
On elation Laguerre planes
with a two-transitive orbit on

the set of generators

Günter F. Steinke,
Markus J. Stroppel

Stuttgarter
Mathematische

Berichte

2017-009



Fachbereich Mathematik
Fakultät Mathematik und Physik
Universität Stuttgart
Pfaffenwaldring 57
D-70 569 Stuttgart

E-Mail: preprints@mathematik.uni-stuttgart.de

WWW: http://www.mathematik.uni-stuttgart.de/preprints

ISSN 1613-8309

© Alle Rechte vorbehalten. Nachdruck nur mit Genehmigung des Autors.
LATEX-Style: Winfried Geis, Thomas Merkle, Jürgen Dippon

mailto:preprints@mathematik.uni-stuttgart.de
http://www.mathematik.uni-stuttgart.de/preprints


On elation Laguerre planes with a two-transitive
orbit on the set of generators

Günter F. Steinke, Markus J. Stroppel*

Abstract

We study finite elation Laguerre planes with a group of automorphisms fixing a generator and
acting two-transitively on the set of remaining generators. For odd order, this assumption char-
acterizes the Miquelian Laguerre planes, but there are non-Miquelian examples if the order is
even.

MSC 2010: 51B15, 51E25, 20B20.

Keywords: Laguerre plane, elation group, two-transitive group, socle, ovoidal Laguerre plane,
Miquelian Laguerre plane.

Introduction

Laguerre planes generalize the geometry of non-trivial plane intersections of a cone over some
oval in a projective plane; these intersections are referred to as circles. If the circles of a Laguerre
plane are indeed obtained in this way then the Laguerre plane is called ovoidal. Miquel’s theorem
holds in the (essentially unique) ovoidal Laguerre plane over an oval quadric in the plane over a
field F . Conversely, the class of such Laguerre planes is characterized by Miquel’s theorem, and
these planes are called Miquelian (or classical).

All finite Laguerre planes known to date are ovoidal; they are even Miquelian if their order is odd.
However, it is not clear whether this state of knowledge is due only to the fact that appropriate
constructions have not yet been found. Elation Laguerre planes (as introduced in [37] and [29], see
Section 1 below) appear to play a role similar to translation planes among the projective planes.
Several constructions are known of (infinite) non-Miquelian elation Laguerre planes.

It has been shown in [34] and [35] that every finite elation Laguerre plane with a group of au-
tomorphisms acting two-transitively on the set of generators is Miquelian. A similar result (under
weaker geometric assumptions, but for non-solvable groups only) has been obtained in [2]. In the
present paper, we consider a finite elation Laguerre plane L of order q , and assume that there
exists a group of automorphisms fixing one generator [∞] and acting two-transitively on the set of
generators different from [∞]. This is equivalent to the existence of a subgroup Γ ≤ Aut(L ) that
fixes some incident point-circle pair (∞,K ) and acts two-transitively on H := K à{∞}. Such a situa-
tion can be found in each Miquelian Laguerre plane; there are also some non-Miquelian examples
(see Section 6 below).

* This research was supported by a Visiting Erskine Fellowship from the University of Canterbury for the second author.
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For odd q , we then show that L is the Miquelian Laguerre plane over Fq . If q is even then L is
a translation Laguerre plane (in the sense of [12]), and the derived affine plane A∞ at ∞ is a plane
over a generalized twisted field if q 6= 26. IfA∞ is Desarguesian then L is ovoidal over a translation
oval, and known explicitly. In particular, this is the case when q = 2e and e is a prime or a square of
a prime.

In Section 1 we collect basic facts we need on finite elation Laguerre planes and their automor-
phisms. The next section deals with the socle of the two-transitive group G induced by Γ on H and
excludes non-abelian socles, so G is of affine type. As the crucial step for the main result we show
in Section 3 that the projective closure of A∞ has Lenz type at least V and thus can be coordina-
tized over a semifield. The following Section 4 examines the case of odd order; we find sufficiently
many shift groups to secure that the affine planeA∞ is Desarguesian (whence L is Miquelian). In
Section 5 we show that the stabilizer Go of a point o ∈ H is isomorphic to a subgroup of PΓL(1, q).
The last section discusses the case of even order and completely determines the Laguerre planes
when A∞ is Desarguesian.

1 Elation Laguerre planes

We briefly indicate basic information about elation Laguerre planes in the sequel, and refer the
reader to the more detailed introduction in [34].

Axioms for Laguerre planes. A finite Laguerre plane L = (P,C ,G ) of order n consists of a set P
of n(n + 1) points, a set C of n3 circles and a set G of n + 1 generators, where both circles and
generators are subsets of P , such that the following three axioms are satisfied.

(G) G partitions P , each generator contains n points, and there are n +1 generators.

(C) Each circle intersects each generator in precisely one point.

(J) Three points no two of which are on the same generator are joined by a unique circle.

Circles through x are called touching in x if they are equal or have no other point in common.
The derived affine plane Ax at a point x ∈ P has the collection of all points not on the generator [x]
through x as point set and, as lines, all circles passing through x (without the point x) and all
generators apart from [x]. The axioms above easily yield that Ax is an affine plane, indeed. We
refer to the generators as vertical lines in Ax . The set of non-vertical lines is induced from the
set Cx of all circles passing through x. Circles that touch each other in x give parallel lines in Ax .
The projective completion of Ax will be denoted by Px .

The group Aut(L ) of a Laguerre plane L acts on the set G of generators. We call L an elation
Laguerre plane if the kernel ∆ of that action acts transitively on the set C of circles. It is known
(see [29, 1.3]) that in every finite elation Laguerre plane the group ∆ has a (unique) regular normal
subgroup E ; this group will be called the elation group. It is also known that E is elementary abelian
and acts regularly on C .

Throughout the present paper, we study an elation Laguerre plane L = (P,C ,G ) admitting a
group Γ ≤ Aut(L ) that fixes some incident point-circle pair (∞,K ) and acts two-transitively on
K à {∞}. We abbreviate H := K à {∞}; this set will be considered as a (“horizontal”) line in the
derived affine plane A∞.
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1.1 Theorem ([7], [26], [29], [30], [31], [34]). Let L be an elation Laguerre plane of finite order q,
with elation group E. We consider a point x and the derived projective plane Px .

1. The projective plane Px is a dual translation plane; the translation center is the point ω at
infinity of vertical lines (induced by generators of the Laguerre plane), and Ex induces the full
dual translation group. Furthermore Ex acts trivially on [x].

2. The order q is a prime power, say q = r e with a prime r and some integer e.

3. If q is a prime then L is Miquelian.

If q is the square of a prime and q divides the order of the elation complement (i.e., if q divides
the order of the stabilizer of some circle through x) then L is Miquelian.

Any Laguerre plane of order at most ten is ovoidal and, in fact, Miquelian except in case of
order eight.

4. Each circle not through x induces an oval in Px . That oval passes through the translation
center ω and has the line at infinity as a tangent.

1.2 Lemma. In the automorphism group of the Miquelian Laguerre plane of order q = r e , the stabi-
lizer of any circle C is isomorphic to the direct product PΓL(2, q)×Cq−1 and induces a group isomor-
phic to PΓL(2, q) on C . The action on C is equivalent to the natural three-transitive action on the
projective line over Fq , while the kernel of the restriction map is cyclic of order q −1. In particular,
the stabilizer of any incident point-circle pair (x,C ) is solvable, and two-transitive on C à {x}. Every
regular abelian normal subgroup of that stabilizer acts trivially on [x].

In any ovoidal Laguerre plane of order q, the stabilizer of any incident point-circle pair (x,C ) is
solvable, in fact isomorphic to a subgroup of a triangular subgroup of PΓL(3, q).

1.3 Lemma. Let L be a Laguerre plane of finite order q, and let σ be an automorphism of L fixing
some circle C .

1. If σ is an involution, then one of the following holds.

(a) σ fixes every point on C ; then q is odd, and σ induces an axial involution onAx , for each
x ∈C .

(b) The order q is a square and σ fixes precisely 1+p
q points on C ; then σ induces a Baer

involution on Ax , for each fixed point x on C .

(c) σ fixes at most two points on C . If there is a fixed point x on C then σ induces an axial
involution on Px .

2. If L is an elation Laguerre plane andσ acts as an involution on C fixing more than two points
on C (but not all of them), then q is a square.

Proof. The claims in assertion 1 are proved in [35, 2.2].
Now assume that σ induces an involution on C , and that σ fixes more than two points on C .

Let ∞ be one of the fixed points. Thenσ induces a collineationσ′ of the dual of the derived projec-
tive planeP∞, andσ′ fixes at least three points on the translation axis (corresponding to generators
through the fixed points on C ) of that translation plane. As σ′ induces an involution on the trans-
lation axis, the order q must be a square by [9, Theorem 2].
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Involutions fixing a circle but no point on it occur, for instance, in Miquelian planes of order
q ≡ 3 (mod 4) (because then PSL(2, q) contains involutions fixing no point of the projective line).
Involutions of the kind discussed in 1.3.1(a) are well understood in elation Laguerre planes:

1.4 Lemma ([29, Thm. 2 d)]). If L is a finite elation Laguerre plane of odd order then at each circle C
there exists a unique reflection, i.e., an involutory automorphism of L fixing each point on C (and
no others).

In particular, if∆C contains an involution then that involution is uniquely determined by C , and
centralized by the stabilizer of C in Aut(L ).

1.5 Lemma. Let L be a finite Laguerre plane of order q and let S ≤ Aut(L ) be of odd order. If S fixes
more than q circles then S ≤∆; that is, the group S fixes each generator of L .

Proof. Let [x] be any generator of L . Since [x] has q points, there must be at least two distinct
circles fixed by S that intersect [x] in the same point w . The intersection of these two circles is a
set {w, w ′} of size at most 2, and invariant under S. But the orbit S(w) of w under S has odd length.
Thus S fixes w and then also the generator [w] = [x].

1.6 Lemma. Let L = (P,C ,G ) be a finite Laguerre plane and let S ≤ Aut(L ). If S fixes at least three
points on a circle and a fourth point off this circle, then the geometry LS = (PS ,CS ,GS) of all fixed
points PS , all fixed circles CS and all fixed generators GS of S is a Laguerre plane. In particular, any
two fixed circles of S intersect in fixed points (if they meet at all).

Proof. Axiom (C): Each circle in CS intersects each generator in GS in precisely one point which
also belongs to PS .

Axiom (J): Any three points in PS no two of which are on the same generator are joined by a
unique circle which then belongs to CS .

Axiom (G): Let n +1 be the number of generators in GS . Our assumptions secure n ≥ 3. For any
three generators in GS , take their intersections x, y , and z, respectively, with some fixed circle C ∈
CS . Each circle touching C in z meets both [x] and [y], and we obtain a bijection from [x]∩PS onto
[y]∩PS . Therefore, the number m of fixed points on a fixed generator is constant, and m ≥ 3.

Choose a fourth point w ∈ ([x]à {x})∩PS . If v ∈ PS ∩C and v 6= x, y , then the circle through w ,
y and v is fixed by S and so is its intersection with [z]. Furthermore, the circle through w that
touches C at y is fixed by S and so is its intersection with [z]. All these points of intersection are
mutually distinct so that m ≥ n.

We can form m circles through w , y and one of the fixed points on [z]. One of these touches C
in y , but each of the other m − 1 circles has a second point uw 6= x, y in common with C . But
then uw is also fixed. In this way we obtain m+1 ≥ n+1 fixed points on C , and m = n follows. Thus
Axiom (G) is established, and LS is a Laguerre plane (of order m), as claimed.

There do exist involutions on Laguerre planes fixing two circles but moving their intersection
points:

1.7 Example. Letα denote the generator of the Galois group Gal(Fs2 /Fs). Then γ given in affine co-
ordinates by γ(x, y) = (α(x),α(y)) is an involutory automorphism of the Miquelian Laguerre plane
M (s2) of order s2.

The traces of circles of M (s2) are just the graphs of polynomials of degree at most two over Fs2 .
Such a circle is fixed by γ precisely if the polynomial has coefficients in Fs .
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Let f (x) ∈ Fs[x] be a quadratic irreducible polynomial over Fs , and let C be the circle of M (s2)
whose trace is the graph of f . So both C and the circle X with trace {(x,0) | x ∈ Fs2 } are fixed by γ.
However, the two points in C ∩X are interchanged by γ; in fact, the intersection consists of the two
solutions of f (x) = 0 in Fs2 àFs .

The following straightforward result (see [24, Lemma 19.3]) will be helpful.

1.8 Lemma. Let r and s be primes and e, f be positive integers such that r e +1 = s f . Then one of the
following holds:

1. s = 2, e = 1 (r is a Mersenne prime);

2. r = 2, f = 1 (s is a Fermat prime);

3. r = 2, e = 3, s = 3, f = 2.

1.9 Lemma. Let L be any Laguerre plane, and consider the set FixC (α) of fixed circles for α ∈
Aut(L ). Assume thatα has order 3 and fixes precisely two generators [a] and [b]. If FixC (α) contains
two circles in the bundle Ca ∩Cb then FixC (α) is that bundle.

Proof. If g is a generator different from [a] and from [b] then there is a bijection from g onto
FixC (α) mapping x ∈ g to the circle Cx through the points x, α(x) and α2(x). Since α has order 3, it
follows that Cx ∩Cy consists of fixed points of α for all x 6= y . Hence Cx ∩Cy ⊂ [a]∪ [b].

Let x, y, z ∈ g be three distinct points and assume that Cx∩Cy = {a,b}. Suppose that Cx∩Cz = {a}.
Then Cx , Cy , Cz induce lines of the derived affine plane Aa . But Cx and Cz are parallel in Aa

whereas Cx and Cy are not. Hence Cy and Cz intersect in an affine point s not on [o], leading to the
contradiction that s and thus [s] are fixed by α.

Now suppose that both Cx ∩Cz and Cy ∩Cz are empty. We consider the derived projective
plane Pa . In this plane α induces a collineation, Cx and Cy induce nonparallel lines and Cz in-
duces an oval that has Cx and Cy as exterior lines. The oval has a unique tangent at Cz ∩ [b]. This
tangent is fixed byα and so are its points of intersection with Cx and Cy . At least one of these points
of intersection is an affine point not on [b] and we have again a contradiction.

This shows that Cx ∩Cz = Cy ∩Cz = Cx ∩Cy = {a,b}. Hence FixC (α) consists of the bundle of
circles through a and b.

1.10 Lemma. Let L be a finite Laguerre plane of even order. Let α ∈ Aut(L ) be an automorphism of
order 3 that fixes precisely two generators [∞] and [o]. Then FixC (α) is precisely one of the following:

• the bundle of circles through two points a ∈ [∞] and b ∈ [o];

• the bundle of circles touching at a point of [∞] or of [o].

Proof. We keep the notation from the proof of Lemma 1.9. Let x, y, z ∈ g be three distinct points.
By Lemma 1.9 we may assume the circles Cx , Cy , Cz pairwise intersect in at most one point.

Assume that Cx and Cy touch in a point, then this point is on [∞]∪ [o]. Without loss, we assume
that Cx ∩Cy = {a} where a ∈ [∞]. Suppose that Cx ∩Cz = {b} where b ∈ [o]. Since Cz does not pass
through a, it induces an oval in Pa . Furthermore, Cx induces a tangent to this oval. Since L has
even order, the oval has a knot k which lies on the line at infinity because that line is a tangent.
Since Cx and Cy induce parallel lines, Cy induces another tangent. Thus Cy and Cz intersect in an
affine point not on [o] — a contradiction.
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Now suppose that both Cx ∩Cz = and Cy ∩Cz are empty. As before Cz induces in Pa an oval
that now has Cx and Cy as exterior lines. Moreover, Cx and Cy do not pass through the knot of
the oval. The unique tangent to the oval at Cz ∩ [o] therefore meets Cx and Cy in affine points — a
contradiction.

This shows that Cx ∩Cz =Cy ∩Cz =Cx ∩Cy = {a}. Hence FixC (α) consists of the bundle of circles
touching at a if it contains two circles in this bundle.

Finally assume that Cx ∩Cy is empty. The previous case and Lemma 1.9 show that then also
Cx ∩Cz and Cy ∩Cz are empty. Hence FixC (α) consists of a flock if it contains two disjoint circles.
This implies that α fixes the generators [∞] and [o] pointwise. By [23, Lemma 3.1] an automor-
phism of a Laguerre plane that induces the identity on two different generators is an involution or
belongs to the kernel. Hence, this configuration cannot occur by the assumptions made on α.

2 The regular normal subgroup

The socle of a finite group is defined as the (characteristic) subgroup generated by all minimal
normal subgroups. By a theorem due to Burnside (see [4, Ch. X, Thm. XIII, p. 202]) the socle M of
the two-transitive group G induced by Γ on H is transitive on H , and either simple or elementary
abelian.

If M is simple, we let M̃ denote the stationary term in the commutator series of the pre-image
of M under the quotient map from Γ onto G . Then M̃ is a perfect central extension of M and the
center of M̃ is a quotient of the Schur multiplier of M (cf. [35, 3.3]).

The classification of finite simple groups yields a list of the possibilities for a simple socle, see
Table 1. This list is adapted from [5] and [21]; note that Aq for q = 5 also occurs in the guise of
PSL(2, f ) on ( f 2 − 1)/( f − 1) for f = 4. We have modified the names for the parameters to avoid
confusion with our fixed meaning for q . Also, we use the order f 2 of the quadratic extension field
for the unitary groups.

M q remarks/restrictions
Aq q q ≥ 5, (two representations if q = 6)
PSL(d , f ) ( f d −1)/( f −1) d ≥ 2, (d , f ) ∉ {(2,2), (2,3)}

(two representations if d > 2)
PSU(3, f 2) f 3 +1 f > 2
Sz(22a+1) 24a+2 +1 a > 0, Suzuki groups: 2B2(22a+1)
R(32a+1) 36a+3 +1 a > 0, Ree groups: 2G2(32a+1)
PSp(2d ,2) 22d−1 ±2d−1 d > 2
PSL(2,11) 11 (two representations)
A7 15 (two representations)
PSL(2,8) 28 socle of R(3)
Mn n Mathieu groups, n ∈ {11,12,22,23,24}

(two representations for n = 12)
M11 12 Mathieu group
Co3 276 Conway group
HS 176 Higman-Sims group (two representations)

Table 1: Non-abelian socles of two-transitive groups
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2.1 Lemma. If q > 4 then the socle M is not isomorphic to Aq .

Proof. Elation Laguerre planes of order at most 9 are ovoidal (1.1.3, see [7]), and the stabilizer of
any point-circle flag is solvable (see 1.2). As Aq is not solvable for q > 4, we may assume q > 9 here.
Therefore, the Schur multiplier of Aq is cyclic of order 2 (cf. [1, (33.15)]). If M̃ contains a central
involution acting trivially on H then q is odd and this central involution is the unique reflection ζ

at K , see 1.4. In order to avoid a case distinction, we consider the group Ψ = 〈ζ〉M̃ , where ζ := id
if q is even.

The stabilizer Ψo of a point o ∈ H contains ζ and induces a group isomorphic to Aq−1 on H .
Therefore, it is a group of order (q −1)! = |Sq−1| but not isomorphic to Sq−1. The action of Ψo on
the q −1 points of [o]à {o} is thus not faithful. The kernel Ξ of this action does not contain ζ, and
restriction to H gives an injective homomorphism onto a normal subgroup of Aq−1. The latter is
simple, and Ξ∼= Aq−1 follows.

The subgroup Ξ ∼= Aq−1 of Ψ acts in the usual way on the q −1 points of H à {o}, and therefore
contains involutions that fix q −4 points of H . These involutions must be Baer involutions of the
affine planeA∞, and we obtain the equation (q−4)2 = q . As this equation has no integer solutions,
we have reached a contradiction.

2.2 Lemma. If q > 3 then the socle M is not isomorphic to PSL(d , f ).

Proof. Aiming at a contradiction, we assume M ∼= PSL(d , f ). Then r e = q = ( f d −1)/( f −1).
If d = 2 then we know from 1.8 that either r = 2 and f = 2m−1 is a Mersenne prime (with odd m),

or e = 1 and q = r = f +1 is a Fermat prime, or q = 9.
For q = 9 or q prime we know that L is Miquelian, and M is embedded in a two-point stabilizer

in PΓL(2, q). Then solvability of that stabilizer (see 1.2) implies q ≤ 3.
Assume that f = 2m −1 is a Mersenne prime. Then m is odd, and f ≡ 1 (mod 4). Therefore, each

involution in PSL(2, f ) fixes two points in H and then three points in K . Applying 1.3.2 we find that
the order q = f +1 = 2m must be a square, contradicting the fact that m is odd.

It remains to treat the cases where d ≥ 3. If f is odd then the Schur multiplier of PSL(d , f ) has
order 2 (see [18, 25.7], cf. [1, 3.3.6]), and M̃ is covered by SL(d , f ). We consider an involution J ∈
SL(d , f ) such that the fixed points in (F f )d form a subspace of codimension 2. The eigenspaces
of J then have dimensions d − 2 and 2, respectively, and J induces an involution on A∞ fixing
( f d−2 − 1+ f 2 − 1)/( f − 1) points of the affine line H . As J must induce a Baer involution on the
projective completion ofA∞, we obtain ( f d−2+ f 2−2)2 = ( f d−1)( f −1). Now (−2)2 ≡ (−1)2 (mod f )
yields f = 3. Writing X := 3d−2 we obtain the quadratic equation X 2 −4X +51 = 0. This equation
has no real solution, let alone an integer one.

If f = 2m is even then the Schur multiplier is trivial unless (d , f ) ∈ {(3,4), (4,2)} (see [18, 25.7],
cf. [1, 3.3.6]). The group SL(d , f ) ∼= PSL(d , f ) contains an involution J fixing a hyperplane point-
wise. Again, this involution must induce a Baer involution on the projective closure of A∞. Then
( f d−1 − 1)2 = ( f d − 1)( f − 1) follows, leading to the contradiction f ≡ 0 (mod 2 f ). The groups
PSL(d , f ) with (d , f ) ∈ {(3,4), (4,2)} have their two-transitive actions on 21 and 15 points, respec-
tively. These are not prime powers, and cannot be orders of elation Laguerre planes.

2.3 Theorem. The socle of G is abelian.

Proof. We have to discuss the entries of Table 1. The groups Aq (for q > 4) and PSL(d , f ) in their
two-transitive representation (for d > 1) have been excluded by 2.1 and 2.2, respectively.

Clearly, all two-transitive groups with degrees divisible by more than one prime are excluded by
the observation that q is a prime power (cf. 1.1).

7
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Every elation Laguerre plane of prime order is Miquelian. No simple group fixes an incident
point-circle pair in a Miquelian plane, see 1.2. This observation excludes all non-abelian socles of
two-transitive groups of prime degree from our list.

We exclude the remaining non-abelian candidates for socles (cf. Table 1) one by one.

PSU(3, f 2): We have r e = q = f 3 + 1 here. The only solutions for this equation are q = 9 or q a
Fermat prime (as f is a prime power, cf. 1.8). In these cases, the Laguerre plane is Miquelian
(see 1.1 3), and 1.2 leads to a contradiction.

Sz(22a+1): Here r e = q = 24a+2+1, we have e = 1 by 1.8, the Laguerre plane L is Miquelian, and 1.2
leads to a contradiction.

R(32a+1): Then r e = q = 36a+3 +1, which is impossible by 1.8.

2.4 Remark. One can define a Suzuki group Sz(2), i.e., Sz(2a) for a = 0. This gives a two-transitive
group of order 20 and degree 5. However, that group is not simple, but isomorphic to AGL(1,5).
The first part of the argument in the proof of 2.3 remains valid but we do not arrive at a contradic-
tion because Sz(2) ∼= AGL(1,5) is isomorphic to the stabilizer of an incident point-circle pair in the
automorphism group of the Miquelian plane of order 5, cf. 1.2.

3 Semifield planes

Before we prove the main result of this section, we establish a result needed in the proof of 3.2
below. There are more cases of two-transitive groups of affine type to be studied in Section 5 below,
but we need this particular case for the proof of 3.2. Afterwards, we will use 3.2 (via its corollary 3.3)
in order to exclude several cases in Section 5.

3.1 Theorem. Assume that Go has a normal subgroup isomorphic to SL(d , f ) or to Sp(d , f ), where
q = f d for some d > 1. Then d = 2 = f ; the plane is then the Miquelian plane of order 4, and
G ∼= S4

∼= AΓL(1,4) ∼= AGL(2,2).

Proof. Let S E Go be such a normal subgroup, and let τ be a transvection (cf. [18, 6.4, 9.17]) in S.
Let f = r c for the prime r , and pick a Sylow r -subgroup R of the pre-image in Γo of 〈τ〉. Then R acts
faithfully on H because the order of ∆K divides q −1. Therefore, some element ρ ∈ Γo of order r
induces τ on H . Note that ρ fixes f d−1 points in H .

Assume first that r is odd. The incidence structure F consisting of the fixed points, fixed gener-
ators and fixed circles of ρ is a Laguerre (sub-)plane (see 1.6); the order of F is f (d−1). Therefore,
we have f 3(d−1) circles in F . As f 3(d−1) > f d we obtain that each generator contains a point on at
least two fixed circles. Thus ρ fixes each generator, and then each point on K . This contradiction
excludes the case r > 2.

If r = 2 then f d−1 > 1 implies that ρ is a Baer involution. This yields f d = q = f 2(d−1), and d = 2
follows. Thus S ∼= SL(2, f ) = Sp(2, f ). We further assume f > 2 and consider a Sylow 2-subgroup T
of the pre-image π−1(S). Since ∆K has odd order, the image π(T ) ∼= T is a Sylow 2-subgroup of S,
and has order f ≥ 4. Now T fixes precisely f +1 generators of L , and fixes at least 2 points on each
such generator. The collection of fixed points, fixed circles and fixed generators forms a Laguerre
plane LT of order f , cf. 1.6. Thus T fixes f 3 circles.

Consider x ∈ K àPT . Since f 3 > f 2 = q , there must be at least two distinct circles of LT that in-
tersect [x] in the same point w . The intersection of these two circles is a set {w, w ′} of size at most 2,

8
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and invariant under T . Hence the stabilizer Tw has order at least f
2 ≥ 2. Thus Tw is nontrivial, fixes

the generator [x] and then also x. In the derived affine plane at x each involution in Tw fixes more
than f points on K and also points off K , which is impossible.

3.2 Theorem. The projective closure P∞ of the affine planeA∞ has Lenz type at least V. The group of
translations along H is induced by a normal subgroup M̃ of order q in Γ, and M̃ induces the regular
normal subgroup M in G.

Proof. The assertions are clear if L is Miquelian, cf. 1.2. So assume that L is not Miquelian.
We know from 2.3 that the socle M of the group G induced by Γ on H is a regular abelian normal

subgroup. So M is elementary abelian, and has order q = r e . Let R̃ be a Sylow r -subgroup of Γ.
As r does not divide q −1 = r e −1, the group R̃ has trivial intersection with ∆, and induces a group
R ∼= R̃ on H . As the regular normal subgroup M has order q = r e , we have M ≤ R, and R̃ contains
an elementary abelian r -group M̃ of order q acting regularly on H . In any case to be studied below,
we will either show that M̃ acts trivially on the set of “horizontal” lines (parallel to H , correspond-
ing to the circles touching K at ∞) or show that M̃ acts trivially on L∞ (the line at infinity, whose
points correspond to circles passing through ∞ and through o). As M̃ fixes no point of A∞, both
observations yield that M̃ induces a group of translations of A∞. These translations fix the line H ,
so they are translations along H , i.e., their center is the point at infinity corresponding to the par-
allel class of H . Together with the group V of vertical translations contained in the elation group
of L , these translations secure that the projective closure P∞ is a translation plane. As the dual
of P∞ is a translation plane anyway (see 1.1), the assertion follows.

We consider first the case where r = 2. As no involution in M̃ fixes any point in A∞, we obtain
that these involutions induce translations of A∞, cf. 1.3.

Now assume that r is odd. If q is not the square of a Mersenne prime then there exists a Zsig-
mondy prime z for the field Fq , i.e., a prime divisor z of q −1 = r e −1 such that every irreducible
linear representation of a cyclic group of order z over Fr has dimension e, and induces a semi-
regular action on the set of nonzero vectors. See [40], cf. [35, Section 4]. As Γ acts two-transitively
on H , the order of Γ is divisible by z, and there exists a cyclic subgroup Z of order z in Γ.

If Z acts trivially on H then Z acts non-trivially on the additive group of the kernel F of the
translation plane dual to P∞. As z is a Zsigmondy prime, we obtain F ∼= Fq , and (the dual of) P∞ is
Desarguesian.

So assume that Z acts non-trivially on H . Then Z acts semi-regularly on M̃ , and the set [Z , M̃ ]
of commutators coincides with M̃ . We study the action of Z on the line L∞ at infinity for A∞. If Z
acts trivially on L∞, then M̃ = [Z , M̃ ] also acts trivially on L∞.

Now assume that Z acts non-trivially on L∞. We consider the action of the group Z M̃ by con-
jugation on the quotient E∞/V ; that action is equivalent to the action on L∞à {v} where v is the
point at infinity belonging to the parallel class formed by the generators of L inA∞. The groups M̃
and E∞/V are r -groups. Therefore, the centralizer U of M̃ in E∞/V is not trivial. As a Z -module,
the group E∞/V splits as a direct sum of irreducible modules (by Maschke’s Theorem), and at
least one of these is not trivial. Such a submodule has order q because z is a Zsigmondy prime.
Thus E∞/V coincides with its non-trivial Z -submodule U . As U corresponds to the fixed points
of M̃ on L∞à {v}, we obtain again that M̃ acts trivially on L∞.

It remains to discuss the case where we do not have any Zsigmondy primes; as we have already
dealt with the even order case, we then have that q is the square of a Mersenne prime r = 2m −1.
As q = r 2 divides the order of Γ0, we apply 1.1.3 and obtain that L is Miquelian.
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3.3 Corollary. In P∞, let L∞ denote the line at infinity for A∞, let u denote the point at infin-
ity for H, and let v denote the point at infinity for the vertical lines (i.e., the generators). Let h
be any point on H. Then the homology group Aut(P∞)[x,Y ] is cyclic, for each anti-flag (x,Y ) ∈
{(h,L∞), (u, [h]), (v, H)}.

Proof. The plane P∞ has Lenz type at least V by 3.2. Therefore, that plane is coordinatized by a
semifield (division ring), see [16, 6.9], and the homology groups in questions are isomorphic to
multiplicative groups of the semi-nuclei of that semifield (see [16, 8.2]). These semi-nuclei are
skew fields in general, and have cyclic multiplicative groups in the finite case.

3.4 Lemma. The cover M̃ of the socle M acts trivially on the generator [∞].

Proof. We already know that M̃ ∼= M is elementary abelian of order q . If there exists a Zsigmondy
prime z for Fq then pick a subgroup Z of order z in the stabilizer Γo .

If Z acts trivially on [∞] then Z acts faithfully on H , and thus also faithfully on M . Then M̃ =
[Z , M̃ ] acts trivially on [∞], as well.

If Z acts non-trivially on [∞] we consider the centralizer U of M̃ in E/E∞. As both M̃ and E/E∞
are r -groups, the group U is not trivial. Since E/E∞ acts regularly on [∞], the action of Z M̃ by
conjugation on E/E∞ is equivalent to the action on [∞], and U corresponds to the set of fixed
points of M̃ on [∞]. Now E/E∞ is a non-trivial Z -module, there exists an irreducible Z -submodule,
and that submodule coincides with E/E∞ because Z is a Zsigmondy subgroup. The centralizer U
is also a Z -submodule, and we obtain U = E/E∞. Thus M̃ acts trivially on [∞], as claimed.

If there is no Zsigmondy prime we either have q = 26 (and this case is dealt with in 6.3 below), or
q = r 2 with a Mersenne prime r = 2m −1. In the latter case L is Miquelian (1.1.3, see 6.3), and 1.2
applies.

3.5 Remark. An analogue of our result 3.2 has been proved by Ganley–Jha [11]: every finite trans-
lation plane with a group of automorphisms fixing one point x on the line L∞ at infinity and acting
two-transitively on L∞à {x} is a semifield plane. See also [14].

4 The odd order case

4.1 Theorem. Let L be an elation Laguerre plane of odd order. If there exists a point ∞ such
that Aut(L )∞ acts two-transitively on G à {∞} then the affine plane A∞ is Desarguesian, and L

is Miquelian.

Proof. Without loss, we may assume that the (odd) order q of L is neither a prime nor the square
of a (Mersenne) prime, see 1.1.3. So there exists a Zsigmondy prime, and 3.4 yields that M̃ acts
trivially on [∞]. By 3.2 the group M̃ acts faithfully as a group of translations onA∞. In [36] we have
proved that this means that P∞ admits at least q −1 different shift groups (induced by conjugates
of M̃ under ∆). So P∞ is Desarguesian ([22, 9.4], cf. [36]), and L is Miquelian (see 1.1.3).

5 Complements

We study the stabilizers Γo and Go , respectively, for some point o ∈ H . Note that we have a semi-
direct product G = M oGo where the action of Go by conjugation on M is linear over the prime
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field Fr . The possibilities for Go are quite restricted, see Table 2 (compiled1 from [17] and [13],
cp. [5] or [19, XII, 7.5]. Note that (after 4.1) only the cases with even q are relevant for the present
section.

eligible q = r e reference, remarks
Go ≤ ΓL(1, q)

SL(d ,r e/d )E Go ≤ ΓL(d ,r e/d ) q = r dc with d > 1 3.1
Sp(2b,r e/2b)E Go q = r 2bc with b > 1 3.1

G2(2a)E Go q = 26a , a > 1 5.1
G2(2)′ E Go q = 26 5.1, G2(2)′ ∼= PSU(3,32)

Go
∼= As q = 24, s ∈ {6,7} 5.1

SL(2,3)E Go q = f 2 with f ∈ {,7,11,23} Q8 E SL(2,3)
SL(2,5)E Go q = f 2 with f ∈ {9,11,19,29,59}

Go
∼= SL(2,13) q = 36

N E Go q = 34, N extraspecial of order 25 Go/N ∼= A ≤ S5

N ∼= Q8 ·D4

Table 2: Complements of abelian socles in two-transitive groups of degree q = r e

5.1 Theorem. The stabilizer Go is contained in ΓL(1,Fq ).

Proof. After 4.1 and 1.2, it only remains to study the case where r = 2. In 3.1, we have shown that
d = 2 = f if Go has a normal subgroup isomorphic to SL(d , f ) or to Sp(d , f ), where q = f d for some
d > 1. The plane is then the Miquelian plane of order 4, and G ∼= S4

∼= AΓL(1,4) ∼= AGL(2,2).
Inspection of Table 2 leaves us with two cases that we exclude in the sequel; namely a normal

subgroup isomorphic to G2(q)′ in Go , or Go
∼= Am with m ∈ {6,7} and q = 16.

The group G2( f ) is the automorphism group of the (split) octonion algebra O f over F f . See [28]
for an introduction of octonion algebras in the context of composition algebras, over arbitrary
fields. The group G2( f ) is also discussed in [38, 4.3]. The octonion algebra can be constructed by
repeated doubling (cf. [28, 1.5.3]), starting from any two-dimensional composition algebra over F f .
We start from the quadratic extension field F f 2 and find u ∈ O f such that u has trace 1 and gen-
erates a subalgebra F f (u) isomorphic to F f 2 . The stabilizer of u in G2( f ) is then isomorphic to
SU(3, f 2), cf. [38, 4.3.6], and acts on the orthogonal complement U of F f (u) in O f . This action is
linear over F f (u) ∼= F f 2 , and equivalent to the standard action of SU(3, f 2) on (F f 2 )3. Therefore,
each involution in such a stabilizer fixes either f 2 (if f is odd) or f 4 (if f is even) of the f 6 vectors
in U . Note that these involutions are in fact contained in the commutator group; this is clear if
f > 2 because then G2( f ) is simple (and coincides with its commutator subgroup), and also true if
f = 2 because the Sylow 2-subgroup of SU(3,4) is a quaternion group (cf. [18, 10.12 b), 10.14]).

If f = 2a then the polar form corresponding to the norm onO f is alternating, and 1 is contained
in 1⊥ but not in U . Thus G2( f ) acts on the quotient of 1⊥ modulo the center of O f . This is the
linear representation of G2( f ) on F6

2a that gives rise to the semidirect product F6a
2 oG2(2a) acting

two-transitively on 26a points. The action of the stabilizer of u on that quotient is equivalent to the
action on U because the center of O f intersects U trivially.

1 Note that the list in [6, Table 7.3] omits the semidirect product F2
9 oSL(2,5)). The list in [10, Table 7.1] gives wrong

generators (surely, the matrix
( 0 −1−1 0

)
has eigenvalue 1, and should not occur in a sharply transitive linear group).

Deleting one of the minus signs in generator a as given in [10, Table 7.1] yields the generators as given by Zassen-
haus [39, Satz 17].
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If G2(2a) would occur as a normal subgroup of Go then the involutions in G2(2a) would be in-
duced by involutions in Γo because the kernel ∆K has odd order; and these involutions would
fix 24a of the 26a points on the affine line H . This gives a contradiction to 1.3.

Now assume that Go is isomorphic to A6 or A7, and q = 16. (This case has been excluded by [33]
which involves a computer search — we give a direct argument here.) Let T̃ be a Sylow 2-subgroup
ofΓo . Since the order of∆K is odd, we see that T̃ acts faithfully on H , inducing a Sylow 2-subgroup T
of Go . In particular, the group T is isomorphic to a dihedral group of order 8. Furthermore, T fixes
at least 3 generators of L , and on each such generator at least 2 points. Hence, the collection of
fixed points, fixed circles and fixed generators forms a Laguerre plane LT by 1.6.

Let σ be the central involution in T . Since σ induces a Baer involution in the derived plane at
a fixed point, we see that the geometry Lσ of fixed elements of σ is a Laguerre plane of order 4.
Furthermore, Lσ contains LT as a subplane. The group T centralizes σ and thus induces a group
of automorphisms of Lσ.

Each Laguerre plane of order 4 is Miquelian. In the full automorphism group of the Miquelian
Laguerre plane of order 4 we find that the pointwise stabilizer of a subplane of order 2 is a group
of order 2. Therefore, there must be a subgroup H of order 4 in T that fixes each point of Lσ.
Let x be a point moved by σ. Since Lσ contains 43 > 16 circles, there must be at least two distinct
circles of Lσ that intersect [x] in the same point w . The intersection of these two circles is a set
{w, w ′} of size at most 2, and invariant under H . But H has order 4 so that the stabilizer Hw is non-
trivial. We consider the projective closure P∞ of the derived affine plane at ∞. The group Hw fixes
a Baer subplane B of P∞ pointwise, and also the point w which lies outside B. This is impossible
because B is a maximal subplane.

6 Describing circles in the case of even order

From 3.2 we know thatA∞ is a translation plane of Lenz type at least V. So we coordinatize it using
a semifield (X ,+, ·) such thatA∞ has point set X 2, the point o becomes

(
0
0

)
, and the lines are either

• verticals of the form [c] = {( c
y
) | y ∈ X

}
(these are generators of the Laguerre plane L ), or

• of the form [m,b] := {( x
m·x+b

) | x ∈ X
}

with m,b ∈ X .

Then

ξv,z,w : X 2 → X 2 :

(
x
y

)
7→

(
x + v

y + z +w · x

)
is an automorphism of A∞, for any v, z, w ∈ X . The set Ξ := {ξv,z,w | v, z, w ∈ X } forms a nilpotent
group of order q3, multiplication is given by ξa,c,bξv,z,w = ξv+a,z+c+b·v,w+b .

From 3.2 we know that Γ contains the group M̃ of translations along H . In the present descrip-
tion, we note M̃ = {ξv,0,0 | v ∈ X } and E∞ = {ξ0,z,w | z, w ∈ X }, so Ξ= E∞M̃ is contained in Aut(L ).

6.1 Lemma. Assume that q is even. Consider a point d ∈ [∞]à {∞} and the circle Cd through d
touching K in o. Then the set Vd := {

v ∈ X | ξv,0,0 fixes d
}

forms a subgroup of (X ,+), and there
exists a function fd : X → X such that the following hold.

1. Cd = {d}∪{( x
fd (x)

) | x ∈ X
}
.

2. For each (x, v) ∈ X ×Vd we have fd (x + v) = fd (x)+ fd (v).

3. The restriction fd |Vd : (Vd ,+) → (X ,+) is an injective homomorphism.
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Proof. The set Vd is closed under addition because it parameterizes the stabilizer M̃d , and ξv,0,0ξy,0,0 =
ξv+y,0,0. Since every generator meets C :=Cd precisely once, there is a function f = fd : X → X such
that

C = {d}∪{( x
f (x)

) | x ∈ X
}

;

and f (0) = 0 because C passes through o = (
0
0

)
.

Consider v ∈Vd . The group E∞ fixes each point in [∞], and acts semi-regularly and then sharply
transitively on Cd . Therefore, we find z = zv and w = wv ∈ X (depending on v , possibly) such that
ξv,0,0(C ) = ξ0,z,w (C ). This means

{d}∪{( x+v
f (x)

) | x ∈ X
}= ξv,0,0(C ) = ξ0,z,w (C ) = {d}∪{( s

f (s)+zv+wv ·s
) | s ∈ X

}
.

We obtain f (x+v)+zv+wv ·(x+v) = f (x) for all x ∈ X . Specializing x = 0 we find f (v) =−zv−wv ·v .
Thus f (x + v)+wv · x = f (x)+ f (v). Specializing x =−v we find −wv · v = f (−v)+ f (v).

Up to this point, we did not use our assumption that q is even. Now we apply this assumption
to the last equation and obtain wv = 0 for each v 6= 0. Thus f (x + v) = f (x)+ f (v) holds whenever
v ∈Vd . In particular, the restriction f |Vd is additive. As C touches K in o, the kernel of this additive
map is trivial.

6.2 Corollary. If d is fixed by M̃ then the map fd in 6.1 is an automorphism of (X ,+).

6.3 Theorem. The cover M̃ of the socle acts trivially on the generator [∞] if q is even.

Proof. Aiming at a contradiction, we assume that there exists d ∈ [∞] such that M̃d 6= M̃ . Then
d 6=∞, and M̃d is not trivial because |M̃ | = q > q −1 = |[∞]à {∞}|.

Pick y ∈ X àVd , and let D be the circle through e := ξy,0,0(d) that touches K in o. From 6.1 we
have the function fe : X → X such that D = {e}∪ {( x

fe (x)
) | x ∈ X

}
. Now ξy,0,0 = ξ−1

y,0,0 moves D to a

circle through d , and there exist u and s in X (depending on y) such that ξ0,u,s
(
ξy,0,0(D)

) =C . We
obtain fe (x)+u + s · (x + y) = fd (x + y), for all x ∈ X . Specializing x = 0 we find u + s · y = fd (y).
Returning to the general case, we obtain fe (x)+ fd (y)+ s · x = fd (x + y), for all x ∈ X . From 6.1 we
infer fe (v)+ s · v = fd (v) for all v ∈Vd .

Now ξ0,0,s ∈ E∞ fixes d , and ξ0,0,s(C ) = {d}∪ {( x
fd (x)+s·x

) | x ∈ X
}
. The intersection of that circle

with D contains the set
{( v

fe (v)
) | v ∈Vd

}
but the two circles are different because they [∞] in dif-

ferent points (namely d and ξy,0,0(d), respectively). This yields |Vd | ≤ 2, and |Vd | = 2 because M̃d is
not trivial.

We have thus established that each nontrivial orbit under M̃ in [∞] has length q/2. There is room
in [∞]à {∞} for at most one such orbit. In particular, the stabilizer M̃d acts trivially on [∞], and
forms a normal subgroup in Γ because M̃d is the intersection of M̃ with the kernel of the action
of Γ on the fixed generator [∞]. This contradicts the fact that Go acts irreducibly on M .

6.4 Corollary. For each d ∈ [∞]à {∞}, the map fd in 6.1 is an automorphism of (X ,+).

The information collected so far is far from sufficient to determine the Laguerre plane L . There
are many candidates for fd ∈ Aut(X ,+), and it is still conceivable that fd depends in a substantial
way on d .
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The Desarguesian case

By [8] a semifield plane that admits an autotopism group that is transitive on at least one side of the
autotopism triangle is a generalized twisted field plane unless the order is 64. It readily follows from
the description of generalized twisted fields (for example, see [3, §2]) that a generalized twisted
field of order 2e cannot be proper when e is a prime number or the square of a prime number.
Indeed, the pre-semifield that leads to a generalized twisted field of order 2e is described by two
automorphisms of F2e , given as x 7→ x2a

and x 7→ x2b
where 1 ≤ a,b < e and a 6= b, and a suitable

field element c; the latter exists if and only if the greatest common divisor of e, a and b is greater
than 1. Hence we obtain:

6.5 Theorem. If q = 2e with e either a prime or the square of a prime then A∞ is Desarguesian.

A Desarguesian derivation restricts the possibilities for the Laguerre plane.

6.6 Theorem. If q is even and A∞ is Desarguesian, then L is ovoidal over a translation oval.

Proof. By 6.3 we know that M̃ acts trivially on [∞] and 6.4 tells us that each circle not passing
through∞ comes from a translation oval inP∞. These ovals are known explicitly (see [25] and [15]);
we obtain: For each circle C touching K in o there is a field element a ∈ Fq and a generator θa

of Aut(Fq ) such that C à [∞] = {( x
axθa

) | x ∈ Fq
}
. As θa is a power of the Frobenius automorphism,

there exists a positive integer ma < e such that xθa = x2ma
, and ma is relatively prime to e be-

cause θa generates Aut(Fq ). Mapping x to xθa /x gives an endomorphism θa −1 of F×q . As θa gener-
ates Aut(Fq ), its field of fixed elements is the prime field F2. Therefore, the endomorphism θa −1
has trivial kernel, and is a bijection of F×q .

Extending the usual representation of dual translation planes, a description of elation Laguerre
planes in terms of a matrix-valued map was developed in [29, Theorem 3]. In particular, we know
that the elation group E consists of all maps

(x
y

) 7→ ( x
y+ f (x)

)
where f describes a circle of L . It

thus follows that x 7→ αxθα +βxθβ describes a circle, for all α,β ∈ Fq . As that circle touches K in o,
there exists γ ∈ Fq such that αxθα +βxθβ = γxθγ for all x ∈ Fq . As the exponents are less than q ,
that polynomial identity has to be trivial. We find θα = θβ = θγ and α+β = γ; in particular, the
automorphism θ := θα does not depend on α. Consequently, the traces of circles in L on A∞ are
of the form

C ′
a,b,c =

{(
x

axθ+bx + c

)∣∣∣∣ x ∈ Fq

}
where a,b,c ∈ Fq . This incidence structure on Fq × Fq extends to an ovoidal Laguerre plane by
amending each circle with a point on [∞]. In fact, there are two choices (see [32, p. 93 f]): either
each trace C ′

a,b,c as above is extended by
(∞

a

)
, or each trace C ′

a,b,c is extended by
(∞

b

)
.

In the present situation, however, the introduction of coordinates in A∞ already identifies the
circles that pass through ∞; their traces are of the form C ′

0,b,c (i.e., we have a = 0). We now consider
the bundle B of circles that touch the circle K at o. One of them is K ; every other circle in this
bundle has a trace C ′

a,b,c where a 6= 0. We know that c = 0 because o ∈C ′
a,b,c . But then b = 0 because

otherwise the image of b/a under (θ−1)−1 would give a second point (apart from o) in C ′
a,b,0 ∩K .

This shows that the traces of the circles in B are just those in
{

C ′
a,0,0 | a ∈ Fq

}
. Thus there is a

bijection ϕ from Fq onto [∞] such that C ′
a,b,c ∪ {

( ∞
ϕ(a)

)
} is a circle, for each triple (a,b,c) ∈ F3

q . It is
obvious from the action of E thatϕ is additive. Without loss of generality, we may thus assumeϕ=
id, and we obtain that L is isomorphic to the ovoidal Laguerre plane over the translation oval
in P∞ whose trace in A∞ is

{( x
xθ

) | x ∈ Fq
}
; that oval’s unique point at infinity corresponds to the

parallel class of vertical lines (induced by generators of L ).
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6.7 Corollary. If the order of L is q = 2e where e is either a prime number or the square of a prime
number, then L is ovoidal over a translation oval.

6.8 Remarks. The smallest integer e > 1 which is neither a prime nor the square of a prime is e = 6,
so the smallest unresolved case is q = 64. This is the exceptional case in [8]. The authors of [27]
conducted a computer search for semifields of order 64. They found a total of 332 such semifields
up to isotopism, falling into 80 orbits under an action of the symmetric group S3. However, only
four of those 80 classes contain semifields admitting a transitive action of the autotopism group
on at least one side of the autotopism triangle. These are represented by the field, the twisted
field, Knuth’s semifield (of type 5), and a previously unknown semifield (number XIV in their list),
respectively.

There remains the question whether sufficiently many translation ovals can be found in a plane
over one of the latter three types. Some translation ovals in semifield planes were constructed by
Jha and Wene, see [20].
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author as a Visiting Erskine Fellow at the University of Canterbury, Christchurch, New Zealand.
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