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Abstract

We study the structure of various groups generated by (left) multiplications in alternative
division algebras, and construct epimorphisms onto orthogonal and special orthogonal
groups. Throughout, we include the characteristic two case in our treatment.
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Introduction

We study groups generated by certain sets of (left) multiplications by non-zero elements of
an octonion field O of arbitrary characteristic. These groups are contained in the group
GO(O, N) of similitudes of the norm form N of the octonion field. Among our results, we
have the following:

(a)

(b)

(o)

The group Ag generated by all left multiplications is normalized by all right multi-
plications (see [3.12), and together the left and right multiplications generate a sub-
group GO™ (0, N) of index two in GO(Q, N) (Def. see and [3.13). The group
GO™ (0, N) consists of all elements of GO(Q, N) that occur as entries in triplets that
form autotopisms of O (see[3.11)).

Using an embedding into the group of autotopisms, we show (in that the
group Ap, o generated by left multiplications by non-zero elements from the space PuQ
of pure octonions has a quotient isomorphic to SO(PuQ, N|p,); i.e. a special orthog-
onal group of a suitable form in seven variables, see

For each quadratic separable subfield K in O (i.e., every two-dimensional subalgebra K
with K < 11), the left multiplications by non-zero elements from the space K+ gener-
ate a subgroup A1 of the group I'Ux (0, g) of semi-similitudes of a certain hermitian
form g on O (considered as a vector space over K, see and [6.3). We show
(in that said subgroup of I'Ux (0, g) has a quotient isomorphic to O(K*, N|x1);
i.e. an orthogonal group of a suitable form in six variables.
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(d) For each quaternion subfield H in O, we choose a three-dimensional subspace W < H
and show (in that the left multiplications by non-zero elements from the space W+
generate a subgroup Ay, 1 of the group I'Uy (0, h) of semi-similitudes of a certain her-
mitian form % on O (considered as a vector space over H, see[2.12)). We show (in[6.6)
that said subgroup of T'U (O, h) has a quotient isomorphic to SO(W+*, N|y.); ie. a
special orthogonal group of a suitable form in five variables. The group of all semi-
similitudes of h with F'-linear companions is obtained as the product Ay o A;;V -

The isomorphisms onto orthogonal groups in seven, six and five variables are rather well
known in the case where the forms are isotropic (see [8, Ch.4, §8, p.102-106]) and in the
case where the ground field is the field R of real numbers. In the latter case, our methods lead
to explicit constructions of certain coverings and exceptional isomorphisms between compact
Lie groups, namely Spin,(R) — SO7(R), SU4(C) — SOg(R), Ug(H) — SO5(R).

In fact, the present investigation has been inspired by ideas of Hermann Hahl (see [13]
3.2(b) and ()], [14, 3.1, 3.2], cp. [26), proof of 81.17, pp. 471 f]) who used (over the ground
field R) descriptions of Spin,(R) and SU4(C) as groups generated by (right) multiplications
in O, together with their interpretation as components of autotopisms (viz., elements of a
triangle stabilizer) and the resulting homomorphisms onto SO7(R) and SO¢(RR), respectively.

Considering groups of semi-similitudes rather than orthogonal or unitary groups allows us
to extend the results to arbitrary ground fields (subject only to the condition that an octonion
field exists). The restriction to subgroups of O(Q, N) rather than GO(Q, N) makes it much
more difficult to determine the range of the homomorphisms that we obtain.

It is a general observation that the theory of isometry groups of anisotropic forms is much
more involved than the theory for the isotropic case. Many results depend crucially on prop-
erties of the ground field. For instance, there exist examples of anisotropic quadratic forms
over non-archimedean ordered fields where the orthogonal group has a sequence (NNV;);en
of normal subgroups such that (1 jen Nj is trivial and each one of the quotients N;/N, is
abelian (see [7, p.345ff], cf. [1, Ch.V, §3, pp.179-186]). In particular, these orthogonal
groups do not contain any simple subgroups, and the same assertion holds for the groups of
linear automorphisms of corresponding quaternion or octonion fields. See also [[16, p. 67 f].

The quadratic forms (in seven, six and five variables) that play their role in the present
investigation have been characterized in a separate paper [23]]. The forms in six variables, in
particular, are important in the theory of spherical Tits buildings of low rank, where they are
known as forms of type Eg (see [30, Ch. 12] and [5]). .

Some results of the present paper (in particular, information about the action and the
structure of Ap, ) are applied in [4].

1 Composition algebras

Let F' be a commutative field. A composition algebra over F is a vector space C over F' with a
bilinear multiplication (written as zy) and a multiplicative quadratic form N := Ng: C — F
such that the polar form of NV is not degenerate. The polar form will be written as (z|y) :=
N(z +y) — N(xz) — N(y). We also assume that the algebra contains a neutral element for
its multiplication, denoted by 1. As usual, the ground field F' is embedded as F'1 in C. The
composition algebra is called split if it contains divisors of zero.

The first chapter of [27] gives a comprehensive introduction into composition algebras over
arbitrary (commutative) fields, including the characteristic two case.

We collect the basic facts that we need in the present paper (for proofs, consult [27]):
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1.1 Properties of composition algebras. Let C' be a composition algebra over F.

(@) The map k: C — C: x — T := (z|1)1 — z is an involutory anti-automorphism, called
the standard involution of C. Note that —k is the hyperplane reflection with center F'1,
see

(b) The norm and its polar form can be recovered from the standard involution as N¢(x) =
2T = Tz and (z|y) = =7 + yZ. In particular, we have the hyperplane PuC := 1+ =
{z € C| z = —z} of pure elements.

(c) Forall ¢,xz,y € C, we have (cx|y) = (z|ey) and (zcly) = (x|yc), see [27, 1.3.2].

(d) In general, the multiplication is not associative, but weak versions of the associative law
are still valid; among them Moufang’s identities [27, 1.4.1, 1.4.2]

(az)(ya) = a((zy)a), a(z(ay)) = ((ax)a)y, x(a(ya)) = ((za)y)a.

(e) Artin’s Theorem (see [27, Prop.1.5.2]): For any two elements x,y € C, the subalgebra
generated by x and y in C' is associative.

(f) Anelement a € C is invertible if, and only if, its norm is not zero; we have a=* = N¢(a)™'a
in that case. Thus a non-split composition algebra is a division algebra. Note that Artin’s
Theorem then implies a=(ax) = z = a(a'z) = (va)a! = (va=1)a, foreach x € C. If C

is not split then C* := C \ {0} is closed under multiplication, and forms a (Moufang) loop.

(8) Each element a € C is a root of a polynomial of degree 2 over F, namely, the polynomial
X2 —(a+a)X + Ng(a) € F[X]. We call To(a) := a + a the trace of a in C.

(h) In particular, for each a € C the algebra generated by a is F(a) = F + Fa, and this
algebra is associative and commutative. For x,y € F'(a) and v € C we have that v, z,y lie
in the algebra generated by v and a. Thus v(zy) = (va)y by[(e)] and C' is a left module
over F'(a). If the restriction of the norm to F'(a) is anisotropic then F'(a) is a commutative
field, and C'is a (left) vector space over F(a).

Similarly, we may consider C' as a right module over F'(a).

(i) [27, 1.9]1 If dimp C > 2 then F is the center of C; i.e. F = {ze€C|VaeC: zz = zz}.
If dimp C > 4 then F coincides with each one of the nuclei of C; i.e.

F = {zeC’ Vo,y e C: z(zy) = (22)y} {zeC‘ Vo,ye C: (z2)y = z(2y)}

{zeC| Va,yeC: (zy)z = x(y2)} .

() [21] 1.3] Every F-semilinear automorphism of C commutes with the standard involution.
If dimp C' > 4 then every Z-linear automorphism of C is F-semilinear. Consequently,
every Z-linear automorphism of such a C'is a semi-similitude of the norm form, and every
F-linear automorphism is an orthogonal map (cf. below).

We write Aut(C) for the group of all Z-linear automorphisms (i.e., all additive and multi-
plicative bijections), and Autr(C') for the group of all F-linear automorphisms.

(k) [27, 1.5.3]1 If D is a subalgebra of C with dimp C = 2dimp D and such that D+ n D =
{0} then D+ = Dw holds for each w € D+ with Nc(w) # 0, and the multiplication in
C = D® D+ is given by (z + yw)(u + vw) = (zu — No(w)vy) + (v + ya)w.
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For a reader versed in associative algebras, the construction of the module structures
in will appear natural, and one might conjecture a straightforward extension to any
subalgebra of C'. However, the lack of associativity in octonion algebras prevents this. A
pertinent construction will be given in [2.10| below.

We need a variant of the result [21] 1.6], as follows.

1.2 Lemma. Let C' be a non-split composition algebra, and let X,Y be vector subspaces such
that dim X + dimY > dimC. Then C = XY := {zy| € X,y Y}

Proof. For ¢ € C ~ {0}, the sets X and cY are vector subspaces; their intersection has di-
mension at least 1. For x € (X n ¢Y) \ {0} there exists v € Y such that z = cv. Now
y:=v~! = N(v) 'vbelongsto Y, and ¢ = zv~! = 2y € XY yields the claim. O

1.3 Definition. Let V' be any vector subspace of a non-split composition algebra C. By Ay :=
(Mo ] v e V \ {0}) we denote the group generated by all left multiplications with non-trivial
elements of V. The subgroup A, := (A, 0 Ay | v,w e V'~ {0}) is generated by all products
of an even number of left multiplications by elements of V'~ {0}.

1.4 Lemma. Let V < C be a vector subspace with dim V' > %dim C. Then A{; acts transitively
on C*.

Proof. Fromwe know VV = C, and C* < A{ (1) gives transitivity, as claimed. O

2 Similitudes of the norm and related forms

Notation and terminology for quadratic and hermitian forms is fairly standard. However, the
literature contains different notions of degeneracy for quadratic forms in characteristic two.
We call a quadratic form ¢ on a vector space V degenerate if there exists a non-zero vector
v e V* with g(v) = 0. The orthogonal space X+ := {we V| Vz € X: f(w,z) = 0} is meant
with respect to the polar form given by f,(z,y) := ¢(xz + y) — ¢(z) — q(y), as usual.

In this section, we only consider vector spaces of finite dimension.

2.1 Definitions. Let V be a leftE] vector space over some (not necessarily commutative)
field K, and let 0: K — K be an anti-automorphism with o2 = id.

(@) Let h: V x V — K be a o-hermitian form, i.e., a bi-additive map such that h(w,v) =
o(h(v,w)) and h(sv,w) = sh(v,w) holdE] for all v,w € V and each s € K. A semi-
similitude of h with multiplier /1, and companion ¢,; is a semi-linear bijection¢: V' — V/
such that h(¢(v), ¥ (w)) = ¢y (h(v,w)) py holds for all v,w e V.

(b) Let g: V — K be a quadratic form. Then a semi-similitude of ¢ with multiplier ;.,, and
companion ¢, is a semi-linear bijection ): V' — V such that ¢(¢(v)) = @y(q(v)) pyp
holds for each v e V.

(¢) In any case, a similitude is a semi-similitude with trivial companion.

! Right vector spaces (coordinatized by spaces of columns) generally fit better with mappings applied from the
left. However, it turns out in below that left vector spaces over quaternions are what we need here.
2 Then h(v, sw) = h(v, w)o(s).




Transitive groups of similitudes A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel

If ) is a semi-similitude of a non-zero hermitian form then its companion ¢, is a field
automorphism, and coincides with the companion of the semi-linear bijection. In particular,
it is uniquely determined.

Note that each semi-similitude of a quadratic form is a semi-similitude of the corresponding
polar form, with the same multiplier and companion. If the quadratic form is non-zero then
the companion of the semi-similitude is the companion of the semi-linear bijection.

2.2 Definition. If h: V x V — K is a non-zero hermitian form then the set of all semi-
similitudes of h forms a group which we denote by I'Uf (V, k). The subgroups GUg(V, h) of
all similitudes and Uk (V, h) of all isometries (i.e., similitudes with multiplier 1) clearly form
normal subgroups in I'Ux (V, h); these are the kernels of the homomorphisms ¢ — ¢, and
Y — (@, [y ), respectively.

Analogously, for a quadratic form ¢: V' — K with non-zero polar form, we have the group
T'O(V, q) of all semi-similitudes, with normal subgroups GO(V, ¢) and O(V, q) of similitudes
and isometries, respectively.

As we want to include the characteristic two case, some caution is required when dealing
with involutions in orthogonal groups:

2.3 Definition. Let q: V' — F be a quadratic form on a vector space V with corresponding
polar form f,: V x V — F (we allow the case where f, is degenerate). For each v € V with
q(v) # 0 we call

fq(,v) v

0p: Vo>V:ix—ux—
q(v)

the hyperplane reflection with center Fv (and axis v").

It is easy to verify that o, € O(V, ¢) with 02 = id and Fix(o,) = v*. If char ' # 2 then
the hyperplane reflection’s axis and center are already determined by its space of fixed points
(which is the axis, and forms the orthogonal complement of the center). The situation is quite
different if char F' = 2, see[2.7] below.

If char F' # 2 then a product of a sequence of hyperplane reflections on V' has determinant 1
if, and only if, the number of factors is even. If char F' = 2 then the determinant does not
impose any restrictions on members of the orthogonal group.

2.4 Remarks on special orthogonal groups, and the Dickson invariant. Let q: V' — F be
a non-degenerate quadratic form, and let h: V' x V' — F denote a hermitian form. As usua
we write SO(V, q) := {¢ € O(V,q) | dety = 1} and SU(V, h) := {¢ € U(V, h)| det ) = 1}.

If char F' # 2 and dim V' # 0 then SO(V,¢) is a (normal) subgroup of index 2 in O(V, q).
However, we have SO(V, q) = O(V, q) if char F' = 2.

We recall the definition of Dickson’s invariant ([9], cf. [29] 11.43]): for a quadratic form ¢
on a vector space V' of arbitrary characteristic and with non-degenerate polar form, this is
the (multiplicative!) map D: O(V,q) — {1,—1}: v — (—1)%, where d := dim(V/Fix(y)) =
dim{y(v) —v| v € V}. If the characteristic is different from two then D(y) = det .

® The mathematical community is unanimous in its interpretation of “SO(V, ¢)” as long char F' # 2, and confu-
sion starts if that restriction is dropped. The reader should be warned against the fact that the definitions of
SO(V, q) for the characteristic two case wildly vary in the existing literature; some sources use this name for
the kernel of the Dickson invariant.
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In any case, it is obvious that the kernel of the Dickson invariant D contains the subgroup
consisting of products of an even number of hyperplane reflections. See[2.5|for a more precise
statement.

If the characteristic is two then non-degeneracy of the polar form implies that dim V' is
even. In this case, the kernel ker D of the Dickson invariant is a (normal) subgroup of index 2
in O(V,q). If the polar form is degenerate (but not zero) then every product of hyperplane
reflections can be written as a product of an even number of reflections, see 2.5 below.

The following result is based on the Cartan-Dieudonné Theorem. There is an exceptional
case in that theorem, namely the case where V' has dimension 4 over F' = Fy and the Witt
index is 2. This is why we make the extra assumption on V in[2.5/below. As we are interested
mainly in anisotropic forms (over infinite fields), that special case is not really relevant for us.

2.5 Lemma. Let q: V — F be a non-degenerate quadratic form, let A := {v eV ] q(v) # 0},
and put O*(V,q) := (o400, | u,ve€ A). If |F| = 2 and dimV = 4, assume in addition that
the Witt index of q is not 2.

(@ (ou| ue Ay =0(V,q).

(b) If the polar form f, is not degenerate then O (V,q) is a normal subgroup of index 2 in
O(V, q). Indeed O (V,q) is the kernel of the Dickson invariant, and O*(V, q) = SO(V, q)
if char F' # 2.

(c) If fo =0 then O(V,q) is trivial, and so is O (V, q).

(d) If f, is degenerate (in particular; if char F' = 2 and dim V' is odd) then O* (V, q) = O(V, q)
unless |F| = 2 and dimV € {3, 5}.

Proof. Assertion [(a)|is the Cartan-Dieudonné Theorem (see [7, Prop. 8, p. 20, Prop. 14, p. 42,
Prop. 17, p.55], cf. [29] 11.39, 11.41] or [11} 14.16, p. 135]).

If the polar form is not degenerate then the Dickson invariant is defined, we clearly have
D(0,) = —1, and the Dickson invariant of any product of hyperplane reflections is (—1)¢
where d is the number of factors. This yields assertion

If f, is zero then char F' = 2 (because ¢ is not degenerate but 2¢(v) = f,(v,v) = 0 holds
for each v € V). Now ¢ is a semilinear map from V to F'; the companion is the Frobenius
endomorphism. That map is injective because its kernel is the radical {v e %4 ‘ q(v) =0}
of ¢. That radical is trivial by our hypothesis. As the group O(V,q) preserves the values
under ¢, that group is trivial, and so is O"(V, q) (cf. [8, Ch.I, §16, p.35]).

Finally, assume that f, is degenerate (then char F' = 2) but f, is not zero. Choose z €
V+ < {0}; then ¢(z) # 0 because ¢ is not degenerate. For x € V the map d,: F — F: s —
q(z + s2) = q(z) + s%q(z) is injective.

If |F'| > 2 then there exists y € V ~ V* with ¢(y) ¢ {0,q(2)}. We put w := q(2)y + q(y)z
and note q(y + 2) = q(y) + q(2) # 0 # q(y)q(2)q(y + z) = q(w). For x € V, we use z € V! and
fq|Fy+F> = 0 to compute
oy (0y+2(2)) = oy (37 - %(y + Z))

= o= B+ o)~ MEy = o - RS () + aly + 2)y + a(9)2)

_ fo(zy) fo(@a(2)yta(v)?)
= = s @Ry +a(w)2) = v — SRS w

= oy(x).
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Thus o, = 0y 0 0y4, and OF(V, ¢) = O(V, q) follows in this case.

If |[F| = 2and dimV = 2n + 1 then O(V,q) = Sp,,(F2) (see [11, 14.2]). That group
is simple if n > 3 (see [11, 3.11]), and coincides with its normal subgroup O*(V,¢). This
completes the proof of assertion O

Up to similitude, there is just one non-degenerate quadratic form ¢ on F{ if d is odd. The
cases O(F3, g3) = S3 and O(F3, g5) = Sg are true exceptions in[2.5](d)} we have O* (F3, g3) =
Az and OT(F3,q5) =~ Ag, respectively. In fact, there are 2° — 1 — 1 — 15 = 15 non-trivial
reflections in O(F3,q5) =~ Sg. The set of these reflections is a union of conjugacy classes
of involutions, and Sg contains three conjugacy classes of invoutions, with 15, 45, and 15
elements, respectively. Up to (possibly outer) automorphisms, the set of reflections is thus
the class of transpositions.

2.6 Lemma. Let C be any non-split composition algebra of dimension at least two over F. For
each u € C, we consider the left and right multiplications \, and p,, respectively, and the map
Oy 1= N(u)_l)\u o Py

(a) For each w € C ~ F the map ¢, is the product of two hyperplane reflections, namely
8y = 0y 001, where 5y = —kand 0, = — A\, 0 ko A\, L.

(b) Let V be a vector subspace of C, and assume V = V. Then <6u 0 0y | u, V€V N {0}> =
(0,00, | 2,y €V~ {0}). This group induces O*(V, N|y) on V, and acts trivially on V*.

(c) For each vector subspace V. < C with 1 € V the group O"(V,N|y) is generated by
{5u|V | uevV {0}}

Proof. We know that o1y = —k is a hyperplane reflection, see Therefore, its conjugate
Ayo(—r)oA b = N oo10A, ! = oy is another reflection, and 0,001 = (= A, o0k0\; ) o(—k) =
Ay o KkoM;' ok = 0d,, as claimed in assertion

Let V < C be any vector subspace. For each z € V and each u € V ~ {0} we have
ou(z) € x + Fu < V. Thus V is invariant under o,, and o,y € O(V,N|y) is either a
hyperplane reflection on V, or trivial on V.

We observe §, = —0, 0k = —k ooy Thus 6,00, = 0,005 and V = V implies
(8u 00y | u,ve VN {0}) = (0z00y| x,y eV ~ {0}). Each product o, o o, with z,y € V
leaves V invariant and acts trivially on V*. So assertion |(b)| follows.

Now assume 1 € V; then V is invariant also under oy, and 4, |y belongs to O" (V, N|y). In
order to show that the set {d,|y | u € O*} generates O*(V, N|y), we recall §, = o,, o 51 and
obtain 6, 00, ! = g, 00100100, = 0y 0 0. O

2.7 Remark. If ¢: V — F is a non-degenerate quadratic form then {o, | u € St q(u) # 0}
is the set of all hyperplane reflections with given axis S. Together with the identity, this set
forms an elementary abelian 2-group ¥g. The order of Xg is the cardinality of V. If Xg
is infinite then the dimension of 3¢ over Fs equals the cardinality of S, see [3] 1.2, Lem 3,
p. 20]. As abstract groupsﬂ we thus have (Zg,0) = (V*, +).

If the polar form f, is not degenerate (in particular, if char F* # 2) then this group has order
at most two. If char F' = 2 then every hyperplane reflection is a transvection.

4 Giving an isomorphism explicitly appears to be difficult, in general.
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Construction of hermitian forms

We prove a variant of an old result by Jacobson [15], cfP’| [28} 4.3]. The difference to Jacob-
son’s version is that we construct the hermitian form (and do not only reconstruct it). First of
all, we turn our composition algebras into vector spaces over larger fields:

2.8 Lemma. Let K be a two-dimensional subalgebra of a composition algebra C, and consider
a € K+ with N(a) # 0. Then the left multiplication \,: x — ax is a semilinear bijection of the
K-module C onto itself, with companion k|g.

Proof. Consider s € K and z € C. Then \,(sz) = a(sz) = a(s(a(a™'x))) = (a(sa))(a"'x)
by one of Moufang’s identities (see (d)). Asat = N(a)™ta = —N(a)"la is a scalar
multiple of a, this shows \,(sz) = (asa™!)(ax); parentheses in asa™! are not needed by
Artin’s Theorem Now a € K yields as = 5a, and \,(sx) = 5\, (z), as claimed. O

2.9 Lemma. Let C be a composition algebra over F, and let K be a two-dimensional subalge-
bra of C. Moreover, assume that the restriction N|x of the norm is anisotropic, and that the
restriction o := k| is not trivial (in other words, assume that K /F is a separable quadratic
field extension, with Gal(K /F) = {c)). Pick ce K ~ F with T(c) = 1. Then j := (c—¢&) ' isa
pure element, and

g(@,y) = j ((caly) - e(zly))
defines a non-degenerate o-hermitian form on C (considered as a left vector space over K,

see with g(z,z) = N(x) for each x € C.

Every K-linear similitude of N is a similitude of the form g, with the same multiplier.

Proof. Clearly, the map ¢g: C' x C — K is bilinear over F.

Usingc =1-cand ¢® = ¢T(c) — N(c) = c— N(c), we find j~! g(cx,y) = (?z|y) —c(cxly) =
(cxly) — Ne(zly) — (cxly) + c(exly) = c((cxly) —e(xly)) = i~ g(z,y). Now K = F + Fec
yields g(sz,y) = sg(x,y) for each s € K.

Using j = —j and (z|cy) = (cx|y) (see , we compute g(y,z) = g(z,y) = o(g(x,y)).
We have proved that g is a o-hermitian form.

Computing in the (associative) subalgebra generated by ¢ and = we obtain g(x,z) =
J ((cx|z) — &(x|z)) = j (cxT + xex — 2¢xT) = j(c — ¢)xT = T = N(x), as claimed. O

Quaternion structures and corresponding hermitian forms

For suitable vector subspaces W < O of dimension three, we find that Ay is the multiplicative
group of an associative subalgebra both of O and of End(Q), and O is, in a natural way, a
left vector space over that subalgebra of Endr(Q).

2.10 Lemma. Let W be a three-dimensional vector subspace of O, with 1 € W. Let Myy be the
subalgebra generated by W in Q.

(a) The group Ay, normalizes Ay, and A;“V . centralizes Ayy; for each u e W+ < {0} conju-
gation by \, induces the same algebra automorphism vy of My, with vw|w = K|w.

(b) Mapping a € W to A\, has a unique extension to an algebra isomorphism (y from My,
onto a subalgebra L of Endr(Q). In particular, the group Ay is the multiplicative group
of L, and thus isomorphic to Mjj,.

® There is a typo in the formulation of the lemma [28] 4.3]; it should read “¢ = 1 — ¢” instead of “¢ = 1 + ¢”.
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(¢) The additive group of O becomes a left vector space of dimension 2 over L (and thus
over Myy, via Cw). We have Ay, < TLyy, (0) and Ay, < GLay, (0).

Proof. Consider a € W and u € Wt. Then ua = —ati = au, and —N(u)az = (uau)r =
u(a(ur) = —N(u)u~'(a(uz)) holds for all x € O by one of Moufang’s identities (see .
If u # 0 then this means \; = \;;! o A\, o A\, and A;;V , centralizes Ayy.

Fromwe know that A;V . acts transitively on O*, and thus irreducibly on Q. By Schur’s
lemma (cf. [17, 3.5, p. 118] or [24, Ch. XVII, Prop. 1.1]) the centralizer B of A;/l in Endr(0)
is a (not necessarily commutative) field which forms an algebra of finite dimension over F'.
In the previous paragraph we have obtained Ay < B. The subalgebra My, generated by W
in O forms a vector subspace of dimension 4 in O by Artin’s Theorem (see [L.1][(e)), and is
clearly invariant under Ay . Thus My is also invariant under the subalgebra I generated
by Aw in Endp(Q). Now L forms a subfield of B, and acts regularly on My,. This yields
dim L = 4. As Myy is associative, the linear map (yw: W — L|s, : @ — Ag|ar,, extends to an
algebra homomorphism from My to L, as claimed, and that homomorphism is bijective by
dimension reasons. The multiplicative group My, equals WV, cf.

If 1,a,b is any basis for W then My = W @ Fab and vy (ab) = ab = ba; clearly /3, = id.
The automorphism ¢y is the unique automorphism of My, with |y = k|w. The rest is
clear. O

If W <« 1+ then My is a quaternion field, and ¢y # id is an inner automorphism (namely,
conjugation by any non-trivial element of W+ ~ My). A hermitian form on the 2-dimensional
left vector space O over My, will be constructed in [2.11]below (cf. [28] 4.2]).

If W < 1+ (this case can occur only if char F = 2) but W € W then vy = id, but My is
still a quaternion field. We construct a hermitian form for that case in below. However,
if W < W then the restriction of the polar form to W is trivial, and My is a commutative
field (a totally inseparable extension of degree four over F, and every F'-linear automorphism
of Myy is trivial). The construction of the form in still works for the commutative case
but yields an alternating form.

2.11 Definition. Let W be a three-dimensional vector subspace of O such that 1€ W « 1+,
Choose a,be W . F witha+a=1and be {1,a}*, so ba = ab and ba = ab.

Put j := (a —a)~' = (2a — 1)7!, then j lies in 1+ ~ F(a) < b, s0 j = —j, ja = aj and
bj = —jb. Note that j, a, b lie in the associative algebra generated by a and b. We define

hy (v, w) = j (a(v|w) — (v]aw)) + b=ty (a(bv|w) — (bv|aw)) .

2.12 Lemma. Let W be a three-dimensional vector subspace of O, assume 1 € W <« 1+, and
let My, be the subalgebra of O generated by W. Endow O with the structure of a left vector
space over My, as in Then the map hy,: O x O — My is a non-degenerate (in fact,
anisotropic) hermitian form, with respect to the standard involution on My,. For each v € O, we
have hy, (v,v) = N(v). Every Myy-linear similitude of N is a similitude of the form hy,.

Proof. In the following computations, we use (bz|ay) = —(az|by). By [L.1][(c)] that equation
is equivalent to the equation (:c|b(ay)) (x|a(by)) = 0 which can be verified as follows.
Using .‘ (d)| and [1.1 .. we see a (b(ay) + a(by)) = ((ab)a)y + (aa@)(by); our assumption
ab = —ba then yields (z|b(ay) + a(by)) = 0.
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We first note

(bw|v) — (bwlav)) b1
(v]pw) — (av|bw)) (=4)(=b)~*
(v|dw) + (= a(bv|w) + (bv|aw)) jb~*
lw) — (vlaw)) + (a(bv|w) — (bvlaw)) b5
(vlaw)) + b715 (a(bv|w) — (bv]aw)) = hy(v,w).

hW(wvv)

\
—~ S 2l
|

hy (av,w) = j (a(av|w) — (av|aw)) + b=t (a(b(av)|w) — (b(av)|aw))
= j(a(v|law) — (v|a(aw)) + b 1j (—a av|bw (a(av)|bw))
= j(a(v|lw) — a(v|aw) — aa(v|w)) + b~1j ( — alav|bw) + (av|bw) — aa(v|bw))
= j(a*(vlw) — a(v]aw)) + b~ (@(av|bw) — aa(v|bw))
= aj (a(v|w) — (v|aw)) + ab~ 1] ((av|bw) — a(v]bw))
aj (a(v|w) — (vlaw)) + ab™'j (= (bv|aw) + a(bvjw)) = a hy (v, w).
Now we use b*> = —N(b) € F to obtain
hy (bv,w) = j (a bw|w) — (bv]aw)) + b~ (a(b*v|w) — (b*v|aw))

bb~1j (a(bv|lw) — (bv|aw)) + bj (a(vlw) — (v|aw)) = b hy (v,w).

We have established that the F-linear map ,: O — My : v — hy (v|lw) centralizes
both A, and \,. Therefore, the centralizer of 1, contains the subalgebra L = (w (M)
of Endr(Q) generated by these left multiplications (cf. , and 1, is Myy-linear. Together
with the relation hy, (w,v) = hy (v, w) from above, this completes the proof that p, is a
hermitian form.

For v € O, we compute

hy (v,v) = (a v]v) (v\av)) + bt j ( (bv|v) — (bv\av))
N(v ( (2a— 1|a) ( (b]1) — (b|a)))
N(v) (j(2a — a — a) —|—b j(ab—i—ab ba —ab)) = N(v)(1+0)=N(v),

by our choice of j = (a—a@)~! and ba = ab. In particular, the form hy, is anisotropic, and thus
not degenerate.

Let ¢ be an Myy-linear similitude of N, with multiplier s € F'. Then (p(v)|p(w)) = s(v|w)
and ¢ ((w(z)(v)) = ¢(w(x)(p(v)) hold for all v,w € O and each x € My,. Note that
Cw(x)(v) = zvif x € {a,b} € W. We compute

hy (9(v), p(w)) = j (alp(v)]p(w)) = (p(v)|ap(w))) + b5 (a(bp(v)|p(w)) = (bp(v)lap(w)))
= j (alp()lp(w)) = (p(v)p(aw))) + b7 (a(p(bv)]p(w)) = (p(bv)|p(aw)))
=j (as(v]w) — s(v]aw)) +b71y (as(bv]w) — s(bv]aw))
=5 hy (v, w)

Thus we see that ¢ is a similitude of hy;,, with the same multiplier s. O

10
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2.13 Lemma. Assume that W < O is a three-dimensional vector space such that 1 € W < 1.

Choose a,b e W such that 1,a,b is a basis for W, and such that t := (a|b) equals 1 if W « W+,
(@) The map hﬁ/: O x O — Myy defined by
hiy (v, w) == (ab)(v]w) + b(v]aw) + a(v|pw) + (v|a(bw))
is a non-degenerate sesquilinear form.

(b) If W £ W then ht%v is hermitian, with respect to the standard involution on the algebra
My generated by W. For each v € O, we then have hi, (v,v) = N(v).

(c) If W < W+ then hyy, is alternating; in particular, we have hiy (v,v) = 0 for each v € Q.
(d) In any case, every My, -linear similitude of N is a similitude of the form hiy.

Proof. It is easy to see that every My -linear similitude of N is a similitude of the form pyj;,
see the arguments given in the proof of 2.12] above.

We note that 1 € W < 11 implies char F = 2 and then that the polar form of the norm N
is alternating. In the following arguments, we use N(c) = ¢® and (1|¢) = 0 = (c|e) for
¢ € W without further mention. Using one of Moufang’s identities (cf. and t =
(ab), we compute b(aw) = bla(b(b~ w) = N(b)~1(bab)(bw) = N(b)~!((t — ab)b) (bw) =
N(®)~((t + ab)b) (bw) = N(b)~* (b*tw + ab?(bw)) = tw + a(bw).

In order to see that v — iy, (v, w) is My -linear, it suffices to check the pertinent relation
for the generators a, b. We obtain

hiy(av,w) = (ab)(av|w) + bav|aw) + a(av|bw) + (av|a(bw))
= ba?(v|w) + (ab)(v]aw) + a®(v|bw) + a(v|a(bw)) = ahij(v,w).
Fix w € O. With the relation b(aw) = tw + a(bw) from above we compute
hii (bv,w) = (ab)(bv|w) + b(bv|aw) + a(bv|bw) + (bv|a(bw))
= (ab)(v]bw) + b(v|b(aw)) + ab?(v|w) + (bv|b(aw) — tw)
= ab?(v|w) + b*(v|aw) + (ab)(v|bw) + (bv|tw) + b(v|a(bw)) — (bv|tw)
= bhyy(v,w).
Using b(aw) = tw + a(bw) again, we find
by (w,v) = (ab)(w|v) + b(w|av) + a(w|bv) + (w|a(bv))
(ab)(v|w) + bav|w) + a(bv|w) + (a(bv)|w)
(ab)(v|w) + b(v|aw) + a(v]bw) + (v|b(aw))
(ab + t)(v|w) + b(v|aw) + a(v|bw) + (v]a(bw)) = b (v, w),
so the form hjj; is indeed hermitian or symmetric, depending on the restriction x|z, -
In any case, we have

hiy(v,v) = (ab)(v|v) +
= 0+bN(v)

b(v|av) + a(v|bv) + (v|a(bv))
(1la) + aN(v)(1]b) + (av|bv) = N(v)(alb).

If W « W+ then our assumption (alb) = 1 yields hg;,(v,v) = N(v) for each v € O, and the
form pjj, is anisotropic (like N) and thus not degenerate. If W < W+ then py (v, v) = 0 for
each v € O, and the form hﬁ, is alternating. In order to see non-degeneracy in that case, pick
u € {a,b,ab}* such that (1|u) = 1; then hij (u, 1) = ab # 0. O

11
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3 Autotopisms and anti-autotopisms

3.1 Definition. Let C' be any algebra. An autotopism of C is a tripletE] (| B]y) of additive
bijections of C' such that 3(sz) = v(s)a(z) holds for all s,z € C. An anti-autotopism of C'is a
triplet (d|e|¢) of additive bijections of C' such that e(sx) = §(z)p(s) holds for all s,z € C.

If («|B]7y) is an autotopism then it is already determined by any one of the maps «, 3, or v
together with a single non-zero value of any one of the remaining two maps. For instance,
we have v(1)a(z) = B(x) = v(z)a(1) for each = € C. Being a component of an autotopism
imposes severe restrictions on the additive bijection, see and below. However,
each automorphism « of C yields an autotopism («|a|«), and each anti-automorphism 5 of C
yields an anti-autotopism (3|3|3) of C. In particular, the standard involution x yields the
anti-autotopism (k|k|k).

The set of all autotopisms forms a subgroup A of the direct product Aut(C,+)3. The
set Ar := A n (GLp(Q0))3 of all linear autotopisms (cf. is a subgroup of A. The mul-
tiplication is more involved if anti-autotopisms enter the stage: for anti-autotopisms (d|e|y),
(51¢'l¢') and autotopisms (al8ly), (a'|#]7') we have (3]el) (&[']¢') = (¢ 0 3| 0 &[5 0 ),
(@l @IEl¢) = (vo 8|8 o e'la o) and (dlelp)(@'|B7) = (50 a'ls o Flp o). The
motivation for both the definition and the multiplication formulas comes from the theory of
projective planes; autotopisms are used to describe elements of a triangle stabilizer, while
anti-autopisms describe dualities fixing a triangle.

If C is a division algebra, we consider the affine plane over C, with point set C2, vertical
lines [c] := {c} x C with ¢ € C, and lines [s,t] := {(z,sz + t)| = € C} of slope s and inter-
cept t. The lines of given slope s form a parallel class, the corresponding point at infinity is
denoted by (s). Lines of slope 0 are called horizontal.

The group A of autotopisms describes the stabilizer of a triangl in the projective com-
pletion of that affine plane; the vertices of that triangle are the origin (0,0) and the points
at infinity for the coordinate axes [0,0] and [0]. Indeed, the action of («|S|y) on the sets
of points and lines are given by (a|8).(z,y) = (a(x), B()), (@lBh).[s,] = [1(s), BE)];
and («|B|v).[¢c] = [a(c)]. Thus « and S give the actions on the horizontal and vertical axis,
respectively, while ~ gives the action on slopes (and thus on the line at infinity).

The global stabilizer of the triangle is the semi-direct product of A with a dihedral group
of order 6 which we introduce in the next lemma.

3.2 Lemma. Let O be an octonion field.

(a) Mapping (z,y) € O x O to (y, x) and any non-horizontal line [s,t] to [s~1, —s~'t] extends
to an involutory automorphism ¥, of P2(Q) with axis [1,0] and center (—1).

(b) Mapping (z,y) € O x (O~ {0}) to (xzy~ ',y ') and [s,t] to [t~ 1s,t71] extends to an
involutory automorphism vy of P2(0) with axis [0, 1] and center (0, —1).

(c) The conjugate 93 := 91 o Y9 o ¥ coincides with ¥, o ¥ o J9. Consequently, the product
¥ 019 has order 3, and the group generated by these automorphisms is dihedral of order 6.

Proof. Using|1.1l(f)|one easily verifies that ¢; extends to an automorphism of the affine plane,
and then to an automorphism of P»(Q). The axial involution ¢, is taken from [25} 3.5 (22),

6 As a reminder for the reader, triplets that are (anti-)autotopisms will be written as (c|3|7) rather than (a, 3, 7).
7 See [6, 3.1.32] for that interpretation of autotopisms as collineations; cf. also [21} Sect. 1].

12



Transitive groups of similitudes A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel

p. 107], cf. [19, 2.3]. The effect of the products ¥; o 2 0 ¥1 and ¥ 0 ¥4 0 ¥2 on (x,y) is easily
computed (using associativity of the subalgebra generated by x and y, cf. (e)). O

3.3 Lemma. Let O be an octonion field over F.

(@) If (a|Bly) is an (anti-)autotopism of O and r,s,t € F* are scalars then (ra|sf|ty) is an
(anti-)autotopism precisely if s = tr.

(b) Any one of the triplets («|S[id), (id|S|«) is an autotopism if, and only if, there exists z € F'*
such that o = \, = 3, and («id|7y) is an autotopism precisely if there exists z € F* such
that o« = \, =y~

(©) If («|B]y) and (/|B|7y) are both autotopisms then there exists r € F* such that (¢/|f'|y) =
(rajrB|y). Conversely, if (a|B]v) is an autotopism then (ra|rf|y) is one, for each r € F*.

(d) Let («|B|y) be an (anti-)autotopism and let ¢ denote the companion of the semi-linear
map . Then ¢, = 95 = o,

In particular; if one component of an (anti-)autotopism is F-linear then all three compo-
nents are F-linear. We briefly call the (anti-)autotopism linear in this case.

(e) Every linear autotopism consists of similitudes of the norm form of ©, and every autotopism
consists of semi-similitudes (in particular, semi-linear maps).

() An automorphism ¢ of F' occurs as the companion of a semi-similitude of the norm form
if, and only if, it occurs as the companion of an automorphism of Q.

Proof. A straightforward computation yields assertion|(a)

In order to prove assertions and we interpret autotopisms as elements of the trian-
gle stabilizer in the projective completion of the affine plane over Q. If one of the entries of an
autotopism is trivial then the corresponding element of the triangle stabilizer acts trivially on
one side L of the triangle, and acts trivially on the line pencil in the vertex p opposite that side.
Thus it is a homology with center p and axis L. It is well known that, in every affine plane
over an octonion field, these homologies are precisely the maps of the form (z,y) — (zz, zy) if
p = (0,0), of the form (z,y) — (z, zy) if L = [0, 0], of the form (x,y) — (zz,y) if L = [0], re-
spectively, where z € F'* (see [[18], 1.22], together with the fact that the center of an octonion
algebra coincides with each one of its nuclei, cf. [1.1][(D)). Thus we have proved assertion [(b)
The quotient (o/|3'|y)~!(a|B|y) then acts trivially on the line at infinity, and assertion
follows from assertion

In order to verify assertion [(d), we consider s, € " and compare pg(st)3(1) = B((st)1) =
B((s1)(t1)) with the product of ¢, (s)a(1) = a(sl) and ¢~ (t)y(1) = y(t1) in the suitable order.
This yields that (¢.|pg|p~) is an autotopism of F. As the components of that autotopism are
automorphisms, they coincide.

Assertion [(e)|is known, see [21, Cor 1.9]. Assertion [(D)]is also known, see [27, 1.7.2]. O

Assertion treats the third component in a special way. It can easily be transferred to
the other components (mutatis mutandis), either by a direct argument or by an application
of the following famous principle of triality.

13
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3.4 Lemma (Triality for autotopism:ﬂ). If («|B|) is an autotopism of an octonion field O then
T(a|Bly) := (fym;lnoaom\uglmﬁon) is an autotopism, as well. The map T is an automorphism
of A, and has order three.

Proof. We note 72(a|f]y) := (uglm o Bokluy'koyorkla), and conclude that 7 has order
three. Checking that 7(«|g|vy) is an autotopism amounts to verification of the equation
pg' B(5) v(x) = pig " (ST). Multiplying with 5(x) from the right we obtain 5" 3(5) N(y(x)) =
pio'a(sT)y(z). The latter equation is equivalent to 5", B(8)p(N(2)) = pg'v(z) a(sT).
As (a|B|y) is an autotopism, the right hand side equals u;'3(2Z35) = ¢(N(z))3(5), and
U3 = [~y jie yields the claim.

It is straightforward to verify that 7 is a group homomorphism on A. O

3.5 Remark. In fact, we obtain 7 as conjugation by 5 o ¢; from this observation could
replace the arguments in the proof of In order to verify that claim, we note first that
(6(35‘1))_1 = p; '6(7) holds for each semi-similitude § and each = € O*. Conjugation by ¥;
induces the involutory automorphism 73: (|3[y) — (Bla|u;'koyok) on A, and conjugation
by 5 gives the involution mo: («|f5]y) — (/L;l,‘ﬁ] oyo /{‘/.L[;IH oBokluglkoaok). Thus the
dihedral group generated by 1J; and 1), acts faithfully as a group of automorphisms on A.

3.6 Examples. For each u € O* the triplet (p, |\, © pu|\,) is an autotopism; we use Moufang’s
identity u((sz)u) = (us)(zu) here, see The triplet (ﬁi)pﬂﬁ)‘u 0 pulAy) is an

autotopism by [3.3l[(c)l Note that ﬁ p. = pa ' holds if u € Pu@, so the latter autotopism is

(pi I\, © ;b)) in that case.

Our triality 7 from3.4]maps the autotopism (p,| A pulAu) t0 (M| N () ~*Ag| N (w) “20z 0 pg)
and then on to (N(u)~2\z o pg|N(u) "L pgz|p.). Using again, we infer that the triplet
(N(uw)~*A\g o palpalp,) = (Mgt o palpalp,) is an autotopism. Application of 73 from to
(pul Muopul M) yields that (A opy|pu|N(u) “thodyok) = (Auopu|pu|N(u) ™! py) is an autotopism,
as well.

The standard involution « is an anti-automorphism, and yields an anti-autotopism (x|k|x).
Multiplication (cf. [3.1) gives («|B]7)(k|k|x) = (v 0 k|8 o K|a o K). SO (pulAu © pulAu) (K|K|K) =
(Aw 0 KA 0 pu o Klpy 0 k) = (A 0 KAy 0 ko Aglk o Ag) = (Ay 0 k|—N(u)oy|N(u)k o A1) is an
anti-autotopism, and (A, o x|o,|—r o A;!) is an anti-autotopism, as well (see [3.3][(2)).

3.7 Definition. For j € {1,2,3}, the map pr/: A — I'O(O, N): (a1|az|as) — «; is a group
homomorphism.

Note that triality (see [3.4) cyclically interchanges the kernels and images of pr!, pr?,
and pr?, as defined in in he homomorphism pr’: A — I'O(Q, N) is never surjective, and
its restriction to the group A of linear autotopisms is also not surjective onto GO(Q, N). We
clarify the situation for the linear autotopisms; it turns out (in[3.11]below) that the following
definition gives a direct description of pr/(Ar) = pr/(A) n GO(Q, N).

3.8 Definition. The subgroup GO* (O, N) := ({\,| ue O*} U {p,| ue O*}) < GO(O,N) is
called the group of direct similitudes of the norm form.

3.9 Lemma. Let V' < O be any vector subspace of dimension at least 5. Then GO(Q, N) is
generated by {x} U {\, | veV}.

8 See also [27, 3.3.2], but note that the maps given there do not have order three.
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Proof. Let ¥ := ({x} U {\,| veV}) < GO(O,N). The subgroup Ay = (A, | veV) is
transitive on Q* by - For v € O*, pick ¢, € Ay with ¢, (1) = u. Then ¥ contains the
involution k£ = —oy and its conjugate —o,, = ¢, 0k o1p, '. The group (—o, | u € O*) contains
((=ou) o (—0y) | u,v e 0*) = OT(O,N). As —id lies in O (0, N), the Cartan-Dieudonné
Theorem (cf. 2.5/(a)) also implies (—o, | u € 0*) = O(0,N). The stabilizer GO(Q, N), is
contained in O(O, N) < ¥, and transitivity of Ay < ¥ yields GO(O, N) < V. O

3.10 Lemma. Let C be a division algebra, and let («|(3]y) be an anti-autotopism of C. If v =
then C is isotopic to a commutative algebra.

Proof. Being an anti-autotopism means 3(sxz) = a(z)y(s) for all s,z € C. Specializing s = 1

we find § = «. Specializing x = 1 we then find a(s) = 3(s) = as for each s € C, where
a := «a(1). The existence of a € C' ~\ {0} with a(sz) = (ax)s for all s,z € C implies that C is
isotopic to a commutative algebra; see [20, p. 592], cf. [10]. O

3.11 Theorem. For each v € GO(Q, N) there exists either an autotopism («|f3|vy) or an anti-
autotopism (é&|f3|y), but not both. The set pr*(Ar) of those v € GO(Q, N) that occur with
autotopisms of O is the subgroup GO (Q, N). In particular, the subgroup GO*(Q, N) has
index 2 in GO(Q, N), and we have a semidirect product GO(O, N) = GO™ (0, N) x {x).

Proof. Assume that there is an autotopism («|3|y) and an anti-autotopism (&|5|y). Then
(Goa | Bopt |yo~~1) is an anti-autotopism. Fromwe then infer that O is isotopic to a
commutative algebra. Every algebra isotopic to O is in fact isomorphic to O (see [22, 2.6.3]),
and we reach a contradiction.

In order to show existence of suitable (anti-)autotopisms, we recall from[3.9]that the group
GO(0, N) is generated by {r} U {\u| ue O*}, that (k|s|x) is an anti-autotopism, and that
(pulXu © pulX) and (A, © pg|palp,) are autotopisms (for each u € O, see [3.6). Thus every
element of GO™ (0O, N) {A| ue O*} U {p,| ue O*}) < pr’(Afr). On the other hand,
(k|k|k) is an anti-autotopism, and x ¢ pr3(Ap).

Now ko), ok = pg yields that x normalizes GO™(Q, N), and that GO (Q, N) is a subgroup
of index 2 in GO(Q, N). We find GO (0, N) < pr*(Ar) < GO(O, N), and GO™ (0O, N) =

r3(Ap) follows. O

3.12 Remarks. The group Ag = (A, | u € Q%) is normalize(ﬂ by ko Ag ok = {pu| ueO*),
and Ag is thus a normal subgroup of GO (Q, N) (but not normal in GO(Q, N), in general). In
order to see normality, we use one of Moufang’s identities (see[1.1][(d)): For all a,b € O* and
x € O we have (ab)x = (ab)((za=1)a) = a((b(za=1))a). This means A\; ' o Mgy = pa 0 Ay 0 p; L.
The product Ag o (k o Ag o k) of two normal subgroups is a subgroup of GO™ (0, N) and
contains a set of generators; thus GO*(Q, N) = Ag o (ko Ag o k).

Using a generalization of the Spinor norm, one sees that the group Ap, g is a proper sub-
group of Ag, in general. As each element of O is of the form ab with a,b € Pu© (see[1.2), our
formula Ay, = Aqopaoyop, * also shows that Ap, o is not normalized by (p, | a € PuO \ {0})
if Apuo # Ag.

® We took this idea from Theo Grundhéfer’s paper [12} p. 448].
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3.13 Theorem. (a) We have GO*(Q, N) n O(O, N) = Ot (0, N); ¢f.

(b) The stabilizer GO(O, N); _yy of the set {1, —1} equals the direct product O(Q, N)¢ _yy =
(—kKyo <(5u ‘ uePuO {0}> (Recall that 6, = ﬁ)\uopu = —KOOy = —0y Ok, Cf. )

(c) The stabilizer GO*(O, N);; _;, = OF (O, N),, _,, is generated by {4, | u € PuO ~ {0}}.

(d) If char F # 2 then GO*(O,N); = O*(O,N); = <5uodv’ u,UePu@\{0}>, and
GO(O,N); = (—kob,| ue PuO~ {0}) = (04| ue Pul ~{0}) = (k)0 OF (O, N),.

Applying we see that GO™ (0, N), induces Ot (PuQ, N|p, o) on PuQ; the kernel
of the restriction map s trivial because —r does not belong to GO™(Q, N).

If char ' = 2 then {1,—1} = {1}. We find GO"(O,N); ;, = GO™(O,N),, and
GO(O,N)g 4y = GO(O,N); = (k)o GO™ (O, N), in that case. Thus GO (0, N),
induces (0y|puo| ue PuO~{0}) = (oulpuo| ue PuO N {0}) = O(PuO, Nlpyo) =
O"(Pu@, N|pyp) on PuO (¢f ; the kernel of the restriction map is trivial because
—k does not belong to GO*(Q, N).

(e) GOT(O,N) = ({X| ue PuO~{0}} U {pu| ue PuO \{0}}).

() If char F' # 2 then GO™ (O, N) = {¢ € GO(Q, N) | det o = pj, }.
If char F' = 2 then the latter group coincides with GO(O, N).

Proof. Fromwe infer that O™ (0, N) = (6, | u € O*) is contained in GO™ (0, N). The
reflection « is contained in O(Q, N) but neither in O*(Q, N) nor in GO (0, N). Now the
inclusions O* (0, N) < GO*(O,N) n O(0,N) < O(0, N) yield GOT (0, N) n O(O,N) =
O*(0, N), as claimed in assertion|(a)]

We study the stabilizer GO(O, N); _;, of the set {1, —1} next. Elements of that stabilizer
clearly have multiplier 1, and GO(O, N)(; 4, = O(OQ,N)y _yy. For u € PuO \ {0}, we
have 6, € GO (0, N) (1,-1}- This element induces on PuO the hyperplane reflection o, |p, 0,
see and induces —id|p on F. The set {oy|puo| u€ PuO \ {0}} of hyperplane reflec-
tions generates the full orthogonal group O(PuQ, N|p, o) by the Cartan-Dieudonné Theorem,
see [2.5((a)

In order to prove assertion , it thus remains to determine the set of all v € O(O, N) (1,-1}
that act trivially on Pu@. If D(y) = 1 then the codimension of Fix() is even and bounded
above by dim(0Q/Pu@) = 1. So v = id in that case, and we obtain that O*(Q, N) in-
tersects the kernel trivially Thus —x is the only element of Dickson invariant —1 in the
kernel, and the kernel is generated by —x. We have thus proved that O(Q, N) -1 =
{({=K} U {0u] ue PuO~ {0}}).

We have D(d,) = 1, D(—k) = —1, and —x commutes with ¢, because © € PuQ. Thus
O(0, N); _yy is a direct product of (—«) and (4, | u € PuO ~ {0}). This completes the proof
of assertion , and we also obtain O (0, N){; _;, = (8| ue PuO \ {0}). The last remain-
ing claim in assertion s GO™ (0, N){L_l} = O+(©7N){1,—1}5 that equality follows from
assertion Assertion[(d)|follows from the observation that —x and each 4, map 1 to —1.

The group generated by {\,| ue PuO \ {0}} U {p,| v € PuO\ {0}} is a subgroup of
GO* (0, N), acts transitively on O* by and it contains the stabilizer GO™ (O, N); by
assertion Thus it coincides with GO™ (0, N), and assertion is proved.

16



Transitive groups of similitudes A. Blunck, N. Knarr, B. Stroppel, M.J. Stroppel

It remains to prove assertion [(f)] For each a € O* we have puy, = N(a). If a € F*
then clearly det A\, = a® and pu,, = a?, whence det )\, = ,ufia. If a € O~ F then K :=
F + Fa is a quadratic extension of F. We pick b e O~ K and ¢ € O \ (K + Kb). Then
1,a,b,ab,c,ac,be, a(be) forms a basis for Q. With respect to that basis, the matrix for )\, is a
block diagonal matrix of the form

0 —N(a)
1 T(a
0 —N(a)
1 T(a)
0 —N(a) ’
1 T(a)

1 T(a()l

with determinant N(a)* = ) . Together with p, = £ o A\ o « this shows that GO* (0O, N)
is contained in the (normal) subgroup M := {¢ € GO(O, N) | det ¢ = ufg} of GO(O, N). If

char F # 2 then M does not contain x because detk = —1 # 1* = p}. The assertion
follows because GO* (0, N) has index 2 in GO(Q, N). If char F = 2 then x € M yields
GO(O,N) = (kyo GO*(O,N) < (kyoM = M. O

4 Some transitive groups of similitudes of the norm form

4.1 Definition. Let V be any subspace of Q. Recall from [1.3[that Ay := (A, | ve V ~\ {0})
denotes the group generated by all left multiplications with non-trivial elements of V', and
AV = (A, 0 Ay | v,w eV ~ {0}) is generated by all products of an even number of left mul-
tiplications by elements of V \ {0}. (Note that A}, = Ay if 1 € V because )\1 id is then one
of the generators.) By. 1.4] the group A, acts trans1t1vely on (O)* ifdimV >

In the group A we define the subgroups Iy = <( pv| N v © pu|Av) | veV~{0})and

IY = A5may (Uw Py O pw|N(w)/\ O Py © Ay © Puy| Ay © Ayy) | v, W E V . {0}); these generators be-
longtoAby Note that (7, pU\N Ao 0Pl Xo) = (P57 Awo py t|Ay) holds if v € PuO~ {0}.
We write n(\,) := (p; 1\ 0 py 1])\ ) for such v.

4.2 Lemma. Restriction of pr®: A — O(0, N): (a|B|y) — v yields an isomorphism from I'p, o
onto Apyo; the inverse will be denoted by n; in fact, it extends n(\,) = (p; |\ © p; H\), as
defined above.

Proof. We restrict the homomorphism pr : A — T'O(O,N): («|f]y) — ~ from to the
subgroup I'pyo < A. The kernel of pr? is just {(A:|):]id) | z € F*}, see Therefore,
the kernel of the restriction is Ipyo n {(Az|Az]id) | z € F*}.

Every element of pr?(I'p, o) fixes 1, and (\.|).|id) € I'pyo yields z = 1. Therefore, the
restriction pI‘3|[‘Pu o, 1s an injective homomorphism, its range is Ap, o, and we obtain an iso-
morphism from I'p, g onto Ap,g. Clearly n is the inverse of this isomorphism. O

4.3 Lemma. Let V < O be any non-trivial vector subspace. Then kerpr® = I'y. < I'{,, and
Ap = AL <A If V < PuO then Ap = ker(pr? on).

Proof. From(3.3||(b)|we know ker pr? = {(p;']id|.) | z € F . {0}}. As O is an algebra over F,
we obtain I';. = {(—=pz | — id|A;)(—p1| —id[A\1) | 2 € F*} = ker pr?.
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Using we note A, = Ay oAt € Al if z € F* and v € V \ {0}, and compute
(pzHid[Az) = (=N(20) 1z | =N(20) " Ay 0 pav | Azo) (= N(0) "Ly | =N(0) "t Ay 0 py | Ay)~H
Thus Ap = A} < Aj, and I'j. < I'.. The rest is clear. O

4.4 Definitions. For every vector subspace V' < PuQ, let fi,. be the restriction of the polar
form to V+, and consider the group homomorphism pr?: I'y — O(V, N|v): («|B|y) — Blv.

4.5 Lemma. Let V < PuQ be a vector subspace.
(a) For each a € V ~ {0}, we have pr?(n(\,)) = k0 04 = 04 0 K.
(b) The group pr*(T'y) acts trivially on V*+ and induces pr%,(Ty;) = OF(V, N|y) on V.

(c) If char F # 2 and dim V is odd then pr3,(I'y) = O*(V, N|y) = SO(V, N|y).
If char F = 2 or dim V is even then pr},(I'y) = O(V, N|y).

(d) If fy 1 is not degenerate then either dim V is even and ker pr? = ker pr%,, or V = PuO and
ker pr? = ker pr o, or dim V € {1,3,5} and ker pr? has index 2 in ker pr3..

(e) If fi . is degenerate then char F' = 2. We study two important special cases explicitly:
() If fyo is not zero then ker pr? has index 2 in ker pr2,.
(i) If V =PuQ then fi,1 = fr = 0. We have ker pr3, o = ker pr.

Proof. Recall from that 0, = —A\, ok o A\;L. Using a € V < PuQ we obtain o,(z) =
—a(a~'z) = a(Ta"') = axa~" for each x € Q. This shows A, 0p; ok = 0, = Ko A0 p; !
and then (A, 0 p; 1) o (\c0 po!) = 04 0 oc.. These products act trivially on {a,c}* > V*, while
their restrictions to V generate O* (V, N|y), see Thus [(a)] and [(b)| are established.

In order to prove assertion we distinguish cases: If char F' # 2 and dim V' is odd then
pri (Ae) = K 0 04y = —og4|v has determinant 1. Thus SO(V, N|y) = pri (T'v) = pri (Ty) =
SO(V, Nly) yields SO(V, N|y) = pri(T'y). If char F # 2 and dim V is even then pr?,()\,) =
—0,|v has determinant —1, and we obtain O(V, N|y) = pri(T'y) > pri(I'yv) = SO(V, N|y)
which means O(V, N|y) = pri(T'y). If char F = 2 then pr#,(\,) = ko 04y = 04|y, and
O(V, N|y) = pr3,(T'y) follows.

We now turn to the investigation of the kernel of pr?,. For any sequence aj,...,a,, in
V'~ {0}, we have pr?(n(Aa,, © -+ 0 Aa;)) = K™ (04, © -+ © 04, ) by assertion ()] This product
acts trivially on V' precisely if o,,, 0 - -+ 0 04, |v = (—id|y/)™ because V' < PuO. In any case,
that product induces (—#|L)™ on V=,

If f,,. is not degenerate then fy- is not degenerate, and O = V- @ V. If dim V' is even then
Oq,, © 004 |v € {id|y, —id|y} implies o,,, 0 -+ 0 04, |y € OT(V, N|y). Then m is even, and
(—k|y1)™ is trivial. This yields ker pr? = ker pri,. If V = PuO then § € ker pr?, \ ker pr? would
satisfy pr?(§) = —x, but —x € O(Q, N) . OT (0, N) is never a component of an autotopism. If
dimV is odd and fy 1 is not degenerate then char F' # 2, and —id|y is the product of an odd
number of reflections in O(V, N|y), say —id|y = 04,,,, 0+ -00q, Withay, ..., a1 € V {0}
Now pr?(n(Aagy.1 © -+ © Aay)) |yt = k|1, and V # PuO implies that (X 0.0\, ) lies
in ker pr?, \ ker pr®. This proves assertion

Now assume that fy . is degenerate, then char F' = 2, the form f|y is also degenerate, and
O*(V,N|y) = O(V, N|y); see Thus it is possible to write id|y = 04,,,, 0+ © 04,
with an odd number of elements ay, ..., as1 € V ~ {0}. If f,,. # 0 then there exists u € V*

a2k +1
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with @ # u, and n(Aa,,,, ©- - © Aq,) lies in ker pr?, \ ker pr? because n(\
k|y1 # id|y1. This settles the first of the subcases in [(e)]

Consider § € ker pr3 o next; then v := pr?(§) € O™ (0, N),. Pick b € O with (1|b) = 1. Then
{1,b}* < PuO is invariant under v, and so is ({1,b}*)* = F + Fb. Thus there exist u;,y; € F'
with 7(b) = uy + y1b. Then 1 = (1]6) = (v(D)ly(6)) = (1us +16) = 1 (1[6) = y1 gives yy = 1,
and N(b) = N(y(b)) = N(u1 +b) = N(uq) + (u1|b) + N(b) = u? +uq + N(b) yields uf +u3 =0
and thus uy € {0, 1}. We obtain v € {id, x}, but x = v € GO (Q, N) is impossible. This settles
the second subcase in [(e)] O

a2k +1 O"'O)‘a1)|\/i =

5 Automorphisms of octonion algebras

The results of this section will be used to determine A{; for suitable V< PuQ, see below.

5.1 Lemma. Let H be a quaternion field, and consider u,x € H. Then u and x are conjugates
if, and only if, they satisfy Ny (u) = Ng(x) and Ty (u) = Ty (x).

Proof. Since conjugation preserves the norm on H it remains to prove the non-trivial impli-
cation, starting from the assumptions Ny (u) = Ny (z) and Ty (u) = Ty (x).

If v # @ then a := z — @ lies in PuH = ker Ty and satisfies a lua = a lu(z — @) =
a Y(ux — Ng(u)) = a Y (ux — Ng(z)) = a Y (u — )z = a"}(—a)z = 2.

If 2 = w we pick a € {1,@}* \ {0}. Then @ € {1,u}* yields 0 = (u|@) = ua + @t = ua — at.
This gives a~'ua = @ and proves the lemma. O

The assertion of|5.1|cannot be generalized to the case of a split quaternion algebra. In fact,
such an algebra is isomorphic to a matrix algebra F2*2, and it is easy to construct examples
of non-central matrices with the same norm (i.e., determinant) and trace as some central
element. For instance, take z = ({ }) and y = (}{); these elements cannot be conjugates, of
course.

5.2 Proposition. Let H be a quaternion field, with norm N and standard involution k. We
define GOT(H, N) := {\, 0 p. | a,ce H*}. Then the following hold.

(@) GO (H,N) = (\,opy| u,vePuH~ {0}).

(b) O (H,N)={\sop.t| a,ce H*, N(a) = N(c)} = GO"(H,N) n O(H, N).

(c) O(H,N) =<{k) x O (H, N).

(d) GO(H,N) =<{ky x GO*(H,N).

(e) PGO"(H,N) = (H*/F*)2

() H*/F* =~ SO(PuH, Nlpup).
Proof. Assertion [(a)| follows from

Clearly GO*(H,N) < GO(H,N), and Z := {N\,op.!| a,ce H*,N(a) = N(c)} equals
GO*(H,N) n O(H, N). We use the Dickson invariant D, see and recall that O* (H, N) is

defined as the kernel of D. For a € H ~ {0, 1} we have Fix(p,) = {0}, and Fix()\, 0 p; ') is the
centralizer of @ in H. That centralizer is the subalgebra F'+ Fa unless a € F (thenitis H). In
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any case we have D(\,0p,!) = 1,and D(p,) = 1if N(u) = 1. Now A\, 0 p. L = (Maop;l) opy
with u = ac™! yields = < O (H, N).

In we have proved that O"(H, N) is generated by the set {(5,1\ a€ H*}, where
0a = N(a)™*Ag0pa = Mg © pgl € E. This yields = = O"(H, N). Assertionnow follows
from the facts that O*(H, N) has index 2 in O(H, N) (see (b)) and x ¢ OT(H, N). Thus
we have proved assertions|(b)] and

Assertionis obtained by a Frattini argument: clearly, the group GO™ (H, N) is transitive
on H*, so it remains to note that the stabilizer GO(H, N), = O(H, N), = (k) x O"(H, N), is
contained in (k) x GO (H, N).

In order to prove assertion we consider the surjective homomorphism + from (H*)?
onto PGO™ (H, N) mapping (a,c) to P(\,0p. '), where P(3): P(H) — P(H): Fx — F(3(x))
for each § € GLr(H). The kernel of ¢ consists of pairs (a,c) such that there exists s € F*
with sz = axc™! for each x € H. Specializing z = 1, we see sc = a. This gives szc = scx for
each z, and c € F* follows. So kery = (F*)%, and PGO™ (H, N) =~ (H*)?/kery = (H*/F*)?,
as claimed in assertion [(e)]

Under the action of H* on H by conjugation, the vector 1 is invariant, and so is 1 = Pu H.
We obtain a homomorphism v: H* — O(PuH, N|pyg): a — A0 p,  |pup. If char F # 2
then Fix(y(a)) n PuH has even co-dimension, and we find v(H*) < O"(PuH, N|pyg) =
SO(PuH, N|pym). If char F' = 2 then the equalities O(PuH, N|py ) = SO(PuH, N|pyu) =
O*(PuH, N|py ) hold anyway (see[2.5][(d)).

The restriction map from O*(H, N), to O (PuH, N|p, i) is surjective because every hy-
perplane reflection op|p, z on PuH is the restriction of a hyperplane reflection on H. So
OF(H,N); = {Xaop,'| ac H*} yields that v describes a surjective map from H* onto
O*(PuH, N|pyn)- The kernel of v is F*, and H*/F* ~ SO(Pu H, N|p, p) follows. O

5.3 Proposition ([27, Sect.2.1]). Let H be a quaternion subalgebra of an octonion algebra C,
and pick a € H* ~ {0} with N(a) # 0. Then the elements of the global stabilizer Auty(C)y
of H in Autp(C) are precisely the maps of the form

er: C=H®Ha— C: 2 +ya— (czc ) + (teye a,
with ¢,t € H ~ {0} such that N(c) # 0 and N(t) = 1. O

5.4 Theorem. Let O be an octonion division algebra over an arbitrary commutative field F.
Then Autp(Q) is contained in the kernel O (0, N) < SO(O, N) of the Dickson invariant.

Proof. We know Autp(Q) < O(O, N), see it remains to show Autp(Q) < kerD.
(See for the definition and properties of the Dickson invariant D.)

If 14 is an automorphism of O fixing a two-dimensional subalgebra K elementwise then u
is a K-linear map, and Fix(u) is a vector space over K. Now dimp Fix(u) = 2 dimg Fix(p) is
even, and so is the co-dimension d = dim(Q/ Fix(u)). This yields D(u) = 1.

In particular, for each quaternion subalgebra H in @, each a € H* ~ {0} and each automor-
phism of the form a1 as in[5.3|we obtain D(a,1) = 1 because F' + Fc + (F + Fc)a is fixed
elementwise.

Now consider a € Autp(0). Since o commutes with the standard involution (see [1.1][()),
we have Tp(w) = To(a(w)) and N(w) = N(a(w)) for each w € Q. As the affine hyperplane
{u € (O)‘ u+a= 1} generates the vector space O, we may assume that there exists w € O
with w + w = 1 and a(w) # w. Then w € O \ F, and {w, a(w)} generates an associative
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subalgebra A of dimension at least 2. If A is a quaternion algebra, we use the fact that
elements of the same norm and trace are conjugates in A (see to find ¢ € A such that
ac1(w) = a(w), where a,; is defined as in with A playing the role of H. Then 3 :=
a~! o a.; acts trivially on the subfield F + Fw. Thus D(8) = 1, and D(a.1) = 1 yields
D(a) = 1.

There remains the case where dim A = 2. There exists a quaternion field H in C' contain-
ing w (see [27, 1.6.4]1). Now H contains A = F + Fw, by[5.1]and [5.3|we find ¢ € H such that
alo a1 fixes F' + Fw elementwise, and D(«) = 1 follows as above. O
5.5 Corollary. For each F-linear automorphism « € Autp(Q), the subalgebra Fix(«) of fixed
points has even dimension. (In particular, there is no automorphism fixing each element of F
and no others.) O

5.6 Lemma. Let V < PuQ be a non-trivial vector space, and let ¥ < Aut(Q) be a subgroup.
If pr?(T'y;) contains W then I'{ contains {(alala)| o€ ¥}, and A, contains V.

Proof. The claim follows from the fact that {(c|a|a) | a € ¥} is contained in the group A of
all autotopisms, and the observation (made in that F‘J; contains the full kernel of the
homomorphism pr?: A — TI'O(Q, N). O

5.7 Theorem. If C' is a subalgebra of O then both pr*(I'{,,) and A}, contain Autc(0) :=
{a € Aut(0)| alc = id}. In fact, we have {(a|aja) | a € Autc(Q)} <Tf..

Proof. As 1 € C implies C*+ < PuQ, we know from that pr?(I'},, ) acts trivially on
C++ = C and induces prél (T5) = O*(C*,N|c1) on C+. Every hyperplane reflection
on C* is induced by a hyperplane reflection on O, and the latter reflection acts trivially on C.
Therefore, the group prQ(Fg 1 ) equals the pointwise stabilizer O* (0, N) () of C'in 0" (0, N),
see[2.5][(b)] From[5.4/we know Autp(0) < OF(Q, N). Thus Autc(0) < Autp(0) is contained
in O*(0, N)(¢y = pr*(T'{.). From|5.6|we know that '}, contains {(ala|a)| a € Autc(0)},
and A}, contains Autc(0). O

5.8 Lemma. Let K be a two-dimensional subalgebra of a composition algebra C, and assume
that the restriction N|k of the norm is anisotropic (so K /F is a quadratic field extension). If «
is an automorphism of C and fixes each element of K then « is K-linear (with respect to the
natural structure of C as a left vector space over K, see[1.1|[(R)). O

5.9 Lemma. Let K be a two-dimensional subalgebra of a non-split octonion algebra O with
K € PuC, and define a hermitian form g as in Then the group Auty(Q) of K-linear
automorphisms induces the group SUx (K, gl i1« x1) on K+,

Proof. The space K+ is invariant under Autx(Q) because Aut(Q) acts by semi-similitudes
of the norm. Each element of Auty(Q) fixes ¢, induces a K-linear map, and thus acts by
a similitude of the form ¢ by The existence of non-trivial fixed points implies that the
multiplier is 1. So Aut (Q) induces a subgroup of Ug (K, g|jc1y k1) on K=+,

Fix a non-trivial element p € K\ {0}, and consider g € S := {x € K | N(z) = N(p)}. We
construct an automorphism «, € Autx (0) with «4(p) = ¢, as follows.

The subspaces H, := K + Kp and H, := K + Kq are quaternion subalgebras of O, and
they are both obtained by doubling K. The multiplication formula shows that the
K-linear bijection fixing 1 and mapping p to ¢ is an isomorphism from H,, onto H,. Pick a
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non-trivial element w € le N H qL ; then the octonion algebra is recovered in two ways as
double O = H,® H,w and O = H,® H,w, cf. again. Thus the K-linear isomorphism
from H, onto H, extends to a K -linear automorphism «a, of O, with ay(w) = w.

As ay acts trivially on the quaternion subfield W := K + Kw, we know from that there
exists t € W with N(¢) = 1 and o, (up) = (tu)p holds for each u € W (recall that W+ = Wp).
Now tp = ay(p) = ¢ yields (tw)p = ay(wp) = woy(p) = wg = —qw. Writing ¢ = r + sw with
r,s € K, we find tp = rp + 5(wp) and (tw)p = —sN(w)p + 7(wp). With respect to the K-basis
p, wp for Wp, the restriction oy, is thus described by the matrix A, := (T *S;V (“’)> with

S
dety (A,) = r7 + N(w)ss = N(t) = 1. So detg(ay) = 1, and ay|gr € SUK (KL, glprcxr)
because « fixes 1.

The set Q := {ag| ¢ € S} induces a subset of SUx (K™, g| 1 1) which is transitive on S. A
Frattini argument tells us that Autx (0) = Qo Autx(Q),. Pick c € K \ F, then[5.3|asserts that
Autg(0), = Autp(0)., equals {(u+ va) — (u+ (Bv)a)| B € SUg(Ha,g|HaxHa)}, Where
H = H, = K + Kpis the quaternion field from above, a € H+~ {0}, and u+va € H®Ha = Q.
Thus we obtain Autg (0) = {(u+y) — (u+ Ay)| Ae SUg(K*, glgrxpr)}, where u +y €
K®K*. O

5.10 Lemma. Let H be a quaternion subalgebra in O, and pick any w € H+ ~ {0}. Then
]i[l = Hw, and O = H ® Hw. We abbreviate 1)5.: O — O: z + yw — az + (yé)w and
Yot O — O z 4+ yw — za + (cy)w.

(@) Ay = A}, = {Yac| a,ce H* N(a) = N(¢)} = {(a,c) € H* x H*| N(a) = N(c)}.
(b) Ag/Ap = O (H,N|g) = {(z+— azc™')| (a,c) € H* x H*,N(a) = N(c)}.

(@) Al ={tac| a,ce H* N(a) = N(c)} is a subgroup of index 2 in Agrr = ({Aw} U AL,
and Aj[ll =~ Ay; in fact, those groups are conjugates in O*(Q, N).

(d) Ty nkerpr® = {(—id| —id|id)), and I'}; n ker pr® is trivial.

Proof. We note first that Ay = A}; follows from the fact that 1 € H.

For a deeper understanding of the group Ay we recall that Sy := {se H| N(s) =1}
coincides with the commutator group of H* (e.g., see [30, 20.26] for a proof of this folklore
result). Consider a,c € H* and z,y € H. Using[1.1J|(k)|again, we see \,(z + yw) = az + (ya)w
and (A\g o \o)(z +yw) = acx + (yca)w. This yields (Al oNgo ) (z +yw) = z+ (y cacta )w,
and {wl,s | s€ SH} < Ay follows.

We further obtain A\, = v,5 and Ay, 0 --- 0 Ay, = Yy, With u = ay1---a; and v =
ay ---ai, respectively. Then N(u) = N(v), and there exists s € Sy such that v = su and
)\a1 -0 Aak = wu,sﬁ = wl,s © wu,ﬂ = 'L/}l,s o A,. We obtain Ay < {wu,sﬂ‘ ue H* se SH} =
{Yup| u,ve H* x H*, N(u) = N(v)} < {¢1,5| s€Su}o{I| ue H*} = Ay, and equality
follows.

Mapping (u, v) to ¥, is an isomorphism from {(u,v) € H* x H*| N(u) = N(v)} onto Ag.
This completes the proof of assertion We postpone the proof of assertion

In order to understand A1, we consider a,c,x,y € H with a # 0 # ¢ and compute
Aaw(T + yw) = —N(w)Fa + (aZ)w. This yields that \,,, interchanges H with H* = Hw, and
(Aaw © Aew) (@ + yw) = —N(w) (zta + (aty)w). We compute 1z, = Aqw © A N(w)-1w € A7,
From 1z, © Ygc © Tﬁcfa*l,(ca)—l = ) gea-10-1 We then see {1, | s €Sy} € A}, . By arguments

like those used for Az above, we now obtain A}, = {(Yac| a,ce H*, N(a) = N(c)}.
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Mapping = + yw to T + jw = —N(w) tw(z + yw)w is an element of O (Q, N). It is obvious
from assertions and that conjugation by that element interchanges the groups Ay
and A}, . Conjugation by \,, normalizes both Ay and A}, ; in fact, we have Ay, 09,0 A=
Yea @0d Ay 0 Py e 0 Ay' = heq. We also note ¢, 0 g = Py, © a. (by the associative law
in H), and assertionm is proved.

In order to prove consider a sequence ui,...,u; € H* with \,, o--- 0o, = id.
Evaluating A, o---o\,, atland atw € H: (using weobtainug ---up =1 = uy - - ug;
note that these products are taken in the associative subalgebra H. In particular, we have
N(ug) -+ N(up) = 1. Now a := (—1)¥p,, o --- 0 p,, is the first component of some autotopism
(a|Blid) € Ty < A, see From [3.3]|(b)] we infer @ = ¢id for some ¢ € F*. Evaluating
t=a(l)= (=1 u;---up = (1) wefind t = (-1)¥ e {1, —1}.

For elements in I'}; n ker pr® we have even k, and obtain that I'}; n ker pr? is trivial. Noting
that (—id| — id|id) = (—id| — id|\1) € Ty N ker pr® completes the proof of assertion [(d)]

It remains to prove assertion The inverse of the restriction pr3|FE is an isomorphism
& Af; — T}, extending £( A, 0 Ay) = (N(uv)™tpy 0 puldy © 8o Ay 0 Ny), cf. and The
homomorphism pr% o &: A, — O'(H, N|g) is surjective (see . As ¢, acts trivially
on H+ and O = H ® H*, we have ker(pr%, o ¢) = ker(pr? o ¢). Each element of that kernel
is of the form v = A, o--- o A,, with even k and (d,, o ---06,,)(x) = = for each x € H.
That means (ug---uj)x = z(ug---ur) for each x € H. Evaluating at z = 1, we obtain
§ = up---uy = Ug---u;. The general condition now is sx = xs, and yields s € F*. In
particular, we have w1 -+ up = Ug -~ U1 = 8§ =8 = U - - - U1.

Now ymaps z + yw € O = H® Hw to sz + (ys)w = s(x + yw), and v = \s; € Ap follows.
Conversely, every s € F* yields an element \; = A\;o\; € Ap = A} < A}; in the kernel under
consideration. So O™ (H, N|y) = pr%,(I'};) = A}/ ker(pr?, 0 &) = A} /Ap = Ay /Ap.

The equality O" (H, N|g) = {(z — azc™!) | (a,¢) € H* x H*,N(a) = N(c)} follows from
our result pr?, (£(A};)) = O'(H, N|g), the observations pr?,({(A, o \1)) = (z — aza~!) and
pr2, (€Al o Ao X)) = (z — z(c 'a 'ea)), and arguments as in the proof of assertion
above. O]

6 Transitive groups of similitudes of hermitian forms

We start with a closer look at the group O* (PuQ, N|p, ) studied in (d)f

6.1 Theorem. The group A}, contains Ap as a central subgroup. We have Af o/Ap =
O*(Pu@, N|pyo) and Apyo/Ar =~ SO(PuO, N|p,0); the latter is a special orthogonal group
in 7 variables.

Proof. In (b)|we have seen pr3, (I'f, o) = OT(PuQ, N|pyg). If char F # 2 then ()
gives prp, o(I'puo) = OT(PuO, Nlp,o) = SO(PuQ, N|p, o) because dim Pu @ is odd. In this

case, the kernels of pr%  and pr? coincide, see (Dl If char F = 2 then gives
pr3, o(Tpuo) = O(PuO, N|pyo) = SO(PuQ, N|p,o). The kernels of pr3 _ and pr* coincide

also in this case, see Fromwe know ker(pr? on) = Ap < Af . O

The result has generalizations that shed light on certain exceptional (iso)morphisms
between classical groups, see and below. Instead of PuO = F', we study the or-
thogonal space K of a two-dimensional separable subalgebra K of O next. As in we
consider O as a vector space over K, and construct the hermitian form g.
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6.2 Lemma. Let a, b be non-gero elements in K, and let u, v be non-zero elements in K.

(@) The map A, is a semi-similitude of the form g; the companion field automorphism is k|,
and the multiplier is N(a).

(b) The product A\yo )\, is a similitude of the form g, with multiplier N(ba), and detx (Apo\,) =
N(ba)?.

(¢) The map p, is a similitude of the form g; the multiplier is N(u), and det (p,) = @ u.

The set Py := {pc| c € K*} forms a group; we have py o py = puy.

Proof. From we know that ), is semilinear with companion x|x. Pick ¢ € K \ F with
Te = 1, as required for the construction of the form g in Using and a(c(az)) =
—a(ce(ax)) = —((ac)a)r = —(caa)r = —N(a)cx we see g(ax,ay) = N(a)g(z,y).

In order to prove assertion [(b)] we describe the K-linear map ~ := A, o A\, by a matrix with
respect to a suitable K-basis for O, as follows. As K « K+ and a € K+ \ {0}, the subspace
H := K + Ka is a quaternion algebra. Pick a non-trivial element w € (H + Kb)*. Then
O = H + Hw is obtained by doubling (cf. , and H+ = Hw = Kw + K (aw). We use
the K-basis 1, w, a, aw.

Asb e Kt n (Kw)t = Ka + K(aw), there exist z,y € K with b = za + y(aw), and
N(b) = N(a)(N(z) + N(yw)). Using the multiplication formula and a € {1,2,y}%,
we obtain b = za + (ay)w = za + (ya)w and compute (1) = ba = —N(a)(z — yw), y(w) =
b(aw) = —N(a)(yN(w) + zw), v(a) = blaa) = —N(a)(za + y(aw)), and y(aw) = b(a(aw)) =
—N(a)(—ygN(w)a + T(aw)). Thus v is described by the matrix

z yN(w) O 0

- 5 T 0 0
N(a) 0 0 x —yN(w) |’

0 0 Y T

and we find detx () = N(a)*(N(z) + N(yw))? = N(a)2N(b)? = N(ba)?, as claimed.

It follows from Artin’s Theorem that p,, is K-linear. From [2.8|we know that p,, is a
similitude of g, with multiplier N(u). In order to find the determinant, we note that au = @a
holds for each a € K. This means that p, has the characteristic root 7 with multiplicity
three, and the characteristic root u (with multiplicity one). This yields detr (p,) = @u. As
the elements of Py can be simultaneously diagonalized, we obtain p, o p, = puv, and Py is
indeed closed under multiplication and inversion. O

6.3 Theorem. The group A, coincides with = := {5 e GUk(O, g) ‘ detg (&) = ug} We have

Ap < A}.,. The quotients are A}, /Ap =~ OF (K, N|g1) and Agei /Ap = O(K*, N|g.); the
latter is an orthogonal group in 6 variables.

Proof. Fromwe see that A}, is contained in E. As A}, is transitive on O* (see ,
it only remains to show that A} . contains the stabilizer =;. By that stabilizer is the
intersection Autx(0) of Aut(0Q) with the group GLx(Q) of K-linear bijections of O, and
byit is contained in A, .

From we know that A;r{ . contains Ap = ker(pr? o). From 4.5/(b)| we know that
pr2  (n(Aj..)) = pri (I'}.) = OT(K*, N|g.), and that prZ. (I'}.,) acts trivially on K =
(K+)*t. Therefore, the kernel of pr7., coincides with the kernel of pr?. Thus A}, /Ap =
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O+ (K™, N|g1). Pick any a € K+ ~ {0}, from (a)| we then know pr?(n(\,)) = o4 ©
and pr, (n(Aa)) = —0algr € O(K*, N|g1) ~ O (K+, N|g1). This yields O(K*, N|g1)
pr2(n(AkL)) = Agr/AF, as claimed.

=

oo

We have met a similar situation in the group GO™ (O, N) of direct similitudes, see
The full group of similitudes of the the form ¢ can also be generated by multiplications:

6.4 Theorem. The group GUk(Q, g) is the product Px o A}, where Px = {p.| ce K*}.
The intersection Prc n A}, equals Ap. So we obtain that GUg(Q, g)/Ar splits as a semidirect

product K*/F* x OF(K+, N|g1).

Proof. Let 1 € GUg (O, g) have multiplier 1,,. Comparing determinants of Gram matrices, we
see det g () deti (¢0) = “fb' So /%2 detx (¢) has norm 1. By Hilbert’s Theorem 90 (see [24,
V16.1]) there exists ¢ € K with ¢ '¢c = ,uf detx (¢). Using we see that p. o 1) €
GUk(0, g) satisfies detx (pe 0 ) = edety(v) = ePpl, = (ceuy)® = p5 - This gives
pcopeE =AY ,and e Pxg oA}, as claimed.

Now consider p. € Px n Af,,. Then &c = detg(pe) = p = N(c)* = &°¢? yields ¢ = .
This gives Px N A}L = Prnrix(r) = Pr = Ap; if char F' = 2 we use that K is assumed to be
separable. The rest is clear from 6.3 O

6.5 Remark. The reader may wonder why we use right multiplications in In fact, the
group Ax oA}, consists of products A.o(\,0\,) of K-linear maps with determinant c* N(ba)?
(cf.[6.2), and will in general be smaller than GUx (O, g). Using methods as in one sees
that A o A}, in fact coincides with {¢ € GUk (0, g) | detk & is a square in K}.

6.6 Theorem. Let W < Q be a vector subspace with 1 € W € W+ and dimW = 3. Then
Al L = (Auo Ay | u,v e WH N {0}) coincides with GU g (Q, h), where the quaternion field H :=

My and the hermitian form h € {hy,, hi;,} are constructed as in and in or

respectively.

(@) We have Ap < A, and A}, /Ap = pry, (T}, 1) = pri, . (Dye) = SO(W, Nlyy.); this
is a special orthogonal group in 5 variables.

(b) The group Ay, .1 is a direct product of A;“V . and a cyclic group of order two; so Ay, /Ap =
O(W+, N|y1) if char F # 2 but Ayo /Ar = O(W, N|yyL) x Cy if char F = 2.

(¢) The group (Aw U A}, ) = Aw o A}, coincides with the group Autp(H) x GUy (O, h) of
all semi-similitudes of h with F-linear companions.

Proof. The group A;“V . is transitive on O* (see and a subgroup of GUy(O, h) by

and For («||y) € T}, , we have 3(1) = 1. Each element of the stabilizer (A}, ): acts
trivially on H. The embedding 7|, : A, — T, < A maps the stabilizer (A}, ): into

the group ¥ := {(a|ala) | a € Auty(0)} because n ((A{},.)1) consists of autotopisms (c|5]7)
where both § and v (and then also «) fix 1. Conversely, we know ¥ < I'}, <T7 . from
and pr?(¥) < A}, yields A}, = GUy(Q,h).

From we know that A;FV . contains Ar = ker(pr? o n). There exist ay,as,as, a4, as €
W {0} such that —idy. = 04, © 04y © Oay © Oy © Oas L (see for the case where
char F = 2). From pr?(n(A,;)) = 04, o & (cf. and |y = —id we then infer ¢ :=
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Aa; © Agy © Agg 0 Agy O Mgy € ker(pr%w_ on). As 1) € Ay 1 has companion ., we have v ¢ Atjvi
and ¢ ¢ ker(pr on), but Y2 e A} L 0 ker(pr on). So ker(pry,, on) = Ap o {(¥), and
ker(pr Lon)n At e = Ar. (See also 4 ) and ..)

From [4.5][(b)| and 4.5][(c)] we know that erL(n(A D) = pra (T),) = prd, (Tge) =
SO(K*, N|x1); recall from [2.5 - that SO(K*, N|x1) = O (K*, N|k.) if char ' # 2 and
from [2.5][(d)| that SO(K*, N|x1) = O(K* N;Kl) OF (K™, N|gv1) if char F = 2.

Clearly, every element of (Aw v ij_> is F-linear, so (Aw U A}, ) is contained in the group
IF'rUp(0,h) = Autp(H) x GUg (O, h) of all semi-similitudes of h with F-linear companions.
Every F-linear automorphism of the quaternion field H is inner (by the Skolem-Noether
Theorem, see [2, Cor. 7.2D] or [17, §4.6, Cor. to Th.4.9]). We introduce coordinates with
respect to any H-basis in the left vector space; then Ay consists of all multiplications by
scalars (from the left) by[2.10][(b)} and GU (O, h) contains the scalar multiples of the identity
matrix (acting as multiplications by scalars from the right on our coordinates). So each inner
automorphism of H occurs as the companion of some element of (A U AIJ/FV ., and that group
in fact coincides with T'rUg (O, h). O
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