pV,N|V q, we recall δu “ σu ˝ σ1 and
obtain δu ˝ δ´1

v “ σu ˝ σ1 ˝ σ1 ˝ σv “ σu ˝ σv.

2.7 Remark. If q : V Ñ F is a non-degenerate quadratic form then
 

σu
ˇ

ˇ u P SK, qpuq ‰ 0
(

is the set of all hyperplane reflections with given axis S. Together with the identity, this set
forms an elementary abelian 2-group ΣS . The order of ΣS is the cardinality of V K. If ΣS

is infinite then the dimension of ΣS over F2 equals the cardinality of S, see [3, II.2, Lem 3,
p. 20]. As abstract groups,4 we thus have pΣS , ˝q – pV

K,`q.
If the polar form fq is not degenerate (in particular, if charF ‰ 2) then this group has order

at most two. If charF “ 2 then every hyperplane reflection is a transvection.

4 Giving an isomorphism explicitly appears to be difficult, in general.
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Construction of hermitian forms

We prove a variant of an old result by Jacobson [15], cf.5 [28, 4.3]. The difference to Jacob-
son’s version is that we construct the hermitian form (and do not only reconstruct it). First of
all, we turn our composition algebras into vector spaces over larger fields:

2.8 Lemma. Let K be a two-dimensional subalgebra of a composition algebra C, and consider
a P KK with Npaq ‰ 0. Then the left multiplication λa : x ÞÑ ax is a semilinear bijection of the
K-module C onto itself, with companion κ|K .

Proof. Consider s P K and x P C. Then λapsxq “ apsxq “ apspapa´1xqqq “ papsaqqpa´1xq
by one of Moufang’s identities (see 1.1.(d)). As a´1 “ Npaq´1a “ ´Npaq´1a is a scalar
multiple of a, this shows λapsxq “ pasa´1qpaxq; parentheses in asa´1 are not needed by
Artin’s Theorem 1.1.(e). Now a P KK yields as “ sa, and λapsxq “ sλapxq, as claimed.

2.9 Lemma. Let C be a composition algebra over F , and let K be a two-dimensional subalge-
bra of C. Moreover, assume that the restriction N|K of the norm is anisotropic, and that the
restriction σ :“ κ|K is not trivial (in other words, assume that K{F is a separable quadratic
field extension, with GalpK{F q “ xσy). Pick c P K r F with Tpcq “ 1. Then j :“ pc´ cq´1 is a
pure element, and

gpx, yq :“ j
`

pcx|yq ´ cpx|yq
˘

defines a non-degenerate σ-hermitian form on C (considered as a left vector space over K,
see 1.1.(h)) with gpx, xq “ Npxq for each x P C.

Every K-linear similitude of N is a similitude of the form g, with the same multiplier.

Proof. Clearly, the map g : C ˆ C Ñ K is bilinear over F .
Using c “ 1´c and c2 “ c Tpcq´Npcq “ c´Npcq, we find j´1 gpcx, yq “ pc2x|yq´cpcx|yq “

pcx|yq ´ Ncpx|yq ´ pcx|yq ` cpcx|yq “ c ppcx|yq ´ cpx|yqq “ cj´1gpx, yq. Now K “ F ` Fc
yields gpsx, yq “ s gpx, yq for each s P K.

Using j “ ´j and px|cyq “ pcx|yq (see 1.1.(c)), we compute gpy, xq “ gpx, yq “ σpgpx, yqq.
We have proved that g is a σ-hermitian form.

Computing in the (associative) subalgebra generated by c and x we obtain gpx, xq “
j ppcx|xq ´ cpx|xqq “ j pcxx` xcx´ 2cxxq “ jpc´ cqxx “ xx “ Npxq, as claimed.

Quaternion structures and corresponding hermitian forms

For suitable vector subspacesW ă O of dimension three, we find that ΛW is the multiplicative
group of an associative subalgebra both of O and of EndF pOq, and O is, in a natural way, a
left vector space over that subalgebra of EndF pOq.

2.10 Lemma. Let W be a three-dimensional vector subspace of O, with 1 P W . Let MW be the
subalgebra generated by W in O.

(a) The group ΛWK normalizes ΛW , and Λ`
WK centralizes ΛW ; for each u P WK r t0u conju-

gation by λu induces the same algebra automorphism ιW of MW , with ιW |W “ κ|W .

(b) Mapping a P W to λa has a unique extension to an algebra isomorphism ζW from MW

onto a subalgebra L of EndF pOq. In particular, the group ΛW is the multiplicative group
of L, and thus isomorphic to M˚

W .
5 There is a typo in the formulation of the lemma [28, 4.3]; it should read “c “ 1´ c” instead of “c “ 1` c”.
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(c) The additive group of O becomes a left vector space of dimension 2 over L (and thus
over MW , via ζW ). We have ΛWK ď ΓLMW

pOq and Λ`
WK ď GLMW

pOq.

Proof. Consider a P W and u P WK. Then ua “ ´au “ au, and ´Npuqax “ puauqx “
upapuxq “ ´Npuqu´1papuxqq holds for all x P O by one of Moufang’s identities (see 1.1.(d)).
If u ‰ 0 then this means λa “ λ´1

u ˝ λa ˝ λu, and Λ`
WK centralizes ΛW .

From 1.4 we know that Λ`
WK acts transitively on O˚, and thus irreducibly on O. By Schur’s

lemma (cf. [17, 3.5, p. 118] or [24, Ch. XVII, Prop. 1.1]) the centralizer B of Λ`
WK in EndF pOq

is a (not necessarily commutative) field which forms an algebra of finite dimension over F .
In the previous paragraph we have obtained ΛW ď B. The subalgebra MW generated by W
in O forms a vector subspace of dimension 4 in O by Artin’s Theorem (see 1.1.(e)), and is
clearly invariant under ΛW . Thus MW is also invariant under the subalgebra L generated
by ΛW in EndF pOq. Now L forms a subfield of B, and acts regularly on MW . This yields
dimL “ 4. As MW is associative, the linear map ζW : W Ñ L|MW

: a ÞÑ λa|MW
extends to an

algebra homomorphism from MW to L, as claimed, and that homomorphism is bijective by
dimension reasons. The multiplicative group M˚

W equals WW , cf. 1.2.
If 1, a, b is any basis for W then MW “ W ‘ Fab and ιW pabq “ ab “ ba; clearly ι2W “ id.

The automorphism ιW is the unique automorphism of MW with ιW |W “ κ|W . The rest is
clear.

If W ď 1K then MW is a quaternion field, and ιW ‰ id is an inner automorphism (namely,
conjugation by any non-trivial element of WKXMW ). A hermitian form on the 2-dimensional
left vector space O over MW will be constructed in 2.11 below (cf. [28, 4.2]).

If W ď 1K (this case can occur only if charF “ 2) but W ď WK then ιW “ id, but MW is
still a quaternion field. We construct a hermitian form for that case in 2.13 below. However,
if W ď WK then the restriction of the polar form to W is trivial, and MW is a commutative
field (a totally inseparable extension of degree four over F , and every F -linear automorphism
of MW is trivial). The construction of the form in 2.13 still works for the commutative case
but yields an alternating form.

2.11 Definition. Let W be a three-dimensional vector subspace of O such that 1 PW ď 1K.
Choose a, b PW r F with a` a “ 1 and b P t1, auK, so ba “ ab and ba “ ab.

Put j :“ pa ´ aq´1 “ p2a ´ 1q´1, then j lies in 1K X F paq Ď bK, so j “ ´j, ja “ aj and
bj “ ´jb. Note that j, a, b lie in the associative algebra generated by a and b. We define

hW pv, wq :“ j
`

apv|wq ´ pv|awq
˘

` b´1j
`

apbv|wq ´ pbv|awq
˘

.

2.12 Lemma. Let W be a three-dimensional vector subspace of O, assume 1 P W ď 1K, and
let MW be the subalgebra of O generated by W . Endow O with the structure of a left vector
space over MW as in 2.10. Then the map hW : O ˆ O Ñ MW is a non-degenerate (in fact,
anisotropic) hermitian form, with respect to the standard involution on MW . For each v P O, we
have hW pv, vq “ Npvq. Every MW -linear similitude of N is a similitude of the form hW .

Proof. In the following computations, we use pbx|ayq “ ´pax|byq. By 1.1.(c), that equation
is equivalent to the equation px|bpayqq ` px|apbyqq “ 0 which can be verified as follows.
Using 1.1.(d) and 1.1.(e) we see a

`

bpayq ` apbyq
˘

“
`

pabqa
˘

y ` paaqpbyq; our assumption
ab “ ´ba then yields px|bpayq ` apbyqq “ 0.
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We first note

hW pw, vq “
`

apw|vq ´ pw|avq
˘

j `
`

apbw|vq ´ pbw|avq
˘

b´1j

“
`

apv|wq ´ pav|wq
˘

j `
`

apv|bwq ´ pav|bwq
˘

p´jqp´bq´1

“ j
`

´ apv|wq ` pv|awq
˘

`
`

´ apbv|wq ` pbv|awq
˘

jb´1

“ j
`

´ apv|wq ` pv|wq ´ pv|awq
˘

`
`

apbv|wq ´ pbv|awq
˘

b´1j
“ j

`

p´a` 1qpv|wq ´ pv|awq
˘

` b´1j
`

apbv|wq ´ pbv|awq
˘

“ hW pv, wq .

From a` a “ 1 we infer a2 “ a´ aa. Using this we obtain

hW pav, wq “ j
`

apav|wq ´ pav|awq
˘

` b´1j
`

apbpavq|wq ´ pbpavq|awq
˘

“ j
`

apv|awq ´ pv|apawq
˘

` b´1j
`

´ apav|bwq ` papavq|bwq
˘

“ j
`

apv|wq ´ apv|awq ´ aapv|wq
˘

` b´1j
`

´ apav|bwq ` pav|bwq ´ aapv|bwq
˘

“ j
`

a2pv|wq ´ apv|awq
˘

` b´1j
`

apav|bwq ´ aapv|bwq
˘

“ aj
`

apv|wq ´ pv|awq
˘

` ab´1j
`

pav|bwq ´ apv|bwq
˘

“ aj
`

apv|wq ´ pv|awq
˘

` ab´1j
`

´ pbv|awq ` apbv|wq
˘

“ a hW pv, wq .

Now we use b2 “ ´Npbq P F to obtain

hW pbv, wq “ j
`

apbv|wq ´ pbv|awq
˘

` b´1j
`

apb2v|wq ´ pb2v|awq
˘

“ b b´1j
`

apbv|wq ´ pbv|awq
˘

` b j
`

apv|wq ´ pv|awq
˘

“ b hW pv, wq .

We have established that the F -linear map ψw : O Ñ MW : v ÞÑ hW pv|wq centralizes
both λa and λb. Therefore, the centralizer of ψw contains the subalgebra L “ ζW pMW q

of EndF pOq generated by these left multiplications (cf. 2.10), and ψw is MW -linear. Together
with the relation hW pw, vq “ hW pv, wq from above, this completes the proof that hW is a
hermitian form.

For v P O, we compute

hW pv, vq “ j
`

apv|vq ´ pv|avq
˘

` b´1j
`

apbv|vq ´ pbv|avq
˘

“ Npvq
`

j
`

2a´ p1|aq
˘

` b´1j
`

apb|1q ´ pb|aq
˘˘

“ Npvq
`

jp2a´ a´ aq ` b´1jpab` ab´ ba´ abq
˘

“ Npvqp1` 0q “ Npvq ,

by our choice of j “ pa´aq´1 and ba “ ab. In particular, the form hW is anisotropic, and thus
not degenerate.

Let ϕ be an MW -linear similitude of N, with multiplier s P F . Then pϕpvq|ϕpwqq “ spv|wq
and ϕ pζW pxqpvqq “ ζW pxq pϕpvqq hold for all v, w P O and each x P MW . Note that
ζW pxqpvq “ xv if x P ta, bu ĂW . We compute

hW pϕpvq, ϕpwqq “ j
`

apϕpvq|ϕpwqq ´ pϕpvq|aϕpwqq
˘

` b´1j
`

apbϕpvq|ϕpwqq ´ pbϕpvq|aϕpwqq
˘

“ j
`

apϕpvq|ϕpwqq ´ pϕpvq|ϕpawqq
˘

` b´1j
`

apϕpbvq|ϕpwqq ´ pϕpbvq|ϕpawqq
˘

“ j
`

aspv|wq ´ spv|awq
˘

` b´1j
`

aspbv|wq ´ spbv|awq
˘

“ s hW pv, wq .

Thus we see that ϕ is a similitude of hW , with the same multiplier s.
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2.13 Lemma. Assume that W ď O is a three-dimensional vector space such that 1 P W ď 1K.
Choose a, b PW such that 1, a, b is a basis for W , and such that t :“ pa|bq equals 1 if W ďWK.

(a) The map hKW : OˆOÑMW defined by

h
K
W pv, wq :“ pabqpv|wq ` bpv|awq ` apv|bwq ` pv|apbwqq

is a non-degenerate sesquilinear form.

(b) If W ď WK then hKW is hermitian, with respect to the standard involution on the algebra
MW generated by W . For each v P O, we then have hKW pv, vq “ Npvq.

(c) If W ďWK then hKW is alternating; in particular, we have hKW pv, vq “ 0 for each v P O.

(d) In any case, every MW -linear similitude of N is a similitude of the form hKW .

Proof. It is easy to see that every MW -linear similitude of N is a similitude of the form hKW ,
see the arguments given in the proof of 2.12 above.

We note that 1 P W ď 1K implies charF “ 2 and then that the polar form of the norm N
is alternating. In the following arguments, we use Npcq “ c2 and p1|cq “ 0 “ pc|cq for
c P W without further mention. Using one of Moufang’s identities (cf. 1.1.(d)) and t “
pa|bq, we compute bpawq “ bpapbpb´1wq “ Npbq´1pbabqpbwq “ Npbq´1 ppt´ abq bq pbwq “
Npbq´1 ppt` abqbq pbwq “ Npbq´1

`

b2tw ` ab2pbwq
˘

“ tw ` apbwq.
In order to see that v ÞÑ hKW pv, wq is MW -linear, it suffices to check the pertinent relation

for the generators a, b. We obtain

hKW pav, wq “ pabqpav|wq ` bpav|awq ` apav|bwq ` pav|apbwqq
“ ba2pv|wq ` pabqpv|awq ` a2pv|bwq ` apv|apbwqq “ a hKW pv, wq .

Fix w P O. With the relation bpawq “ tw ` apbwq from above we compute

hKW pbv, wq “ pabqpbv|wq ` bpbv|awq ` apbv|bwq ` pbv|apbwqq
“ pabqpv|bwq ` bpv|bpawqq ` ab2pv|wq ` pbv|bpawq ´ twq
“ ab2pv|wq ` b2pv|awq ` pabqpv|bwq ` pbv|twq ` bpv|apbwqq ´ pbv|twq
“ b hKW pv, wq .

Using bpawq “ tw ` apbwq again, we find

hKW pw, vq “ pabqpw|vq ` bpw|avq ` apw|bvq ` pw|apbvqq
“ pabqpv|wq ` bpav|wq ` apbv|wq ` papbvq|wq
“ pabqpv|wq ` bpv|awq ` apv|bwq ` pv|bpawqq

“ pab` tqpv|wq ` bpv|awq ` apv|bwq ` pv|apbwqq “ hKW pv, wq ,

so the form hKW is indeed hermitian or symmetric, depending on the restriction κ|MW
.

In any case, we have

hKW pv, vq “ pabqpv|vq ` bpv|avq ` apv|bvq ` pv|apbvqq
“ 0` bNpvqp1|aq ` aNpvqp1|bq ` pav|bvq “ Npvqpa|bq .

If W ď WK then our assumption pa|bq “ 1 yields hKW pv, vq “ Npvq for each v P O, and the
form hKW is anisotropic (like N) and thus not degenerate. If W ď WK then hKW pv, vq “ 0 for
each v P O, and the form hKW is alternating. In order to see non-degeneracy in that case, pick
u P ta, b, abuK such that p1|uq “ 1; then hKW pu, 1q “ ab ‰ 0.
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3 Autotopisms and anti-autotopisms

3.1 Definition. Let C be any algebra. An autotopism of C is a triplet6 pα|β|γq of additive
bijections of C such that βpsxq “ γpsqαpxq holds for all s, x P C. An anti-autotopism of C is a
triplet pδ|ε|ϕq of additive bijections of C such that εpsxq “ δpxqϕpsq holds for all s, x P C.

If pα|β|γq is an autotopism then it is already determined by any one of the maps α, β, or γ
together with a single non-zero value of any one of the remaining two maps. For instance,
we have γp1qαpxq “ βpxq “ γpxqαp1q for each x P C. Being a component of an autotopism
imposes severe restrictions on the additive bijection, see 3.3.(e) and 3.11 below. However,
each automorphism α of C yields an autotopism pα|α|αq, and each anti-automorphism β of C
yields an anti-autotopism pβ|β|βq of C. In particular, the standard involution κ yields the
anti-autotopism pκ|κ|κq.

The set of all autotopisms forms a subgroup ∆ of the direct product AutpC,`q3. The
set ∆F :“ ∆X pGLF pOqq3 of all linear autotopisms (cf. 3.3.(d)) is a subgroup of ∆. The mul-
tiplication is more involved if anti-autotopisms enter the stage: for anti-autotopisms pδ|ε|ϕq,
pδ1|ε1|ϕ1q and autotopisms pα|β|γq, pα1|β1|γ1q we have pδ|ε|ϕqpδ1|ε1|ϕ1q “ pϕ ˝ δ1|ε ˝ ε1|δ ˝ ϕ1q,
pα|β|γqpδ1|ε1|ϕ1q “ pγ ˝ δ1|β ˝ ε1|α ˝ ϕ1q and pδ|ε|ϕqpα1|β1|γ1q “ pδ ˝ α1|ε ˝ β1|ϕ ˝ γ1q. The
motivation for both the definition and the multiplication formulas comes from the theory of
projective planes; autotopisms are used to describe elements of a triangle stabilizer, while
anti-autopisms describe dualities fixing a triangle.

If C is a division algebra, we consider the affine plane over C, with point set C2, vertical
lines rcs :“ tcu ˆ C with c P C, and lines rs, ts :“

 

px, sx` tq
ˇ

ˇ x P C
(

of slope s and inter-
cept t. The lines of given slope s form a parallel class, the corresponding point at infinity is
denoted by psq. Lines of slope 0 are called horizontal.

The group ∆ of autotopisms describes the stabilizer of a triangle7 in the projective com-
pletion of that affine plane; the vertices of that triangle are the origin p0, 0q and the points
at infinity for the coordinate axes r0, 0s and r0s. Indeed, the action of pα|β|γq on the sets
of points and lines are given by pα|β|γq.px, yq “ pαpxq, βpyqq, pα|β|γq.rs, ts “ rγpsq, βptqs,
and pα|β|γq.rcs “ rαpcqs. Thus α and β give the actions on the horizontal and vertical axis,
respectively, while γ gives the action on slopes (and thus on the line at infinity).

The global stabilizer of the triangle is the semi-direct product of ∆ with a dihedral group
of order 6 which we introduce in the next lemma.

3.2 Lemma. Let O be an octonion field.

(a) Mapping px, yq P OˆO to py, xq and any non-horizontal line rs, ts to rs´1,´s´1ts extends
to an involutory automorphism ϑ1 of P2pOq with axis r1, 0s and center p´1q.

(b) Mapping px, yq P O ˆ pO r t0uq to pxy´1, y´1q and rs, ts to r´t´1s, t´1s extends to an
involutory automorphism ϑ2 of P2pOq with axis r0, 1s and center p0,´1q.

(c) The conjugate ϑ3 :“ ϑ1 ˝ ϑ2 ˝ ϑ1 coincides with ϑ2 ˝ ϑ1 ˝ ϑ2. Consequently, the product
ϑ1 ˝ϑ2 has order 3, and the group generated by these automorphisms is dihedral of order 6.

Proof. Using 1.1.(f) one easily verifies that ϑ1 extends to an automorphism of the affine plane,
and then to an automorphism of P2pOq. The axial involution ϑ2 is taken from [25, 3.5 (22),

6 As a reminder for the reader, triplets that are (anti-)autotopisms will be written as pα|β|γq rather than pα, β, γq.
7 See [6, 3.1.32] for that interpretation of autotopisms as collineations; cf. also [21, Sect. 1].
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p. 107], cf. [19, 2.3]. The effect of the products ϑ1 ˝ ϑ2 ˝ ϑ1 and ϑ2 ˝ ϑ1 ˝ ϑ2 on px, yq is easily
computed (using associativity of the subalgebra generated by x and y, cf. 1.1.(e)).

3.3 Lemma. Let O be an octonion field over F .

(a) If pα|β|γq is an (anti-)autotopism of O and r, s, t P F ˚ are scalars then prα|sβ|tγq is an
(anti-)autotopism precisely if s “ tr.

(b) Any one of the triplets pα|β|idq, pid|β|αq is an autotopism if, and only if, there exists z P F ˚

such that α “ λz “ β, and pα|id|γq is an autotopism precisely if there exists z P F ˚ such
that α “ λz “ γ´1.

(c) If pα|β|γq and pα1|β1|γq are both autotopisms then there exists r P F ˚ such that pα1|β1|γq “
prα|rβ|γq. Conversely, if pα|β|γq is an autotopism then prα|rβ|γq is one, for each r P F ˚.

(d) Let pα|β|γq be an (anti-)autotopism and let ϕξ denote the companion of the semi-linear
map ξ. Then ϕα “ ϕβ “ ϕγ .

In particular, if one component of an (anti-)autotopism is F -linear then all three compo-
nents are F -linear. We briefly call the (anti-)autotopism linear in this case.

(e) Every linear autotopism consists of similitudes of the norm form of O, and every autotopism
consists of semi-similitudes (in particular, semi-linear maps).

(f) An automorphism ϕ of F occurs as the companion of a semi-similitude of the norm form
if, and only if, it occurs as the companion of an automorphism of O.

Proof. A straightforward computation yields assertion (a).
In order to prove assertions (b) and (c), we interpret autotopisms as elements of the trian-

gle stabilizer in the projective completion of the affine plane over O. If one of the entries of an
autotopism is trivial then the corresponding element of the triangle stabilizer acts trivially on
one side L of the triangle, and acts trivially on the line pencil in the vertex p opposite that side.
Thus it is a homology with center p and axis L. It is well known that, in every affine plane
over an octonion field, these homologies are precisely the maps of the form px, yq ÞÑ pzx, zyq if
p “ p0, 0q, of the form px, yq ÞÑ px, zyq if L “ r0, 0s, of the form px, yq ÞÑ pzx, yq if L “ r0s, re-
spectively, where z P F ˚ (see [18, 1.22], together with the fact that the center of an octonion
algebra coincides with each one of its nuclei, cf. 1.1.(i)). Thus we have proved assertion (b).
The quotient pα1|β1|γq´1pα|β|γq then acts trivially on the line at infinity, and assertion (c)
follows from assertion (b).

In order to verify assertion (d), we consider s, t P F and compare ϕβpstqβp1q “ βppstq1q “
βpps1qpt1qqwith the product of ϕαpsqαp1q “ αps1q and ϕγptqγp1q “ γpt1q in the suitable order.
This yields that pϕα|ϕβ|ϕγq is an autotopism of F . As the components of that autotopism are
automorphisms, they coincide.

Assertion (e) is known, see [21, Cor 1.9]. Assertion (f) is also known, see [27, 1.7.2].

Assertion 3.3.(c) treats the third component in a special way. It can easily be transferred to
the other components (mutatis mutandis), either by a direct argument or by an application
of the following famous principle of triality.
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3.4 Lemma (Triality for autotopisms8). If pα|β|γq is an autotopism of an octonion field O then
τpα|β|γq :“ pγ|µ´1

α κ˝α˝κ|µ´1
β κ˝β˝κq is an autotopism, as well. The map τ is an automorphism

of ∆, and has order three.

Proof. We note τ2pα|β|γq :“ pµ´1
β κ ˝ β ˝ κ|µ´1

γ κ ˝ γ ˝ κ|αq, and conclude that τ has order
three. Checking that τpα|β|γq is an autotopism amounts to verification of the equation
µ´1
β βpsq γpxq “ µ´1

α αpsxq. Multiplying with γpxq from the right we obtain µ´1
β βpsqNpγpxqq “

µ´1
α αpsxq γpxq. The latter equation is equivalent to µ´1

β µγβpsqϕpNpxqq “ µ´1
α γpxqαpsxq.

As pα|β|γq is an autotopism, the right hand side equals µ´1
α βpxx sq “ ϕpNpxqqβpsq, and

µβ “ µγµα yields the claim.
It is straightforward to verify that τ is a group homomorphism on ∆.

3.5 Remark. In fact, we obtain τ as conjugation by ϑ2 ˝ ϑ1 from 3.2; this observation could
replace the arguments in the proof of 3.4. In order to verify that claim, we note first that
`

δpx´1q
˘´1

“ µ´1
δ δpxq holds for each semi-similitude δ and each x P O˚. Conjugation by ϑ1

induces the involutory automorphism π3 : pα|β|γq ÞÑ pβ|α|µ´1
γ κ˝γ ˝κq on ∆, and conjugation

by ϑ2 gives the involution π2 : pα|β|γq ÞÑ pµ´1
γ κ ˝ γ ˝ κ|µ´1

β κ ˝ β ˝ κ|µ´1
α κ ˝ α ˝ κq. Thus the

dihedral group generated by ϑ1 and ϑ2 acts faithfully as a group of automorphisms on ∆.

3.6 Examples. For each u P O˚ the triplet pρu|λu ˝ρu|λuq is an autotopism; we use Moufang’s
identity uppsxquq “ pusqpxuq here, see 1.1.(d). The triplet p ´1

Npuqρu|
´1
Npuqλu ˝ ρu|λuq is an

autotopism by 3.3.(c). Note that ´1
Npuqρu “ ρ´1

u holds if u P PuO, so the latter autotopism is
pρ´1
u |λu ˝ ρ

´1
u |λuq in that case.

Our triality τ from 3.4 maps the autotopism pρu|λu˝ρu|λuq to pλu|Npuq´1λu|Npuq
´2λu ˝ ρuq

and then on to pNpuq´2λu ˝ ρu|Npuq
´1ρu|ρuq. Using 3.3.(c) again, we infer that the triplet

pNpuq´1λu ˝ ρu|ρu|ρuq “ pλ´1
u ˝ ρu|ρu|ρuq is an autotopism. Application of π3 from 3.5 to

pρu|λu˝ρu|λuq yields that pλu˝ρu|ρu|Npuq´1κ˝λu˝κq “ pλu˝ρu|ρu|Npuq
´1ρuq is an autotopism,

as well.
The standard involution κ is an anti-automorphism, and yields an anti-autotopism pκ|κ|κq.

Multiplication (cf. 3.1) gives pα|β|γqpκ|κ|κq “ pγ ˝ κ|β ˝ κ|α ˝ κq. So pρu|λu ˝ ρu|λuqpκ|κ|κq “
pλu ˝ κ|λu ˝ ρu ˝ κ|ρu ˝ κq “ pλu ˝ κ|λu ˝ κ ˝ λu|κ ˝ λuq “ pλu ˝ κ|´Npuqσu|Npuqκ ˝ λ

´1
u q is an

anti-autotopism, and pλu ˝ κ|σu|´κ ˝ λ´1
u q is an anti-autotopism, as well (see 3.3.(a)).

3.7 Definition. For j P t1, 2, 3u, the map prj : ∆ Ñ ΓOpO, Nq : pα1|α2|α3q ÞÑ αj is a group
homomorphism.

Note that triality (see 3.4) cyclically interchanges the kernels and images of pr1, pr2,
and pr3, as defined in in 3.7. The homomorphism prj : ∆ Ñ ΓOpO, Nq is never surjective, and
its restriction to the group ∆F of linear autotopisms is also not surjective onto GOpO, Nq. We
clarify the situation for the linear autotopisms; it turns out (in 3.11 below) that the following
definition gives a direct description of prjp∆F q “ prjp∆q XGOpO, Nq.

3.8 Definition. The subgroup GO`pO, Nq :“ 〈tλu | u P O˚u Y tρu | u P O˚u〉 ď GOpO, Nq is
called the group of direct similitudes of the norm form.

3.9 Lemma. Let V ď O be any vector subspace of dimension at least 5. Then GOpO, Nq is
generated by tκu Y

 

λv
ˇ

ˇ v P V
(

.
8 See also [27, 3.3.2], but note that the maps given there do not have order three.
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Proof. Let Ψ :“
〈
tκu Y

 

λv
ˇ

ˇ v P V
(〉
ď GOpO, Nq. The subgroup ΛV “

〈
λv

ˇ

ˇ v P V
〉

is
transitive on O˚ by 1.4. For u P O˚, pick ψu P ΛV with ψup1q “ u. Then Ψ contains the
involution κ “ ´σ1 and its conjugate ´σu “ ψu ˝κ ˝ψ

´1
u . The group

〈
´σu

ˇ

ˇ u P O˚
〉

contains〈
p´σuq ˝ p´σvq

ˇ

ˇ u, v P O˚
〉
“ O`pO, Nq. As ´id lies in O`pO, Nq, the Cartan-Dieudonné

Theorem (cf. 2.5.(a)) also implies
〈
´σu

ˇ

ˇ u P O˚
〉
“ OpO, Nq. The stabilizer GOpO, Nq1 is

contained in OpO, Nq ď Ψ, and transitivity of ΛV ď Ψ yields GOpO, Nq ď Ψ.

3.10 Lemma. Let C be a division algebra, and let pα|β|γq be an anti-autotopism of C. If γ “ id
then C is isotopic to a commutative algebra.

Proof. Being an anti-autotopism means βpsxq “ αpxqγpsq for all s, x P C. Specializing s “ 1
we find β “ α. Specializing x “ 1 we then find αpsq “ βpsq “ as for each s P C, where
a :“ αp1q. The existence of a P C r t0u with apsxq “ paxqs for all s, x P C implies that C is
isotopic to a commutative algebra; see [20, p. 592], cf. [10].

3.11 Theorem. For each γ P GOpO, Nq there exists either an autotopism pα|β|γq or an anti-
autotopism pα̂|β̂|γq, but not both. The set pr3p∆F q of those γ P GOpO, Nq that occur with
autotopisms of O is the subgroup GO`pO, Nq. In particular, the subgroup GO`pO, Nq has
index 2 in GOpO, Nq, and we have a semidirect product GOpO, Nq “ GO`pO, Nq ¸ xκy.

Proof. Assume that there is an autotopism pα|β|γq and an anti-autotopism pα̂|β̂|γq. Then
pα̂˝α´1|β̂ ˝β´1|γ ˝γ´1q is an anti-autotopism. From 3.10 we then infer that O is isotopic to a
commutative algebra. Every algebra isotopic to O is in fact isomorphic to O (see [22, 2.6.3]),
and we reach a contradiction.

In order to show existence of suitable (anti-)autotopisms, we recall from 3.9 that the group
GOpO, Nq is generated by tκu Y

 

λu
ˇ

ˇ u P O˚
(

, that pκ|κ|κq is an anti-autotopism, and that
pρu|λu ˝ ρu|λuq and pλ´1

u ˝ ρu|ρu|ρuq are autotopisms (for each u P O˚, see 3.6). Thus every
element of GO`pO, Nq “ 〈tλu | u P O˚u Y tρu | u P O˚u〉 ď pr3p∆F q. On the other hand,
pκ|κ|κq is an anti-autotopism, and κ R pr3p∆F q.

Now κ˝λu˝κ “ ρu yields that κ normalizes GO`pO, Nq, and that GO`pO, Nq is a subgroup
of index 2 in GOpO, Nq. We find GO`pO, Nq ď pr3p∆F q ă GOpO, Nq, and GO`pO, Nq “
pr3p∆F q follows.

3.12 Remarks. The group ΛO “
〈
λu

ˇ

ˇ u P O˚
〉

is normalized9 by κ ˝ ΛO ˝ κ “
〈
ρu

ˇ

ˇ u P O˚
〉
,

and ΛO is thus a normal subgroup of GO`pO, Nq (but not normal in GOpO, Nq, in general). In
order to see normality, we use one of Moufang’s identities (see 1.1.(d)): For all a, b P O˚ and
x P O we have pabqx “ pabqppxa´1qaq “ appbpxa´1qqaq. This means λ´1

a ˝ λab “ ρa ˝ λb ˝ ρ
´1
a .

The product ΛO ˝ pκ ˝ ΛO ˝ κq of two normal subgroups is a subgroup of GO`pO, Nq and
contains a set of generators; thus GO`pO, Nq “ ΛO ˝ pκ ˝ ΛO ˝ κq.

Using a generalization of the Spinor norm, one sees that the group ΛPuO is a proper sub-
group of ΛO, in general. As each element of O is of the form ab with a, b P PuO (see 1.2), our
formula λab “ λa˝ρa˝λb˝ρ

´1
a also shows that ΛPuO is not normalized by

〈
ρa

ˇ

ˇ a P PuOr t0u
〉

if ΛPuO ‰ ΛO.

9 We took this idea from Theo Grundhöfer’s paper [12, p. 448].
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3.13 Theorem. (a) We have GO`pO, Nq XOpO, Nq “ O`pO, Nq; cf. 2.5.

(b) The stabilizer GOpO, Nqt1,´1u of the set t1,´1u equals the direct product OpO, Nqt1,´1u “

x´κy ˝
〈
δu

ˇ

ˇ u P PuOr t0u
〉
. (Recall that δu “ 1

Npuqλu ˝ρu “ ´κ˝σu “ ´σu ˝κ, cf. 2.6.)

(c) The stabilizer GO`pO, Nqt1,´1u “ O`pO, Nqt1,´1u is generated by
 

δu
ˇ

ˇ u P PuOr t0u
(

.

(d) If charF ‰ 2 then GO`pO, Nq1 “ O`pO, Nq1 “
〈
δu ˝ δv

ˇ

ˇ u, v P PuOr t0u
〉
, and

GOpO, Nq1 “
〈
´κ ˝ δu

ˇ

ˇ u P PuOr t0u
〉
“

〈
σu

ˇ

ˇ u P PuOr t0u
〉
“ xκy ˝O`pO, Nq1.

Applying 2.6.(b), we see that GO`pO, Nq1 induces O`pPuO, N|PuOq on PuO; the kernel
of the restriction map is trivial because ´κ does not belong to GO`pO, Nq.

If charF “ 2 then t1,´1u “ t1u. We find GO`pO, Nqt1,´1u “ GO`pO, Nq1, and
GOpO, Nqt1,´1u “ GOpO, Nq1 “ xκy ˝ GO`pO, Nq1 in that case. Thus GO`pO, Nq1
induces

〈
δu|PuO

ˇ

ˇ u P PuOr t0u
〉
“

〈
σu|PuO

ˇ

ˇ u P PuOr t0u
〉
“ OpPuO, N|PuOq “

O`pPuO, N|PuOq on PuO (cf. 2.5.(d)); the kernel of the restriction map is trivial because
´κ does not belong to GO`pO, Nq.

(e) GO`pO, Nq “
〈 
λu

ˇ

ˇ u P PuOr t0u
(

Y
 

ρu
ˇ

ˇ u P PuOr t0u
(〉

.

(f) If charF ‰ 2 then GO`pO, Nq “
 

ϕ P GOpO, Nq
ˇ

ˇ detϕ “ µ4
ϕ

(

.

If charF “ 2 then the latter group coincides with GOpO, Nq.

Proof. From 2.6.(c) we infer that O`pO, Nq “
〈
δu

ˇ

ˇ u P O˚
〉

is contained in GO`pO, Nq. The
reflection κ is contained in OpO, Nq but neither in O`pO, Nq nor in GO`pO, Nq. Now the
inclusions O`pO, Nq ď GO`pO, Nq X OpO, Nq ă OpO, Nq yield GO`pO, Nq X OpO, Nq “
O`pO, Nq, as claimed in assertion (a).

We study the stabilizer GOpO, Nqt1,´1u of the set t1,´1u next. Elements of that stabilizer
clearly have multiplier 1, and GOpO, Nqt1,´1u “ OpO, Nqt1,´1u. For u P PuO r t0u, we
have δu P GO`pO, Nqt1,´1u. This element induces on PuO the hyperplane reflection σu|PuO,
see 2.6, and induces ´id|F on F . The set

 

σu|PuO
ˇ

ˇ u P PuOr t0u
(

of hyperplane reflec-
tions generates the full orthogonal group OpPuO, N|PuOq by the Cartan-Dieudonné Theorem,
see 2.5.(a).

In order to prove assertion (b), it thus remains to determine the set of all γ P OpO, Nqt1,´1u

that act trivially on PuO. If Dpγq “ 1 then the codimension of Fixpγq is even and bounded
above by dimpO{PuOq “ 1. So γ “ id in that case, and we obtain that O`pO, Nq in-
tersects the kernel trivially. Thus ´κ is the only element of Dickson invariant ´1 in the
kernel, and the kernel is generated by ´κ. We have thus proved that OpO, Nqt1,´1u “〈
t´κu Y

 

δu
ˇ

ˇ u P PuOr t0u
(〉

.
We have Dpδuq “ 1, Dp´κq “ ´1, and ´κ commutes with δu because u P PuO. Thus

OpO, Nqt1,´1u is a direct product of x´κy and
〈
δu

ˇ

ˇ u P PuOr t0u
〉
. This completes the proof

of assertion (b), and we also obtain O`pO, Nqt1,´1u “
〈
δu

ˇ

ˇ u P PuOr t0u
〉
. The last remain-

ing claim in assertion (c) is GO`pO, Nqt1,´1u “ O`pO, Nqt1,´1u; that equality follows from
assertion (a). Assertion (d) follows from the observation that ´κ and each δu map 1 to ´1.

The group generated by
 

λu
ˇ

ˇ u P PuOr t0u
(

Y
 

ρu
ˇ

ˇ u P PuOr t0u
(

is a subgroup of
GO`pO, Nq, acts transitively on O˚ by 1.4, and it contains the stabilizer GO`pO, Nq1 by
assertion (d). Thus it coincides with GO`pO, Nq, and assertion (e) is proved.
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It remains to prove assertion (f). For each a P O˚, we have µλa “ Npaq. If a P F ˚

then clearly detλa “ a8 and µλa “ a2, whence detλa “ µ4
λa

. If a P O r F then K :“
F ` Fa is a quadratic extension of F . We pick b P O r K and c P O r pK ` Kbq. Then
1, a, b, ab, c, ac, bc, apbcq forms a basis for O. With respect to that basis, the matrix for λa is a
block diagonal matrix of the form

¨

˚

˚

˚

˚

˚

˝

0 ´Npaq
1 Tpaq

0 ´Npaq
1 Tpaq

0 ´Npaq
1 Tpaq

0 ´Npaq
1 Tpaq

˛

‹

‹

‹

‹

‹

‚

,

with determinant Npaq4 “ µ4
λa

. Together with ρa “ κ ˝ λa ˝ κ this shows that GO`pO, Nq
is contained in the (normal) subgroup M :“

 

ϕ P GOpO, Nq
ˇ

ˇ detϕ “ µ4
ϕ

(

of GOpO, Nq. If
charF ‰ 2 then M does not contain κ because detκ “ ´1 ‰ 14 “ µ4

κ. The assertion
follows because GO`pO, Nq has index 2 in GOpO, Nq. If charF “ 2 then κ P M yields
GOpO, Nq “ xκy ˝GO`pO, Nq ď xκy ˝M “ M.

4 Some transitive groups of similitudes of the norm form

4.1 Definition. Let V be any subspace of O. Recall from 1.3 that ΛV :“
〈
λv

ˇ

ˇ v P V r t0u
〉

denotes the group generated by all left multiplications with non-trivial elements of V , and
Λ`V :“

〈
λv ˝ λw

ˇ

ˇ v, w P V r t0u
〉

is generated by all products of an even number of left mul-
tiplications by elements of V r t0u. (Note that Λ`V “ ΛV if 1 P V because λ1 “ id is then one
of the generators.) By 1.4, the group Λ`V acts transitively on O˚ if dimV ě 5.

In the group ∆ we define the subgroups ΓV :“ xp ´1
Npvqρv|

´1
Npvqλv ˝ ρv|λvq | v P V r t0uy and

Γ`V :“ xp 1
Npvwqρv ˝ ρw|

1
Npvwqλv ˝ ρv ˝ λw ˝ ρw|λv ˝ λwq | v, w P V r t0uy; these generators be-

long to ∆ by 3.6. Note that p ´1
Npvqρv|

´1
Npvqλv ˝ρv|λvq “ pρ

´1
v |λv ˝ρ

´1
v |λvq holds if v P PuOrt0u.

We write ηpλvq :“ pρ´1
v |λv ˝ ρ

´1
v |λvq for such v.

4.2 Lemma. Restriction of pr3 : ∆ Ñ OpO, Nq : pα|β|γq ÞÑ γ yields an isomorphism from ΓPuO
onto ΛPuO; the inverse will be denoted by η; in fact, it extends ηpλvq “ pρ´1

v |λv ˝ ρ
´1
v |λvq, as

defined above.

Proof. We restrict the homomorphism pr3 : ∆ Ñ ΓOpO, Nq : pα|β|γq ÞÑ γ from 3.7 to the
subgroup ΓPuO ď ∆. The kernel of pr3 is just

 

pλz|λz|idq
ˇ

ˇ z P F ˚
(

, see 3.3.(b). Therefore,
the kernel of the restriction is ΓPuO X

 

pλz|λz|idq
ˇ

ˇ z P F ˚
(

.
Every element of pr2pΓPuOq fixes 1, and pλz|λz|idq P ΓPuO yields z “ 1. Therefore, the

restriction pr3|ΓPuO is an injective homomorphism, its range is ΛPuO, and we obtain an iso-
morphism from ΓPuO onto ΛPuO. Clearly η is the inverse of this isomorphism.

4.3 Lemma. Let V ď O be any non-trivial vector subspace. Then ker pr2 “ Γ`F ď Γ`V , and
ΛF “ Λ`F ď Λ`V . If V ď PuO then ΛF “ kerppr2 ˝ ηq.

Proof. From 3.3.(b) we know ker pr2 “
 

pρ´1
z |id|λzq

ˇ

ˇ z P F r t0u
(

. As O is an algebra over F ,
we obtain Γ`F “

 

p´ρ´1
z | ´ id|λzqp´ρ1| ´ id|λ1q

ˇ

ˇ z P F ˚
(

“ ker pr2.
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Using 1.1.(f) we note λz “ λzv ˝ λ
´1
v P Λ`V if z P F ˚ and v P V r t0u, and compute

pρ´1
z |id|λzq “ p´Npzvq´1ρzv | ´Npzvq

´1λzv ˝ ρzv |λzvq p´Npvq
´1ρv | ´Npvq

´1λv ˝ ρv |λvq
´1.

Thus ΛF “ Λ`F ď Λ`V , and Γ`F ď Γ`V . The rest is clear.

4.4 Definitions. For every vector subspace V ď PuO, let fV K be the restriction of the polar
form to V K, and consider the group homomorphism pr2

V : ΓV Ñ OpV,N|V q : pα|β|γq ÞÑ β|V .

4.5 Lemma. Let V ď PuO be a vector subspace.

(a) For each a P V r t0u, we have pr2pηpλaqq “ κ ˝ σa “ σa ˝ κ.

(b) The group pr2pΓ`V q acts trivially on V K and induces pr2
V pΓ

`
V q “ O`pV,N|V q on V .

(c) If charF ‰ 2 and dimV is odd then pr2
V pΓV q “ O`pV,N|V q “ SOpV,N|V q.

If charF “ 2 or dimV is even then pr2
V pΓV q “ OpV,N|V q.

(d) If fV K is not degenerate then either dimV is even and ker pr2 “ ker pr2
V , or V “ PuO and

ker pr2 “ ker pr2
PuO, or dimV P t1, 3, 5u and ker pr2 has index 2 in ker pr2

V .

(e) If fV K is degenerate then charF “ 2. We study two important special cases explicitly:

(i) If fV K is not zero then ker pr2 has index 2 in ker pr2
V .

(ii) If V “ PuO then fV K “ fF “ 0. We have ker pr2
PuO “ ker pr2.

Proof. Recall from 2.6 that σa “ ´λa ˝ κ ˝ λ
´1
a . Using a P V ď PuO we obtain σapxq “

´apa´1xq “ apxa´1q “ axa´1 for each x P O. This shows λa ˝ ρ´1
a ˝ κ “ σa “ κ ˝ λa ˝ ρ

´1
a

and then pλa ˝ ρ´1
a q ˝ pλc ˝ ρ

´1
c q “ σa ˝ σc. These products act trivially on ta, cuK ě V K, while

their restrictions to V generate O`pV,N|V q, see 2.5. Thus (a) and (b) are established.
In order to prove assertion (c), we distinguish cases: If charF ‰ 2 and dimV is odd then

pr2
V pλaq “ κ ˝ σa|V “ ´σa|V has determinant 1. Thus SOpV,N|V q ě pr2

V pΓV q ě pr2
V pΓ

`
V q “

SOpV,N|V q yields SOpV,N|V q “ pr2
V pΓV q. If charF ‰ 2 and dimV is even then pr2

V pλaq “
´σa|V has determinant ´1, and we obtain OpV,N|V q ě pr2

V pΓV q ą pr2
V pΓV q “ SOpV,N|V q

which means OpV,N|V q “ pr2
V pΓV q. If charF “ 2 then pr2

V pλaq “ κ ˝ σa|V “ σa|V , and
OpV,N|V q “ pr2

V pΓV q follows.
We now turn to the investigation of the kernel of pr2

V . For any sequence a1, . . . , am in
V r t0u, we have pr2pηpλam ˝ ¨ ¨ ¨ ˝ λa1qq “ κmpσam ˝ ¨ ¨ ¨ ˝ σa1q by assertion (a). This product
acts trivially on V precisely if σam ˝ ¨ ¨ ¨ ˝ σa1 |V “ p´id|V q

m because V ď PuO. In any case,
that product induces p´κ|V Kqm on V K.

If fV K is not degenerate then fV is not degenerate, and O “ V K ‘ V . If dimV is even then
σam ˝ ¨ ¨ ¨ ˝ σa1 |V P tid|V ,´id|V u implies σam ˝ ¨ ¨ ¨ ˝ σa1 |V P O`pV,N|V q. Then m is even, and
p´κ|V Kq

m is trivial. This yields ker pr2 “ ker pr2
V . If V “ PuO then δ P ker pr2

V rker pr2 would
satisfy pr2pδq “ ´κ, but ´κ P OpO, NqrO`pO, Nq is never a component of an autotopism. If
dimV is odd and fV K is not degenerate then charF ‰ 2, and ´id|V is the product of an odd
number of reflections in OpV,N|V q, say ´id|V “ σa2k`1

˝ ¨ ¨ ¨ ˝σa1 with a1, . . . , a2k`1 P V rt0u.
Now pr2pηpλa2k`1

˝ ¨ ¨ ¨ ˝ λa1qq|V K “ κ|V K , and V ‰ PuO implies that ηpλa2k`1
˝ ¨ ¨ ¨ ˝ λa1q lies

in ker pr2
V r ker pr2. This proves assertion (d).

Now assume that fV K is degenerate, then charF “ 2, the form f |V is also degenerate, and
O`pV,N |V q “ OpV,N |V q; see 2.5.(d). Thus it is possible to write id|V “ σa2k`1

˝ ¨ ¨ ¨ ˝ σa1
with an odd number of elements a1, . . . , a2k`1 P V r t0u. If fV K ‰ 0 then there exists u P V K
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with u ‰ u, and ηpλa2k`1
˝ ¨ ¨ ¨ ˝ λa1q lies in ker pr2

V r ker pr2 because ηpλa2k`1
˝ ¨ ¨ ¨ ˝ λa1q|V K “

κ|V K ‰ id|V K . This settles the first of the subcases in (e).
Consider δ P ker pr2

PuO next; then γ :“ pr2pδq P O`pO, Nq1. Pick b P O with p1|bq “ 1. Then
t1, buK ď PuO is invariant under γ, and so is pt1, buKqK “ F `Fb. Thus there exist u1, y1 P F
with γpbq “ u1` y1b. Then 1 “ p1|bq “ pγp1q|γpbqq “ p1|u1` y1bq “ y1p1|bq “ y1 gives y1 “ 1,
and Npbq “ Npγpbqq “ Npu1` bq “ Npu1q` pu1|bq`Npbq “ u2

1`u1`Npbq yields u2
1`u1 “ 0

and thus u1 P t0, 1u. We obtain γ P tid, κu, but κ “ γ P GO`pO, Nq is impossible. This settles
the second subcase in (e).

5 Automorphisms of octonion algebras

The results of this section will be used to determine Λ`V for suitable V ď PuO, see 6.3 below.

5.1 Lemma. Let H be a quaternion field, and consider u, x P H. Then u and x are conjugates
if, and only if, they satisfy NHpuq “ NHpxq and THpuq “ THpxq.

Proof. Since conjugation preserves the norm on H it remains to prove the non-trivial impli-
cation, starting from the assumptions NHpuq “ NHpxq and THpuq “ THpxq.

If x ‰ u then a :“ x ´ u lies in PuH “ kerTH and satisfies a´1ua “ a´1upx ´ uq “
a´1pux´NHpuqq “ a´1pux´NHpxqq “ a´1pu´ xqx “ a´1p´aqx “ x.

If x “ u we pick a P t1, uuK r t0u. Then a P t1, uuK yields 0 “ pu|aq “ ua` au “ ua´ au.
This gives a´1ua “ u and proves the lemma.

The assertion of 5.1 cannot be generalized to the case of a split quaternion algebra. In fact,
such an algebra is isomorphic to a matrix algebra F 2ˆ2, and it is easy to construct examples
of non-central matrices with the same norm (i.e., determinant) and trace as some central
element. For instance, take x “ p 1 1

0 1 q and y “ p 1 0
0 1 q; these elements cannot be conjugates, of

course.

5.2 Proposition. Let H be a quaternion field, with norm N and standard involution κ. We
define GO`pH,Nq :“ tλa ˝ ρ

´1
c | a, c P H˚u. Then the following hold.

(a) GO`pH,Nq “
〈
λu ˝ ρv

ˇ

ˇ u, v P PuH r t0u
〉
.

(b) O`pH,Nq “ tλa ˝ ρ
´1
c | a, c P H˚, Npaq “ Npcqu “ GO`pH,Nq XOpH,Nq.

(c) OpH,Nq “ xκy ˙O`pH,Nq.

(d) GOpH,Nq “ xκy ˙GO`pH,Nq.

(e) PGO`pH,Nq – pH˚{F ˚q2.

(f) H˚{F ˚ – SOpPuH,N|PuHq.

Proof. Assertion (a) follows from 1.2.
Clearly GO`pH,Nq ď GOpH,Nq, and Ξ :“ tλa ˝ ρ

´1
c | a, c P H˚, Npaq “ Npcqu equals

GO`pH,Nq XOpH,Nq. We use the Dickson invariant D, see 2.4 and recall that O`pH,Nq is
defined as the kernel of D. For a P H r t0, 1u we have Fixpρaq “ t0u, and Fixpλa ˝ ρ

´1
a q is the

centralizer of a in H. That centralizer is the subalgebra F `Fa unless a P F (then it is H). In
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any case we have Dpλa ˝ ρ
´1
a q “ 1, and Dpρuq “ 1 if Npuq “ 1. Now λa ˝ ρ

´1
c “ pλa ˝ ρ

´1
a q ˝ ρu

with u “ ac´1 yields Ξ ď O`pH,Nq.
In 2.6.(c) we have proved that O`pH,Nq is generated by the set

 

δa
ˇ

ˇ a P H˚
(

, where
δa “ Npaq´1λa ˝ ρa “ λa ˝ ρ

´1
a P Ξ. This yields Ξ “ O`pH,Nq. Assertion (c) now follows

from the facts that O`pH,Nq has index 2 in OpH,Nq (see 2.5.(b)) and κ R O`pH,Nq. Thus
we have proved assertions (b) and (c).

Assertion (d) is obtained by a Frattini argument: clearly, the group GO`pH,Nq is transitive
on H˚, so it remains to note that the stabilizer GOpH,Nq1 “ OpH,Nq1 “ xκy ˙O`pH,Nq1 is
contained in xκy ˙GO`pH,Nq.

In order to prove assertion (e), we consider the surjective homomorphism ψ from pH˚q2

onto PGO`pH,Nq mapping pa, cq to Ppλa ˝ρ´1
c q, where Ppβq : PpHq Ñ PpHq : Fx ÞÑ F pβpxqq

for each β P GLF pHq. The kernel of ψ consists of pairs pa, cq such that there exists s P F ˚

with sx “ axc´1 for each x P H. Specializing x “ 1, we see sc “ a. This gives sxc “ scx for
each x, and c P F ˚ follows. So kerψ “ pF ˚q2, and PGO`pH,Nq – pH˚q2{ kerψ “ pH˚{F ˚q2,
as claimed in assertion (e).

Under the action of H˚ on H by conjugation, the vector 1 is invariant, and so is 1K “ PuH.
We obtain a homomorphism γ : H˚ Ñ OpPuH,N|PuHq : a ÞÑ λa ˝ ρ

´1
a |PuH . If charF ‰ 2

then Fixpγpaqq X PuH has even co-dimension, and we find γpH˚q ď O`pPuH,N|PuHq “

SOpPuH,N|PuHq. If charF “ 2 then the equalities OpPuH,N|PuHq “ SOpPuH,N|PuHq “

O`pPuH,N|PuHq hold anyway (see 2.5.(d)).
The restriction map from O`pH,Nq1 to O`pPuH,N|PuHq is surjective because every hy-

perplane reflection σp|PuH on PuH is the restriction of a hyperplane reflection on H. So
O`pH,Nq1 “

 

λa ˝ ρ
´1
a

ˇ

ˇ a P H˚
(

yields that γ describes a surjective map from H˚ onto
O`pPuH,N|PuHq. The kernel of γ is F ˚, and H˚{F ˚ – SOpPuH,N|PuHq follows.

5.3 Proposition ([27, Sect. 2.1]). Let H be a quaternion subalgebra of an octonion algebra C,
and pick a P HK r t0u with Npaq ‰ 0. Then the elements of the global stabilizer AutF pCqH
of H in AutF pCq are precisely the maps of the form

αc,t : C “ H ‘HaÑ C : x` ya ÞÑ pcxc´1q ` ptcyc´1qa ,

with c, t P H r t0u such that Npcq ‰ 0 and Nptq “ 1.

5.4 Theorem. Let O be an octonion division algebra over an arbitrary commutative field F .
Then AutF pOq is contained in the kernel O`pO, Nq ď SOpO, Nq of the Dickson invariant.

Proof. We know AutF pOq ď OpO, Nq, see 1.1.(j); it remains to show AutF pOq ď ker D.
(See 2.4 for the definition and properties of the Dickson invariant D.)

If µ is an automorphism of O fixing a two-dimensional subalgebra K elementwise then µ
is a K-linear map, and Fixpµq is a vector space over K. Now dimF Fixpµq “ 2 dimK Fixpµq is
even, and so is the co-dimension d “ dimpO{Fixpµqq. This yields Dpµq “ 1.

In particular, for each quaternion subalgebra H in O, each a P HKr t0u and each automor-
phism of the form αc,1 as in 5.3 we obtain Dpαc,1q “ 1 because F ` Fc ` pF ` Fcqa is fixed
elementwise.

Now consider α P AutF pOq. Since α commutes with the standard involution (see 1.1.(j)),
we have TOpwq “ TOpαpwqq and Npwq “ Npαpwqq for each w P O. As the affine hyperplane
 

u P O
ˇ

ˇ u` u “ 1
(

generates the vector space O, we may assume that there exists w P O
with w ` w “ 1 and αpwq ‰ w. Then w P O r F , and tw,αpwqu generates an associative
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subalgebra A of dimension at least 2. If A is a quaternion algebra, we use the fact that
elements of the same norm and trace are conjugates in A (see 5.1) to find c P A such that
αc,1pwq “ αpwq, where αc,1 is defined as in 5.3, with A playing the role of H. Then β :“
α´1 ˝ αc,1 acts trivially on the subfield F ` Fw. Thus Dpβq “ 1, and Dpαc,1q “ 1 yields
Dpαq “ 1.

There remains the case where dimA “ 2. There exists a quaternion field H in C contain-
ing w (see [27, 1.6.4]). Now H contains A “ F `Fw, by 5.1 and 5.3 we find c P H such that
α´1 ˝ αc,1 fixes F ` Fw elementwise, and Dpαq “ 1 follows as above.

5.5 Corollary. For each F -linear automorphism α P AutF pOq, the subalgebra Fixpαq of fixed
points has even dimension. (In particular, there is no automorphism fixing each element of F
and no others.)

5.6 Lemma. Let V ď PuO be a non-trivial vector space, and let Ψ ď AutpOq be a subgroup.
If pr2pΓ`V q contains Ψ then Γ`V contains

 

pα|α|αq
ˇ

ˇ α P Ψ
(

, and Λ`V contains Ψ.

Proof. The claim follows from the fact that
 

pα|α|αq
ˇ

ˇ α P Ψ
(

is contained in the group ∆ of
all autotopisms, and the observation (made in 4.3) that Γ`V contains the full kernel of the
homomorphism pr2 : ∆ Ñ ΓOpO, Nq.

5.7 Theorem. If C is a subalgebra of O then both pr2pΓ`
CK
q and Λ`

CK
contain AutCpOq :“

 

α P AutpOq
ˇ

ˇ α|C “ id
(

. In fact, we have
 

pα|α|αq
ˇ

ˇ α P AutCpOq
(

ď Γ`
CK

.

Proof. As 1 P C implies CK ď PuO, we know from 4.5.(b) that pr2pΓ`
CK
q acts trivially on

CKK “ C and induces pr2
CK
pΓ`
CK
q “ O`pCK, N|CKq on CK. Every hyperplane reflection

on CK is induced by a hyperplane reflection on O, and the latter reflection acts trivially on C.
Therefore, the group pr2pΓ`

CK
q equals the pointwise stabilizer O`pO, NqrCs of C in O`pO, Nq,

see 2.5.(b). From 5.4 we know AutF pOq ď O`pO, Nq. Thus AutCpOq ď AutF pOq is contained
in O`pO, NqrCs “ pr2pΓ`

CK
q. From 5.6 we know that Γ`

CK
contains

 

pα|α|αq
ˇ

ˇ α P AutCpOq
(

,
and Λ`

CK
contains AutCpOq.

5.8 Lemma. Let K be a two-dimensional subalgebra of a composition algebra C, and assume
that the restriction N|K of the norm is anisotropic (so K{F is a quadratic field extension). If α
is an automorphism of C and fixes each element of K then α is K-linear (with respect to the
natural structure of C as a left vector space over K, see 1.1.(h)).

5.9 Lemma. Let K be a two-dimensional subalgebra of a non-split octonion algebra O with
K ď PuC, and define a hermitian form g as in 2.9. Then the group AutKpOq of K-linear
automorphisms induces the group SUKpK

K, g|KKˆKKq on KK.

Proof. The space KK is invariant under AutKpOq because AutpOq acts by semi-similitudes
of the norm. Each element of AutKpOq fixes c, induces a K-linear map, and thus acts by
a similitude of the form g by 2.9. The existence of non-trivial fixed points implies that the
multiplier is 1. So AutKpOq induces a subgroup of UKpK

K, g|KKˆKKq on KK.
Fix a non-trivial element p P KKr t0u, and consider q P S :“

 

x P KK
ˇ

ˇ Npxq “ Nppq
(

. We
construct an automorphism αq P AutKpOq with αqppq “ q, as follows.

The subspaces Hp :“ K ` Kp and Hq :“ K ` Kq are quaternion subalgebras of O, and
they are both obtained by doubling K. The multiplication formula 1.1.(k) shows that the
K-linear bijection fixing 1 and mapping p to q is an isomorphism from Hp onto Hq. Pick a
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non-trivial element w P HKp X HKq ; then the octonion algebra is recovered in two ways as
double O “ Hp ‘Hpw and O “ Hq ‘Hqw, cf. 1.1.(k) again. Thus the K-linear isomorphism
from Hp onto Hq extends to a K-linear automorphism αq of O, with αqpwq “ w.

As αq acts trivially on the quaternion subfield W :“ K `Kw, we know from 5.3 that there
exists t PW with Nptq “ 1 and αqpupq “ ptuqp holds for each u PW (recall that WK “Wp).
Now tp “ αqppq “ q yields ptwqp “ αqpwpq “ wαqppq “ wq “ ´qw. Writing t “ r ` sw with
r, s P K, we find tp “ rp` spwpq and ptwqp “ ´sNpwqp` rpwpq. With respect to the K-basis
p, wp for Wp, the restriction αq|Wp is thus described by the matrix Aq :“

´

r ´sNpwq
s r

¯

with

detKpAqq “ rr ` Npwqss “ Nptq “ 1. So detKpαqq “ 1, and αq|KK P SUKpK
K, g|KKˆKKq

because αq fixes 1.
The set Ω :“

 

αq
ˇ

ˇ q P S
(

induces a subset of SUKpK
K, g|KKˆKKqwhich is transitive on S. A

Frattini argument tells us that AutKpOq “ Ω˝AutKpOqp. Pick c P KrF , then 5.3 asserts that
AutKpOqp “ AutF pOqc,p equals

 

pu` vaq ÞÑ pu` pBvqaq
ˇ

ˇ B P SUKpHa, g|HaˆHaq
(

, where
H “ Hp “ K`Kp is the quaternion field from above, a P HKrt0u, and u`va P H‘Ha “ O.
Thus we obtain AutKpOq “

 

pu` yq ÞÑ pu`Ayq
ˇ

ˇ A P SUKpK
K, g|KKˆKKq

(

, where u ` y P
K ‘KK.

5.10 Lemma. Let H be a quaternion subalgebra in O, and pick any w P HK r t0u. Then
HK “ Hw, and O “ H ‘ Hw. We abbreviate ψa,c : O Ñ O : x ` yw ÞÑ ax ` pycqw and
ψ̃a,c : OÑ O : x` yw ÞÑ xa` pcyqw.

(a) ΛH “ Λ`H “
 

ψa,c
ˇ

ˇ a, c P H˚, Npaq “ Npcq
(

–
 

pa, cq P H˚ ˆH˚
ˇ

ˇ Npaq “ Npcq
(

.

(b) ΛH{ΛF – O`pH,N|Hq “
 `

x ÞÑ axc´1
˘ ˇ

ˇ pa, cq P H˚ ˆH˚, Npaq “ Npcq
(

.

(c) Λ`
HK
“ tψ̃a,c | a, c P H

˚, Npaq “ Npcqu is a subgroup of index 2 in ΛHK “ xtλwu YΛ`
HK
y,

and Λ`
HK
– ΛH ; in fact, those groups are conjugates in O`pO, Nq.

(d) ΓH X ker pr3 “ xp´id| ´ id|idqy, and Γ`H X ker pr3 is trivial.

Proof. We note first that ΛH “ Λ`H follows from the fact that 1 P H.
For a deeper understanding of the group ΛH we recall that SH :“

 

s P H
ˇ

ˇ Npsq “ 1
(

coincides with the commutator group of H˚ (e.g., see [30, 20.26] for a proof of this folklore
result). Consider a, c P H˚ and x, y P H. Using 1.1.(k) again, we see λapx`ywq “ ax`pyaqw
and pλa ˝λcqpx`ywq “ acx`pycaqw. This yields pλ´1

ac ˝λa ˝λcqpx`ywq “ x`py cac´1a´1qw,
and

 

ψ1,s

ˇ

ˇ s P SH
(

Ď ΛH follows.
We further obtain λa “ ψa,a and λa1 ˝ ¨ ¨ ¨ ˝ λak “ ψu,v with u “ a1 ¨ ¨ ¨ ak and v “

ak ¨ ¨ ¨ a1, respectively. Then Npuq “ Npvq, and there exists s P SH such that v “ su and
λa1 ˝ ¨ ¨ ¨ ˝ λak “ ψu,su “ ψ1,s ˝ ψu,u “ ψ1,s ˝ λu. We obtain ΛH ď

 

ψu,su
ˇ

ˇ u P H˚, s P SH
(

“
 

ψu,v
ˇ

ˇ u, v P H˚ ˆH˚, Npuq “ Npvq
(

Ď
 

ψ1,s

ˇ

ˇ s P SH
(

˝
 

λu
ˇ

ˇ u P H˚
(

Ď ΛH , and equality
follows.

Mapping pu, vq to ψu,v is an isomorphism from
 

pu, vq P H˚ ˆH˚
ˇ

ˇ Npuq “ Npvq
(

onto ΛH .
This completes the proof of assertion (a). We postpone the proof of assertion (b).

In order to understand ΛHK , we consider a, c, x, y P H with a ‰ 0 ‰ c and compute
λawpx` ywq “ ´Npwqya` paxqw. This yields that λaw interchanges H with HK “ Hw, and
pλaw ˝ λcwqpx ` ywq “ ´Npwq pxca` pacyqwq. We compute ψ̃a,a “ λaw ˝ λ´Npwq´1w P Λ`

HK
.

From ψ̃a,a ˝ ψ̃c,c ˝ ψ̃ca´1,pcaq´1 “ ψ̃1,aca´1c´1 we then see tψ̃1,s | s P SHu Ď Λ`
HK

. By arguments

like those used for ΛH above, we now obtain Λ`
HK
“ tψ̃a,c | a, c P H

˚, Npaq “ Npcqu.
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Mapping x`yw to x`yw “ ´Npwq´1wpx`ywqw is an element of O`pO, Nq. It is obvious
from assertions (a) and (d) that conjugation by that element interchanges the groups ΛH
and Λ`

HK
. Conjugation by λw normalizes both ΛH and Λ`

HK
; in fact, we have λw ˝ψa,c ˝λ´1

w “

ψc,a and λw ˝ ψ̃a,c ˝ λ´1
w “ ψ̃c,a. We also note ψa,c ˝ ψ̃b,d “ ψ̃b,d ˝ ψa,c (by the associative law

in H), and assertion (c) is proved.
In order to prove (d), consider a sequence u1, . . . , uk P H˚ with λuk ˝ ¨ ¨ ¨ ˝ λu1 “ id.

Evaluating λuk ˝¨ ¨ ¨˝λu1 at 1 and at w P HK (using 1.1.(k)) we obtain uk ¨ ¨ ¨u1 “ 1 “ u1 ¨ ¨ ¨uk;
note that these products are taken in the associative subalgebra H. In particular, we have
Npukq ¨ ¨ ¨Npu1q “ 1. Now α :“ p´1qkρuk ˝ ¨ ¨ ¨ ˝ ρu1 is the first component of some autotopism
pα|β|idq P ΓH ă ∆, see 3.6. From 3.3.(b) we infer α “ t id for some t P F ˚. Evaluating
t “ αp1q “ p´1qku1 ¨ ¨ ¨uk “ p´1qk we find t “ p´1qk P t1,´1u.

For elements in Γ`H X ker pr3 we have even k, and obtain that Γ`H X ker pr3 is trivial. Noting
that p´id| ´ id|idq “ p´id| ´ id|λ1q P ΓH X ker pr3 completes the proof of assertion (d).

It remains to prove assertion (b). The inverse of the restriction pr3|Γ`H
is an isomorphism

ξ : Λ`H Ñ Γ`H extending ξpλu ˝ λvq “ pNpuvq´1ρu ˝ ρv|δu ˝ δv|λu ˝ λvq, cf. 4.1 and 2.6. The
homomorphism pr2

H ˝ ξ : Λ`H Ñ O`pH,N|Hq is surjective (see 2.6.(b)). As δu acts trivially
on HK and O “ H ‘HK, we have kerppr2

H ˝ ξq “ kerppr2 ˝ ξq. Each element of that kernel
is of the form γ “ λuk ˝ ¨ ¨ ¨ ˝ λu1 with even k and pδuk ˝ ¨ ¨ ¨ ˝ δu1qpxq “ x for each x P H.
That means puk ¨ ¨ ¨u1qx “ xpuk ¨ ¨ ¨u1q for each x P H. Evaluating at x “ 1, we obtain
s :“ uk ¨ ¨ ¨u1 “ uk ¨ ¨ ¨u1. The general condition now is sx “ xs, and yields s P F ˚. In
particular, we have u1 ¨ ¨ ¨uk “ uk ¨ ¨ ¨u1 “ s “ s “ uk ¨ ¨ ¨u1.

Now γ maps x` yw P O “ H ‘Hw to sx` pysqw “ spx` ywq, and γ “ λs P ΛF follows.
Conversely, every s P F ˚ yields an element λs “ λs ˝ λ1 P ΛF “ Λ`F ă Λ`H in the kernel under
consideration. So O`pH,N|Hq “ pr2

HpΓ
`
Hq – Λ`H{ kerppr2

H ˝ ξq “ Λ`H{ΛF “ ΛH{ΛF .
The equality O`pH,N|Hq “

 `

x ÞÑ axc´1
˘ ˇ

ˇ pa, cq P H˚ ˆH˚, Npaq “ Npcq
(

follows from
our result pr2

HpξpΛ
`
Hqq “ O`pH,N|Hq, the observations pr2

Hpξpλa ˝ λ1qq “ px ÞÑ axa´1q and
pr2
Hpξpλ

´1
ac ˝ λa ˝ λcqq “ px ÞÑ xpc´1a´1caqq, and arguments as in the proof of assertion (a)

above.

6 Transitive groups of similitudes of hermitian forms

We start with a closer look at the group O`pPuO, N|PuOq studied in 3.13.(d):

6.1 Theorem. The group Λ`PuO contains ΛF as a central subgroup. We have Λ`PuO{ΛF –

O`pPuO, N|PuOq and ΛPuO{ΛF – SOpPuO, N|PuOq; the latter is a special orthogonal group
in 7 variables.

Proof. In 4.5.(b) we have seen pr2
PuOpΓ

`
PuOq “ O`pPuO, N|PuOq. If charF ‰ 2 then 4.5.(c)

gives pr2
PuOpΓPuOq “ O`pPuO, N|PuOq “ SOpPuO, N|PuOq because dim PuO is odd. In this

case, the kernels of pr2
PuO and pr2 coincide, see 4.5.(d). If charF “ 2 then 4.5.(c) gives

pr2
PuOpΓPuOq “ OpPuO, N|PuOq “ SOpPuO, N|PuOq. The kernels of pr2

PuO and pr2 coincide
also in this case, see 4.5.(e). From 4.3 we know kerppr2 ˝ ηq “ ΛF ă Λ`PuO.

The result 6.1 has generalizations that shed light on certain exceptional (iso)morphisms
between classical groups, see 6.3 and 6.6 below. Instead of PuO “ FK, we study the or-
thogonal space KK of a two-dimensional separable subalgebra K of O next. As in 2.9, we
consider O as a vector space over K, and construct the hermitian form g.
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6.2 Lemma. Let a, b be non-zero elements in KK, and let u, v be non-zero elements in K.

(a) The map λa is a semi-similitude of the form g; the companion field automorphism is κ|K ,
and the multiplier is Npaq.

(b) The product λb˝λa is a similitude of the form g, with multiplierNpbaq, and detKpλb˝λaq “
Npbaq2.

(c) The map ρu is a similitude of the form g; the multiplier is Npuq, and detKpρuq “ u3u.
The set PK :“

 

ρc
ˇ

ˇ c P K˚
(

forms a group; we have ρu ˝ ρv “ ρuv.

Proof. From 2.8 we know that λa is semilinear with companion κ|K . Pick c P K r F with
Tc “ 1, as required for the construction of the form g in 2.9. Using 1.1.(c) and apcpaxqq “
´apcpaxqq “ ´ppacqaqx “ ´pcaaqx “ ´Npaqcx we see gpax, ayq “ Npaqgpx, yq.

In order to prove assertion (b), we describe the K-linear map γ :“ λb ˝ λa by a matrix with
respect to a suitable K-basis for O, as follows. As K ď KK and a P KK r t0u, the subspace
H :“ K ` Ka is a quaternion algebra. Pick a non-trivial element w P pH ` KbqK. Then
O “ H `Hw is obtained by doubling (cf. 1.1.(k)), and HK “ Hw “ Kw `Kpawq. We use
the K-basis 1, w, a, aw.

As b P KK X pKwqK “ Ka ` Kpawq, there exist x, y P K with b “ xa ` ypawq, and
Npbq “ NpaqpNpxq ` Npywqq. Using the multiplication formula 1.1.(k) and a P t1, x, yuK,
we obtain b “ xa ` payqw “ xa ` pyaqw and compute γp1q “ ba “ ´Npaqpx´ ywq, γpwq “
bpawq “ ´NpaqpyNpwq ` xwq, γpaq “ bpaaq “ ´Npaqpxa` ypawqq, and γpawq “ bpapawqq “
´Npaqp´yNpwqa` xpawqq. Thus γ is described by the matrix

´Npaq

¨

˚

˚

˝

x yNpwq 0 0
´y x 0 0
0 0 x ´yNpwq
0 0 y x

˛

‹

‹

‚

,

and we find detKpγq “ Npaq4pNpxq `Npywqq2 “ Npaq2Npbq2 “ Npbaq2, as claimed.
It follows from Artin’s Theorem (1.1.(e)) that ρu is K-linear. From 2.8 we know that ρu is a

similitude of g, with multiplier Npuq. In order to find the determinant, we note that au “ ua
holds for each a P KK. This means that ρu has the characteristic root u with multiplicity
three, and the characteristic root u (with multiplicity one). This yields detKpρuq “ u3u. As
the elements of PK can be simultaneously diagonalized, we obtain ρu ˝ ρv “ ρuv, and PK is
indeed closed under multiplication and inversion.

6.3 Theorem. The group Λ`
KK

coincides with Ξ :“
!

ξ P GUKpO, gq
ˇ

ˇ

ˇ
detKpξq “ µ2

ξ

)

. We have

ΛF ă Λ`
KK

. The quotients are Λ`
KK
{ΛF – O`pKK, N|KKq and ΛKK{ΛF – OpKK, N|KKq; the

latter is an orthogonal group in 6 variables.

Proof. From 6.2.(b) we see that Λ`
KK

is contained in Ξ. As Λ`
KK

is transitive on O˚ (see 1.2),
it only remains to show that Λ`

KK
contains the stabilizer Ξ1. By 5.9, that stabilizer is the

intersection AutKpOq of AutpOq with the group GLKpOq of K-linear bijections of O, and
by 5.7 it is contained in Λ`

KK
.

From 4.3 we know that Λ`
KK

contains ΛF “ kerppr2 ˝ ηq. From 4.5.(b) we know that
pr2
KK
pηpΛ`

KK
qq “ pr2

KK
pΓ`
KK
q “ O`pKK, N|KKq, and that pr2

KK
pΓ`
KK
q acts trivially on K “

pKKqK. Therefore, the kernel of pr2
KK

coincides with the kernel of pr2. Thus Λ`
KK
{ΛF –
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O`pKK, N|KKq. Pick any a P KK r t0u, from 4.5.(a) we then know pr2pηpλaqq “ σa ˝ κ,
and pr2

KK
pηpλaqq “ ´σa|KK P OpKK, N|KKq r O`pKK, N|KKq. This yields OpKK, N|KKq “

pr2pηpΛKKqq – ΛKK{ΛF , as claimed.

We have met a similar situation in the group GO`pO, Nq of direct similitudes, see 3.13.(f).
The full group of similitudes of the the form g can also be generated by multiplications:

6.4 Theorem. The group GUKpO, gq is the product PK ˝ Λ`
KK

, where PK “
 

ρc
ˇ

ˇ c P K˚
(

.
The intersection PK X Λ`

KK
equals ΛF . So we obtain that GUKpO, gq{ΛF splits as a semidirect

product K˚{F ˚ ˙O`pKK, N|KKq.

Proof. Let ψ P GUKpO, gq have multiplier µψ. Comparing determinants of Gram matrices, we
see detKpψq detKpψq “ µ4

ψ. So µ´2
ψ detKpψq has norm 1. By Hilbert’s Theorem 90 (see [24,

VI 6.1]) there exists c P K with c´1c “ µ´2
ψ detKpψq. Using 6.2.(c) we see that ρc ˝ ψ P

GUKpO, gq satisfies detKpρc ˝ ψq “ c3cdetKpψq “ c2c2µ2
ψ “ pccµψq

2 “ µ2
ρc˝ψ

. This gives
ρc ˝ ψ P Ξ “ Λ`

KK
, and ψ P PK ˝ Λ`

KK
, as claimed.

Now consider ρc P PK X Λ`
KK

. Then c3c “ detKpρcq “ µ2
ρc “ Npcq2 “ c2c2 yields c “ c.

This gives PK X Λ`
KK

“ PKXFixpκq “ PF “ ΛF ; if charF “ 2 we use that K is assumed to be
separable. The rest is clear from 6.3.

6.5 Remark. The reader may wonder why we use right multiplications in 6.4. In fact, the
group ΛK ˝Λ`

KK
consists of products λc˝pλb˝λaq ofK-linear maps with determinant c4Npbaq2

(cf. 6.2), and will in general be smaller than GUKpO, gq. Using methods as in 6.4, one sees
that ΛK ˝ Λ`

KK
in fact coincides with

 

ξ P GUKpO, gq
ˇ

ˇ detK ξ is a square in K
(

.

6.6 Theorem. Let W ď O be a vector subspace with 1 P W ď WK and dimW “ 3. Then
Λ`
WK “

〈
λu ˝ λv

ˇ

ˇ u, v PWK r t0u
〉

coincides with GUHpO, hq, where the quaternion field H :“

MW and the hermitian form h P thW , h
K
W u are constructed as in 2.10 and in 2.12 or 2.13,

respectively.

(a) We have ΛF ă Λ`
WK and Λ`

WK{ΛF – pr2
WKpΓ

`

WKq “ pr2
WKpΓWKq “ SOpWK, N|WKq; this

is a special orthogonal group in 5 variables.

(b) The group ΛWK is a direct product of Λ`
WK and a cyclic group of order two; so ΛWK{ΛF –

OpWK, N|WKq if charF ‰ 2 but ΛWK{ΛF – OpWK, N|WKq ˆ C2 if charF “ 2.

(c) The group xΛW YΛ`
WKy “ ΛW ˝Λ`

WK coincides with the group AutF pHq ˙GUHpO, hq of
all semi-similitudes of h with F -linear companions.

Proof. The group Λ`
WK is transitive on O˚ (see 1.2) and a subgroup of GUHpO, hq by 2.10

and 2.12. For pα|β|γq P Γ`
WK , we have βp1q “ 1. Each element of the stabilizer pΛ`

WKq1 acts
trivially on H. The embedding η|Λ

WK
: Λ`

WK Ñ Γ`
WK ď ∆ maps the stabilizer pΛ`

WKq1 into
the group Ψ :“

 

pα|α|αq
ˇ

ˇ α P AutHpOq
(

because η
`

pΛ`
WKq1

˘

consists of autotopisms pα|β|γq
where both β and γ (and then also α) fix 1. Conversely, we know Ψ ď Γ`

HK
ď Γ`

WK from 5.7,
and pr3pΨq ď Λ`

WK yields Λ`
WK “ GUHpO, hq.

From 4.3 we know that Λ`
WK contains ΛF “ kerppr2 ˝ ηq. There exist a1, a2, a3, a4, a5 P

WK r t0u such that ´idWK “ σa1 ˝ σa2 ˝ σa3 ˝ σa4 ˝ σa5 |WK (see 2.5.(d) for the case where
charF “ 2). From pr2pηpλaj qq “ σaj ˝ κ (cf. 4.5.(a)) and κ|WK “ ´id we then infer ψ :“
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λa1 ˝ λa2 ˝ λa3 ˝ λa4 ˝ λa5 P kerppr2
WK ˝ ηq. As ψ P ΛWK has companion ιc, we have ψ R Λ`

WK

and ψ R kerppr2 ˝ ηq, but ψ2 P Λ`
WK X kerppr2 ˝ ηq. So kerppr2

WK ˝ ηq “ ΛF ˝ xψy, and
kerppr2

WK ˝ ηq X Λ`
WK “ ΛF . (See also 4.5.(d) and 4.5.(e).)

From 4.5.(b) and 4.5.(c) we know that pr2
KK
pηpΛ`

KK
qq “ pr2

KK
pΓ`
KK
q “ pr2

KK
pΓKKq “

SOpKK, N|KKq; recall from 2.5.(b) that SOpKK, N|KKq “ O`pKK, N|KKq if charF ‰ 2 and
from 2.5.(d) that SOpKK, N|KKq “ OpKK, N|KKq “ O`pKK, N|KKq if charF “ 2.

Clearly, every element of xΛW YΛWKy is F -linear, so xΛW YΛ`
WKy is contained in the group

ΓFUHpO, hq “ AutF pHq ˙GUHpO, hq of all semi-similitudes of h with F -linear companions.
Every F -linear automorphism of the quaternion field H is inner (by the Skolem-Noether
Theorem, see [2, Cor. 7.2D] or [17, §4.6, Cor. to Th. 4.9]). We introduce coordinates with
respect to any H-basis in the left vector space; then ΛW consists of all multiplications by
scalars (from the left) by 2.10.(b), and GUHpO, hq contains the scalar multiples of the identity
matrix (acting as multiplications by scalars from the right on our coordinates). So each inner
automorphism ofH occurs as the companion of some element of xΛWYΛ`

WKy, and that group
in fact coincides with ΓFUHpO, hq.
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[13] H. Hähl, SU4pCq als Kollineationsgruppe in sechzehndimensionalen lokalkompakten
Translationsebenen, Geom. Dedicata 23 (1987), no. 3, 319–345, ISSN 0046-5755,
doi:10.1007/BF00181316. MR 900284 (88j:51023). Zbl 0622.51008.
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