Laguerre planes and shift planes

Günter F. Steinke,
 Markus J. Stroppel

Stuttgarter

Mathematische Berichte 2017-008

Fachbereich Mathematik Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de
WWW: http://www.mathematik.uni-stuttgart.de/preprints
ISSN 1613-8309
© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle, Jürgen Dippon

Laguerre planes and shift planes

Günter F. Steinke, Markus J. Stroppel*

Abstract

We characterize the Miquelian Laguerre planes of odd order by the existence of shift groups in affine derivations.

MSC 2010: 51B15, 05B25, 51E15, 51E25.
Keywords: Laguerre plane, translation plane, shift plane, shift group, Miquelian Laguerre plane.

Introduction

A finite Laguerre plane $\mathscr{L}=(P, \mathscr{C}, \mathscr{G})$ of order n consists of a set P of $n(n+1)$ points, a set \mathscr{C} of n^{3} circles and a set \mathscr{G} of $n+1$ generators, where both circles and generators are subsets of P, such that the following three axioms are satisfied.
(G) \mathscr{G} partitions P, each generator contains n points, and there are $n+1$ generators.
(C) Each circle intersects each generator in precisely one point.
(J) Three points no two of which are on the same generator are joined by a unique circle.

Circles through x are called touching in x if they are equal or have no other point in common. The set of all circles through a given point x is denoted by \mathscr{C}_{x}. The derived affine plane $\mathbb{A}_{x}=$ $\left(P \backslash[x], \mathscr{C}_{x} \cup \mathscr{G} \backslash\{[x]\}\right)$ at a point $x \in P$ has the collection of all points not on the generator $[x]$ through x as point set and, as lines, all circles passing through x (without the point x) and all generators apart from $[x]$. The axioms above easily yield that A_{x} is an affine plane, indeed. We refer to the generators as vertical lines in \mathbb{A}_{x}. Circles that touch each other in x give parallel lines in \mathbb{A}_{x}. A line W is introduced to obtain the projective completion \mathbb{P}_{x} of \mathbb{A}_{x}; the common point of the verticals will be denoted by $v \in W$.
The group $\operatorname{Aut}(\mathscr{L})$ of all automorphisms of a Laguerre plane \mathscr{L} acts on the set \mathscr{G} of generators. We call \mathscr{L} an elation Laguerre plane if the kernel Δ of that action acts transitively on the set \mathscr{C} of circles. It is known (see [5, 1.3]) that in every finite elation Laguerre plane the group Δ has a (unique) regular normal subgroup E called the elation group. For more details on elation Laguerre planes, we refer the reader to the introduction in [6].

In the present note, we only use a weaker transitivity assumption on Δ but combine this with additional assumptions. Our results can (and will) be applied to elation Laguerre planes with additional homogeneity assumptions, e.g. in [7] (cf. 2.3]below).

[^0]
1 Translation planes

1.1 Theorem. Let \mathbb{P} be a finite projective plane of order n. Assume that a subgroup $D \leq \operatorname{Aut}(\mathbb{P})$ fixes each point on some line L. If n^{2} divides the order of D then D contains a subgroup T of order n^{2} consisting of elations with axis L. In particular, the plane \mathbb{P} is a translation plane, and the order n is a prime power.

Proof. For each non-trivial element $\delta \in D$ there is a (unique) center c_{δ}; i.e. a point c_{δ} such that δ fixes each line through c_{δ} ([1], see [2, Thm.4.9]). The elations in D are just those in the set $T:=$ $\{\mathrm{id}\} \cup\left\{\tau \in D \backslash\{\mathrm{id}\} \mid c_{\tau} \in L\right\}$; that set forms a normal subgroup of D (see [2, Thm 4.13]).

For any point x outside L, the stabilizer D_{x} consists of id and elements with center x. The order of any element of D_{x} divides $n-1$. So the order of D_{x} and the number n^{2} of points outside L are co-prime, and D acts transitively on the set A of points outside L. For each $\delta \in D \backslash T$ we have $c_{\delta} \notin L$, and $\delta \in D_{c_{\delta}}$ yields that the order of δ divides $n-1$, and is co-prime to n^{2}.

Let \mathscr{B} denote the set of T-orbits in A. Then D acts on \mathscr{B}, and so does D / T because $T \unlhd D$ acts trivially on \mathscr{B}. Transitivity of D on A implies that D / T is transitive on \mathscr{B}. Now $|\mathscr{B}|=n^{2} /|T|$ divides $|D / T|$. The latter order is co-prime to n^{2} because each member of the quotient has a representative of order co-prime to n^{2}. So $|\mathscr{B}|=1$, and transitivity of T is proved.
1.2 Theorem. Let \mathscr{L} be a Laguerre plane of finite order n. If ∞ is a point such that n^{2} divides the order of the stabilizer Δ_{∞} then the derived projective plane \mathbb{P}_{∞} is a dual translation plane, and the order n is a prime power.
Proof. The group D induced by Δ_{∞} on the dual \mathbb{P} of \mathbb{P}_{∞} satisfies the assumptions of 1.1 .
1.3 Theorem. Let \mathscr{L} be a Laguerre plane of finite order n, and assume that there is a point ∞ such that n^{2} divides the order of the stabilizer Δ_{∞}. If there exist a circle $K \in \mathscr{C}_{\infty}$ and a subgroup $H \leq \operatorname{Aut}(\mathscr{L})_{\infty}$ such that H fixes each circle touching K in ∞ and H acts transitively on $K \backslash\{\infty\}$, then \mathbb{P}_{∞} has Lenz type V (at least), and is coordinatized by a semifield.
Proof. From 1.2 we know that \mathbb{P}_{∞} is a dual translation plane. The translation axis in the dual of \mathbb{P}_{∞} is the common point v for the generators in the projective closure of \mathbb{A}_{∞}. The elations of \mathbb{P}_{∞} with center v and axis W form a group of order n; we denote that group by V and note that V is a group of translations of A_{∞}.

Our assumptions on H secure that H induces a group of translations of A_{∞}; the common center is the point at infinity for the "horizontal line" $K \backslash\{\infty\}$. We obtain a transitive group $H V$ of translations on \mathbb{A}_{∞}. So \mathbb{P}_{∞} is also a translation plane, and has Lenz type V at least.

2 Shift groups

Recall that a shift group on a projective plane is a group of automorphisms fixing an incident pointline pair (x, Y) and acting regularly both on the set of points outside Y and on the set of lines not through x.
2.1 Theorem. Let \mathscr{L} be a finite elation Laguerre plane of odd order, and assume that there exists a point u and a subgroup $S \leq \operatorname{Aut}(\mathscr{L})_{u}$ such that S induces a transitive group of translations on the affine plane \mathbb{A}_{u}.

1. If $s \in[u] \backslash\{u\}$ is fixed by S then S induces a shift group on \mathbb{P}_{s}.
2. If S fixes a point t of \mathscr{L} and induces a transitive group of translations on \mathbb{A}_{t} then $t=u$.

Proof. Let n denote the order of \mathscr{L}. Assume that $s \in[u] \backslash\{u\}$ is fixed by S. Then S induces a group of automorphisms of \mathbb{P}_{s}; we have to exhibit an incident point-line pair (x, Y) such that S acts regularly both on the set of points outside Y and on the set of lines not through x.

It is obvious that S acts regularly on the set of affine points in \mathbb{P}_{s} because that set coincides with the set of points of \mathbb{A}_{u}. We let the line W at infinity play the role of Y. Also, the set of vertical lines (induced by generators) is invariant under S, we let their point at infinity play the role of x (so $x=v \in W)$.

It remains to show that S acts regularly on the set of non-vertical lines of \mathbb{A}_{s}; these lines are induced by the circles through s. Assume that $\tau \in S$ fixes a circle C through s. Our assumption that n be odd implies that the translation of \mathbb{A}_{u} induced by τ does not have any orbit of length 2 , and we obtain that τ is trivial if there is a set of one or two points outside [u] invariant under τ.

As τ induces a translation on \mathbb{A}_{u}, there exists $D \in \mathscr{C}_{u}$ such that τ fixes each circle touching D in u (these circles induce the parallels to the line induced by D on \mathbb{A}_{u}). Pick a point $z \in C$, and let D^{\prime} be the circle through z touching D in u. Then τ leaves the intersection $D^{\prime} \cap C$ invariant. This is a set with one ore two elements, and we find that τ is trivial. So the orbit of C under S has length $|S|=n^{2}$, and fills all of \mathscr{C}_{s}. Thus S acts regularly on the set of non-vertical lines of \mathbb{A}_{s}, as required.

Now assume that S fixes t and induces a transitive group of translations on \mathbb{A}_{t}. Then $t \in[u]$ because S acts regularly on the set of points outside [u]. For any circle $C \in \mathscr{C}_{t}$, we pick two points $a, b \in C \backslash\{t\}$. Then there exists $\tau \in S$ such that $\tau(a)=b$. As τ is a translation both of \mathbb{A}_{u} and of \mathbb{A}_{t}, the orbit of a under $\langle\tau\rangle$ is contained both in the line C of \mathbb{A}_{t} and in some line B of \mathbb{A}_{u}, that is, in some circle B through u. Since n is odd, that orbit has at least three points, and $B=C$. This yields $t=u$, as claimed.
2.2 Theorem. Assume that \mathscr{L} is a Laguerre plane of odd order n, and let ∞ be a point. Let U denote the set of all points $u \in[\infty] \backslash\{\infty\}$ such that there exists a subgroup $S_{u} \leq \operatorname{Aut}(\mathscr{L})$ of order n^{2} fixing both ∞ and u and acting as a group of translations on \mathbb{A}_{u}. Then the following hold:

1. There are at least $|U|$ many different shift groups on \mathbb{P}_{∞}.
2. If $|U|>1$ then \mathbb{A}_{∞} is a translation plane.
3. If \mathbb{A}_{∞} is a translation plane and U is not empty then \mathbb{P}_{∞} has Lenz type V at least, can be coordinatized by a commutative semifield, and the middle nucleus of such a coordinatizing semifield has order at least $|U|+1$.
4. If $|U|>\sqrt{n}$ then \mathbb{P}_{∞} is Desarguesian.

Proof. Using 2.1 we see for any $u \in U$ that S_{u} is a shift group on \mathbb{A}_{∞}, and different points $t, u \in U$ yield different groups S_{t} and S_{u}. This gives the first assertion. All these shift groups have the same fixed flag in \mathbb{P}_{∞}.

If a finite projective plane admits more than one shift group, it is a translation plane, see [3, 10.2]. If a translation plane admits at least one shift group then it can be coordinatized by a commutative semifield ([3, 9.12], [4]) and the different shift groups with the same fixed flag are parameterized by the non-zero elements of the middle nucleus of such a semifield, see [3, 9.4].

The additive group of the coordinatizing semifield forms a vector space over the middle nucleus (see [2, p .170). If the middle nucleus has more than \sqrt{n} elements then that vector space has dimension one, and the middle nucleus coincides with the semifield. This means that the semifield is a field, and the plane is Desarguesian.

In [7], our present result 2.2 is used to prove the following:
2.3 Theorem. Let \mathscr{L} be an elation Laguerre plane of odd order. If there exists a point ∞ such that $\operatorname{Aut}(\mathscr{L})_{\infty}$ acts two-transitively on $\mathscr{G} \backslash\{[\infty]\}$ then the affine plane \mathbb{A}_{∞} is Desarguesian, and \mathscr{L} is Miquelian.
2.4 Remark. If \mathbb{P} is a projective plane of even order then a shift group on \mathbb{P} will never be elementary abelian, see [3, 1.5, 5.8]. Thus a shift group on such a plane will not act as transitive group of translations on any other affine plane (of the same order).

Acknowledgement. The present investigation has been conducted during a stay of the second author as a Visiting Erskine Fellow at the University of Canterbury, Christchurch, New Zealand.

References

[1] R. Baer, Projectivities with fixed points on every line of the plane, Bull. Amer. Math. Soc. 52 (1946), 273-286, ISSN 0002-9904, doi:10.1090/S0002-9904-1946-08557-2, MR 0015220 (7,387e). Zbl 0061.30810
[2] D. R. Hughes and F. C. Piper, Projective planes, Graduate Texts in Mathematics 6, SpringerVerlag, New York, 1973, ISBN 978-0387900445. MR 0333959 (48 \#12278). Zbl 0484.51011.
[3] N. Knarr and M. J. Stroppel, Polarities of shift planes, Adv. Geom. 9 (2009), no. 4, 577-603, ISSN 1615-715X doi:10.1515/ADVGEOM.2009.028. MR 2574140. Zbl 1181.51003.
[4] B. Spille and I. Pieper-Seier, On strong isotopy of Dickson semifields and geometric implications, Results Math. 33 (1998), no. 3-4, 364-373, ISSN 0378-6218 doi:10.1007/BF03322095. MR 1619836. Zbl 0944.17002.
[5] G. F. Steinke, On the structure of finite elation Laguerre planes, J. Geom. 41 (1991), no. 1-2, 162179, ISSN 0047-2468, doi : 10.1007/BF01258517. MR 1116911 (92i:51026). Zbl 0737.51003
[6] G. F. Steinke and M. J. Stroppel, Finite elation Laguerre planes admitting a twotransitive group on their set of generators, Innov. Incidence Geom. 13 (2013), 207-223, ISSN 1781-6475, http://iig.ugent.be/online/13/volume-13-article-11-online.pdf. MR 3173020. Zbl 1307.51005.
[7] G. F. Steinke and M. J. Stroppel, On elation Laguerre planes with a two-transitive orbit on the set of generators, Preprint 2017-009, Fachbereich Mathematik, Universität Stuttgart, Stuttgart, 2017, http://www.mathematik.uni-stuttgart.de/preprints/ downloads/2012/2012-009.pdf.

Günter F. Steinke
Department of Mathematics and Statistics
University of Canterbury
Private Bag 4800
Christchurch 8140
New Zealand
Markus J. Stroppel
LExMath
Fakultät für Mathematik und Physik
Universität Stuttgart
D-70550 Stuttgart
Germany

Erschienene Preprints ab Nummer 2016-001

Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints
2017-009 Steinke, G.; Stroppel, M.: On elation Laguerre planes with a two-transitive orbit on the set of generators
2017-008 Steinke, G.; Stroppel, M.: Laguerre planes and shift planes
2017-007 Blunck, A.; Knarr, N.; Stroppel, B.; Stroppel, M.: Transitive groups of similitudes generated by octonions
2017-006 Blunck, A.; Knarr, N.; Stroppel, B.; Stroppel, M.: Clifford parallelisms defined by octonions

2017-005 Knarr, N.; Stroppel, M.: Subforms of Norm Forms of Octonion Fields
2017-004 Apprich, C.; Dieterich, A.; Höllig, K.; Nava-Yazdani, E.: Cubic Spline Approximation of a Circle with Maximal Smoothness and Accuracy
2017-003 Fischer, S.; Steinwart, I.: Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm
2017-002 Farooq, M.; Steinwart, I.: Learning Rates for Kernel-Based Expectile Regression
2017-001 Bauer, B.; Devroye, L; Kohler, M.; Krzyzak, A.; Walk, H.: Nonparametric Estimation of a Function From Noiseless Observations at Random Points
2016-006 Devroye, L.; Györfi, L.; Lugosi, G.; Walk, H.: On the measure of Voronoi cells
2016-005 Kohls, C.; Kreuzer, C.; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Optimal Control Problems with Control Constraints
2016-004 Blaschzyk, I.; Steinwart, I.: Improved Classification Rates under Refined Margin Conditions
2016-003 Feistauer, M.; Roskovec, F.; Sändig, AM.: Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear Newton Boundary Conditions in a Polygon
2016-002 Steinwart, I.: A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths
2016-001 Köster, I.: Sylow Numbers in Spectral Tables

[^0]: * This research was supported by a Visiting Erskine Fellowship from the University of Canterbury for the second author.

