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Laguerre planes and shift planes

Günter F. Steinke, Markus J. Stroppel*

Abstract

We characterize the Miquelian Laguerre planes of odd order by the existence of shift groups in
affine derivations.
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Introduction

A finite Laguerre plane L = (P,C ,G ) of order n consists of a set P of n(n +1) points, a set C of n3

circles and a set G of n+1 generators, where both circles and generators are subsets of P , such that
the following three axioms are satisfied.

(G) G partitions P , each generator contains n points, and there are n +1 generators.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator are joined by a unique circle.

Circles through x are called touching in x if they are equal or have no other point in common.
The set of all circles through a given point x is denoted by Cx . The derived affine plane Ax =
(P à [x],Cx ∪G à {[x]}) at a point x ∈ P has the collection of all points not on the generator [x]
through x as point set and, as lines, all circles passing through x (without the point x) and all
generators apart from [x]. The axioms above easily yield that Ax is an affine plane, indeed. We
refer to the generators as vertical lines in Ax . Circles that touch each other in x give parallel lines
in Ax . A line W is introduced to obtain the projective completion Px of Ax ; the common point of
the verticals will be denoted by v ∈W .

The group Aut(L ) of all automorphisms of a Laguerre plane L acts on the set G of generators.
We call L an elation Laguerre plane if the kernel ∆ of that action acts transitively on the set C

of circles. It is known (see [5, 1.3]) that in every finite elation Laguerre plane the group ∆ has a
(unique) regular normal subgroup E called the elation group. For more details on elation Laguerre
planes, we refer the reader to the introduction in [6].

In the present note, we only use a weaker transitivity assumption on ∆ but combine this with
additional assumptions. Our results can (and will) be applied to elation Laguerre planes with ad-
ditional homogeneity assumptions, e.g. in [7] (cf. 2.3 below).

* This research was supported by a Visiting Erskine Fellowship from the University of Canterbury for the second author.
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1 Translation planes

1.1 Theorem. Let P be a finite projective plane of order n. Assume that a subgroup D ≤ Aut(P) fixes
each point on some line L. If n2 divides the order of D then D contains a subgroup T of order n2

consisting of elations with axis L. In particular, the plane P is a translation plane, and the order n
is a prime power.

Proof. For each non-trivial element δ ∈ D there is a (unique) center cδ; i.e. a point cδ such that δ
fixes each line through cδ ([1], see [2, Thm. 4.9]). The elations in D are just those in the set T :=
{id}∪{

τ ∈ D à {id} | cτ ∈ L
}
; that set forms a normal subgroup of D (see [2, Thm 4.13]).

For any point x outside L, the stabilizer Dx consists of id and elements with center x. The order
of any element of Dx divides n −1. So the order of Dx and the number n2 of points outside L are
co-prime, and D acts transitively on the set A of points outside L. For each δ ∈ DàT we have cδ ∉ L,
and δ ∈ Dcδ yields that the order of δ divides n −1, and is co-prime to n2.

Let B denote the set of T -orbits in A. Then D acts on B, and so does D/T because T E D
acts trivially on B. Transitivity of D on A implies that D/T is transitive on B. Now |B| = n2/|T |
divides |D/T |. The latter order is co-prime to n2 because each member of the quotient has a rep-
resentative of order co-prime to n2. So |B| = 1, and transitivity of T is proved.

1.2 Theorem. Let L be a Laguerre plane of finite order n. If ∞ is a point such that n2 divides the
order of the stabilizer ∆∞ then the derived projective plane P∞ is a dual translation plane, and the
order n is a prime power.

Proof. The group D induced by ∆∞ on the dual P of P∞ satisfies the assumptions of 1.1.

1.3 Theorem. Let L be a Laguerre plane of finite order n, and assume that there is a point ∞
such that n2 divides the order of the stabilizer ∆∞. If there exist a circle K ∈ C∞ and a subgroup
H ≤ Aut(L )∞ such that H fixes each circle touching K in ∞ and H acts transitively on K à {∞},
then P∞ has Lenz type V (at least), and is coordinatized by a semifield.

Proof. From 1.2 we know that P∞ is a dual translation plane. The translation axis in the dual of P∞
is the common point v for the generators in the projective closure of A∞. The elations of P∞ with
center v and axis W form a group of order n; we denote that group by V and note that V is a group
of translations of A∞.

Our assumptions on H secure that H induces a group of translations of A∞; the common cen-
ter is the point at infinity for the “horizontal line” K à {∞}. We obtain a transitive group HV of
translations on A∞. So P∞ is also a translation plane, and has Lenz type V at least.

2 Shift groups

Recall that a shift group on a projective plane is a group of automorphisms fixing an incident point-
line pair (x,Y ) and acting regularly both on the set of points outside Y and on the set of lines not
through x.

2.1 Theorem. Let L be a finite elation Laguerre plane of odd order, and assume that there exists a
point u and a subgroup S ≤ Aut(L )u such that S induces a transitive group of translations on the
affine plane Au .

1. If s ∈ [u]à {u} is fixed by S then S induces a shift group on Ps .

2. If S fixes a point t of L and induces a transitive group of translations on At then t = u.
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Proof. Let n denote the order of L . Assume that s ∈ [u]à{u} is fixed by S. Then S induces a group of
automorphisms ofPs ; we have to exhibit an incident point-line pair (x,Y ) such that S acts regularly
both on the set of points outside Y and on the set of lines not through x.

It is obvious that S acts regularly on the set of affine points in Ps because that set coincides with
the set of points of Au . We let the line W at infinity play the role of Y . Also, the set of vertical
lines (induced by generators) is invariant under S, we let their point at infinity play the role of x (so
x = v ∈W ).

It remains to show that S acts regularly on the set of non-vertical lines of As ; these lines are
induced by the circles through s. Assume that τ ∈ S fixes a circle C through s. Our assumption
that n be odd implies that the translation of Au induced by τ does not have any orbit of length 2,
and we obtain that τ is trivial if there is a set of one or two points outside [u] invariant under τ.

As τ induces a translation onAu , there exists D ∈Cu such that τ fixes each circle touching D in u
(these circles induce the parallels to the line induced by D on Au). Pick a point z ∈ C , and let D ′

be the circle through z touching D in u. Then τ leaves the intersection D ′∩C invariant. This is a
set with one ore two elements, and we find that τ is trivial. So the orbit of C under S has length
|S| = n2, and fills all of Cs . Thus S acts regularly on the set of non-vertical lines of As , as required.

Now assume that S fixes t and induces a transitive group of translations on At . Then t ∈ [u]
because S acts regularly on the set of points outside [u]. For any circle C ∈ Ct , we pick two points
a,b ∈C à {t }. Then there exists τ ∈ S such that τ(a) = b. As τ is a translation both of Au and of At ,
the orbit of a under 〈τ〉 is contained both in the line C of At and in some line B of Au , that is, in
some circle B through u. Since n is odd, that orbit has at least three points, and B =C . This yields
t = u, as claimed.

2.2 Theorem. Assume that L is a Laguerre plane of odd order n, and let ∞ be a point. Let U denote
the set of all points u ∈ [∞]à {∞} such that there exists a subgroup Su ≤ Aut(L ) of order n2 fixing
both ∞ and u and acting as a group of translations on Au . Then the following hold:

1. There are at least |U | many different shift groups on P∞.

2. If |U | > 1 then A∞ is a translation plane.

3. If A∞ is a translation plane and U is not empty then P∞ has Lenz type V at least, can be
coordinatized by a commutative semifield, and the middle nucleus of such a coordinatizing
semifield has order at least |U |+1.

4. If |U | >p
n then P∞ is Desarguesian.

Proof. Using 2.1 we see for any u ∈U that Su is a shift group on A∞, and different points t ,u ∈U
yield different groups St and Su . This gives the first assertion. All these shift groups have the same
fixed flag in P∞.

If a finite projective plane admits more than one shift group, it is a translation plane, see [3, 10.2].
If a translation plane admits at least one shift group then it can be coordinatized by a commutative
semifield ([3, 9.12], [4]) and the different shift groups with the same fixed flag are parameterized by
the non-zero elements of the middle nucleus of such a semifield, see [3, 9.4].

The additive group of the coordinatizing semifield forms a vector space over the middle nucleus
(see [2, p. 170]). If the middle nucleus has more than

p
n elements then that vector space has

dimension one, and the middle nucleus coincides with the semifield. This means that the semifield
is a field, and the plane is Desarguesian.
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In [7], our present result 2.2 is used to prove the following:

2.3 Theorem. Let L be an elation Laguerre plane of odd order. If there exists a point ∞ such
that Aut(L )∞ acts two-transitively on G à {[∞]} then the affine plane A∞ is Desarguesian, and L

is Miquelian.

2.4 Remark. IfP is a projective plane of even order then a shift group onP will never be elementary
abelian, see [3, 1.5, 5.8]. Thus a shift group on such a plane will not act as transitive group of
translations on any other affine plane (of the same order).

Acknowledgement. The present investigation has been conducted during a stay of the second
author as a Visiting Erskine Fellow at the University of Canterbury, Christchurch, New Zealand.
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