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Abstract

We study the problem of estimating the smallest achievable mean-squared
error in regression function estimation. The problem is equivalent to estimat-
ing the second moment of the regression function of Y on X ∈ Rd . We in-
troduce a nearest-neighbor-based estimate and obtain a normal limit law for
the estimate when X has an absolutely continuous distribution, without any
condition on the density. We also compute the asymptotic variance explicitly.
The asymptotic variance does not depend on the smoothness of the density of
X or of the regression function. A non-asymptotic concentration inequality is
also proved. We apply the new estimate for testing whether a component of
the vector X carries information for predicting Y .
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1 Introduction

In this paper we study the problem of estimating the smallest achievable mean-
squared error in regression function estimation in multivariate problems. We in-
troduce and analyze a nearest neighbor-based estimate of second moment of the
regression function. The second moment of the regression function is closely tied
to the best possible achievable mean squared error. It is shown that the estimate
is asymptotically normally distributed. It is remarkable that the asymptotic vari-
ance only depends on conditional moments of the regression function but not on
its smoothness. Moreover, the asymptotic variance is bounded by a constant that is
independent of the dimension. We also establish a non-asymptotic sub-Gaussian
concentration inequality. We apply these results for variable selection. In par-
ticular, we construct and analyze a test for deciding whether a component of the
observational vector has predictive power.

The formal setup is as follows. Let (X,Y ) be a pair of random variables such
that X = (X(1), . . . ,X(d)) takes values in Rd and Y is a real-valued random variable
with E[Y 2] <∞. We denote by µ the distribution of the observation vector X, that
is, for all measurable sets A ⊂ Rd , µ(A) = P{X ∈ A}. Then the regression function

m(x) = E[Y | X = x] (1.1)

is well defined for µ-almost all x. The center of our investigations is the functional

L∗ = E
[
(m(X)−Y )2

]
.

The importance of this functional stems from the fact that for each measurable
function g : Rd → R one has

E
[
(g(X)−Y )2

]
= L∗ +E

[
(m(X)− g(X))2

]
and, in particular,

L∗ = min
g

E
[
(g(X)−Y )2

]
,

where the minimum is taken over all measurable functions g : Rd → R. In other
words, L∗ is the minimal mean squared error of any “predictor” of Y based on
observing X. L∗ is often referred to as the residual variance.

In regression analysis the residual variance L∗ is of obvious interest as it
provides a lower bound for the performance of any regression function estimator.
In this paper we study the problem of estimating L∗ based on data consisting of
independent, identically distributed (i.i.d.) copies of the pair (X,Y ). For reasons
explained below it is convenient to assume that we have 2n samples split into two
halves as

Dn = {(X1,Y1), . . . , (Xn,Yn)} and D ′n = {(X ′1,Y
′
1), . . . , (X ′n,Y

′
n)}
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such that (X,Y ), (X1,Y1), . . . , (Xn,Yn), (X ′1,Y
′
1), . . . , (X ′n,Y

′
n) are i.i.d.

An estimator L̂n of L∗ is simply a function of the data Dn,D ′n. We are inter-
ested in “nonparametric” estimators of L∗ that work under minimal assumptions
on the underlying distribution. In particular, a desirable feature of any estimate
is that it is strongly universally consistent, that is, L̂n → L∗ with probability one,
for all possible distributions of (X,Y ) with EY 2 <∞. Such estimators may be con-
structed, for example, by constructing a strongly universally consistent regres-
sion function estimator mn based on the data Dn (i.e., a function mn is such that
E[(mn(X)−Y )2|Dn]→ L∗ with probability one for all distributions) and estimating
its mean squared error by (1/n)

∑n
i=1(mn(X ′i )−Y

′
i )

2. (For a detailed theory of univer-
sally consistent regression function estimation see [13].) However, the rate of con-
vergence of such estimators is determined by the rate of convergence of the mean
squared error of mn which can be quite slow even under regularity assumptions
on the underlying distribution. Estimating the entire regression function m(x) is,
intuitively, “harder” than estimating the value of L∗. Indeed, nearest-neighbor-
based estimators of L∗ have been constructed and analyzed by Devroye, Ferrario,
Györfi, and Walk [5] Devroye, Schäfer, Györfi, and Walk [8], Evans and Jones
[10], Liitiäinen, Corona, and Lendasse [15], [16], Liitiäinen, Verleysen, Corona,
and Lendasse [17], and Ferrario and Walk [11]. These estimates have been shown
to have a faster rate of convergence—under some natural assumptions–than esti-
mates based on estimating the error of consistent regression function estimators.
Moreover, the estimate in [5] is strongly universal consistent.

In this paper we introduce yet another universally consistent nearest-neighbor-
based estimator of L∗. The advantage of this estimator, apart from sharing the fast
rates of convergence of previously defined estimators, is that its random fluctua-
tions may be bounded by dimension-, and distribution-independent quantities. In
particular, we prove a central limit theorem and a distribution-free upper bound
for the variance for the new estimator that show that it is concentrated around
its expected value in an interval of width O(1/

√
n), independently of the dimen-

sion. This concentration property is crucial in a variable-selection procedure that
we discuss as an application. In particular, we design a test for deciding whether
exclusion of a certain component of X increases L∗ or not.

The paper is organized as follows. In Section 2 we introduce a novel esti-
mate of L∗ and establish some of its properties such as asymptotic normality and
concentration inequalities. These are the main results of the paper. In Section 3
we describe the variable selection method based on the results of Section 2 and
examine its properties. Finally, the proofs are presented in Section 4.
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2 A nearest-neighbor based estimate and its asymptotic

normality

Denoting the second moment of the regression function by

S∗ = E
[
m(X)2

]
,

we have
L∗ = E

[
Y 2

]
− S∗ ,

and therefore estimating L∗ is essentially equivalent to estimating S∗ (as the “easy”
part E

[
Y 2

]
may be estimated by, e.g., (1/n)

∑n
i=1Y

2
i whose behavior is well under-

stood).

Next we introduce a nearest neighbor-based estimator of S∗. Based on the
data Dn construct the nearest-neighbor (1-NN) regression function estimator as
follows. Let X1,n(x) be the first nearest neighbor of x among X1, . . . ,Xn and let
Y1,n(x) be its label. (In order to rigorously define the nearest neighbor, we assume
that ties are broken in order to favor points with smaller index. Since we assume
the distribution of X to be absolutely continuous, this issue as immaterial since
ties occur with probability zero.) The 1-NN estimator of the regression function m
is defined as

mn(x) = Y1,n(x) .

The splitting estimate of S∗ is

Sn =
1
n

n∑
i=1

Y ′imn(X ′i ) .

By a straightforward adjustment of the arguments of Devroye, Ferrario, Györfi,
and Walk [5], one may show that Sn is a strongly universal consistent estimate of
S∗, that is,

lim
n
Sn = S∗ ,

with probability one, for any distribution of (X,Y ) with E[Y 2] <∞. Note that the
consistent functional estimate Sn is based on a non-consistent regression function
estimate mn.

Next we establish asymptotic normality of Sn under the condition that the
response variable Y is bounded. In order to describe the asymptotic variance, we
introduce the dimension-dependent constant α(d) as follows.

Let Sx,r denote the closed ball of radius r > 0 centered at x in Rd and let
λ denote the Lebesgue measure on Rd . Let V be a random vector uniformly dis-
tributed in S0,1. Define 1 = (1,0,0, . . . ,0) ∈ Rd and let S = S1,1

⋃
SV ,‖V ‖. Introduce
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the random variable

W =
λ(S)
λ(S0,1)

.

Define
α(d) def= E

[ 2
W 2

]
. (2.1)

Theorem 1. Assume that µ has a density and that there exists a constant L > 0 such
that

P{|Y | < L} = 1 . (2.2)

Denote
M2(X) = E[Y 2 | X]

and define

σ2
1 =

∫
M2(x)2µ(dx)−

(∫
m(x)2µ(dx)

)2

and

σ2
2 = α(d)

(∫
M2(x)m(x)2µ(dx)−

∫
m(x)4µ(dx)

)
.

If σ1 > 0, then
√
n (Sn −E{Sn}) /σ

D→N (0,1) ,

where
σ2 = σ2

1 + σ2
2 .

Devroye, Györfi, Lugosi, and Walk [6] proved that 1 ≤ α(d) ≤ 2. Thus, by
(2.2) we have σ2 ≤ 3L4, and therefore Theorem 1 implies that limsupn→∞nVar(Sn) ≤
3L4. The next theorem shows that, up to a constant factor, this bound holds non-
asymptotically.

Theorem 2. Assume that µ has a density and that |Y | < L. Then for all n ≥ 1,

Var(Sn) ≤ 33 ·L4

n
.

We believe that a non-asymptotic exponential analog of Theorem 2 also
holds. In particular, we conjecture that there exists an absolute constant c such
that, if µ has a density and |Y | < L, then for all n ≥ 1,

P {|Sn −ESn| > ε} ≤ ce−nε
2/(cL4) . (2.3)

4



Unfortunately, we are unable to prove such an inequality. However, we have
the following weaker version in which the exponent gets worse as the dimension
grows.

A set C ⊂ Rd is a cone of angle π/3 centered at 0 if there exists an x ∈ Rd
with ‖x‖ = 1 such that

C =
{
y ∈ Rd :

(x,y)
‖y‖

≥ cos(π/6)
}
.

Let γd be the minimal number of cones C1, . . . ,Cγd of angle π/3 centered at 0 such
that their union covers Rd .

Theorem 3. Assume that µ has a density and that |Y | < L. Then for all n ≥ 1,

P {|Sn −ESn| > ε} ≤ 4e−nε
2/(121L4γd ) .

We prove Theorems 1, 2 and 3 in Section 4.

3 Application in dimension reduction

In standard nonparametric regression design, one considers a finite number of
real-valued features X(i), i ∈ I ⊂ {1, . . . ,d}, and evaluates whether these suffice to ex-
plain Y . In case they suffice for the given explanatory task, an estimation method
can be applied on the basis of the features already under consideration. Otherwise
more or different features need to be considered. The quality of a subvector {X(i),
i ∈ I} of X is measured by the minimum mean squared error

L∗(I) := E
[
Y −E[Y | X(i) : i ∈ I]

]2
that can be achieved using the features as explanatory variables. L∗(I) depends
upon the unknown distribution of (Y ,X(i) : i ∈ I). The first phase of any regres-
sion estimation process therefore relies on estimates of L∗ (even before a regression
estimate is picked).

For dimension reduction, one needs, in general, to test the hypothesis

L∗ = L∗(I) . (3.1)

A natural way of approaching this testing problem is by estimating both L∗ and
L∗(I), and accept the hypothesis if the two estimates are close to each other (De
Brabanter et al. [4]).
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Introduce the notation

S∗(I) := E
[
E[Y | X(i), i ∈ I]2

]
.

Then the hypothesis (3.1) is equivalent to

S∗ = S∗(I) .

Without loss of generality, consider the case I = {1, . . . ,d − 1}, that is, the
case when one tests whether the last component X(d) of the observation vector
(X(1), . . . ,X(d)) is ineffective. Let the transformation T be defined by

T ((x(1), . . . ,x(d))) = (x(1), . . . ,x(d−1)) .

Thus, dropping the component X(d) from the observation vector X = (X(1), . . . ,X(d))
leads to the observation vector

X̂ = T (X) = (X(1), . . . ,X(d−1))

of dimension d − 1.

Using the notation

m(X) = E[Y | X] and m̂(T (X)) = E[Y | T (X)]

and
S∗ = E[m(X)2] and Ŝ∗ = E[m̂(T (X))2] ,

the null-hypothesis Ŝ∗ = S∗ is equivalent to

m(X) = m̂(T (X)) with probability one. (3.2)

We propose to approach this testing problem by considering the nearest-
neighbor estimate defined in Section 2. Let Sn be the estimate of S∗ using the
sample

D2n = {(X1,Y1), . . . , (X2n,Y2n)} .

Assume that an independent sample of size 2n is available:

D2n = {(X1,Y 1), . . . , (X2n,Y 2n)} .

We use D2n to construct an estimate S̃n of Ŝ∗. S̃n is defined as the nearest-neighbor
estimate computed from the sample

{(T (X1),Y 1), . . . , (T (X2n),Y 2n)} .
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The proposed test is based of the test statistic

Tn = Sn − S̃n

and accepts the null hypothesis (3.2) if and only if

Tn ≤ an :=ωn
(
n−1/2 +n−2/d

)
where ωn is an increasing unbounded sequence such that an → 0. Under the al-
ternative hypothesis, according the consistency result of Devroye, Ferrario, Györfi,
and Walk [5], for bounded Y ,

Tn→ S∗ − Ŝ∗ > 0 with probability one (3.3)

and this convergence is universal, that is, it holds without any conditions. Thus,
since an → 0, if Ŝ∗ , S∗, then, with probability one, the test does not make any
mistake for a sufficiently large n.

Theorem 1 implies that

√
n (Sn −ESn) /σ

D→N (0,1)

and √
n
(
S̃n −ES̃n

)
/σ̃
D→N (0,1)

with σ2, σ̃2 < 3L4. Since Sn and S̃n are independent, we have

√
n(Tn −ETn)/(

√
σ2 + σ̃2)

D→N (0,1) . (3.4)

In order to understand the behavior of the test, one needs to study the difference
of the biases of the estimates

ETn = ESn −ES̃n

under the null hypothesis (3.2). In this case we have

ESn −ES̃n = (ESn −E{m(X)2})− (ES̃n −E{m̂(T (X))2}) .

If m̂ and f are Lipschitz continuous and f is bounded away from 0, then, by De-
vroye, Ferrario, Györfi, and Walk [5],

n2/d(ESn −E{m(X)2}) =O(1)

when d ≥ 2 and
n2/(d−1)(ES̃n −E{m̂(T (X))2}) =O(1)

when d ≥ 3.
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Thus, under the null hypothesis (3.2),

ETn =O(n−2/d) , (3.5)

for d ≥ 2.

Under the null hypothesis, (3.4) and (3.5) imply that the probability of error
may be bounded as

P{Tn > an} ≤ P{Tn −ETn > ωn ·n−1/2}+1{ETn>ωn·n−2/d }→ 0 .

Thus, the test is consistent.

The conditions on the density f may be weakened if X is bounded. In par-
ticular, if m is C-Lipschitz and X is bounded, then

n1/d |ESn −E[m(X)2]| = n1/d |E[m(X)mn(X)]−E[m(X)2]|
= n1/d |E[m(X)m(X1,n(X))]−E[m(X)2]|
= n1/dLCE‖X1,n(X)−X‖
=O(1) .

One may prove that the test is not only consistent in the sense that P{Tn >
an} → 0 under the null hypothesis but also in the sense that limsupn→∞1Tn>an =
0 with probability one. For a discussion and references on the notion of strong
consistency we refer the reader to Devroye and Lugosi [7], Biau and Györfi [1],
Gretton and Györfi [12].

The proof of strong consistency under the alternative hypothesis follows
simply from (3.3). Under the null hypothesis it follows from Theorem 3. Indeed,
Theorem 3 implies that

P {|Tn −ETn| > ε} ≤ 8e−nε
2/(484L4γd ) .

Therefore, under the null hypothesis
∞∑
n=1

P{Tn > an} ≤
∞∑
n=1

(
P{Tn −ETn > ωn ·n−1/2}+1{ETn>ωn·n−2/d }

)
<∞

whenever ωn ≥ 23L2√γd
√

lnn for all n and so the Borel-Cantelli Lemma implies
that the test makes error only finitely many times almost surely.

Remark. In applications, one would like to test not only if a given component of
X carries predictive information but rather test the same for all d variables or even
for sets of variables. In such cases, one faces a multiple testing problem. In order
to analyze such multiple testing procedures, one needs a uniform control over the
fluctuations of the test statistic. It is for this reason why it would be important to
prove a non-asymptotic concentration inequality as the one conjectured above in
(2.3).
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4 Proofs

We prove the variance bound of Theorem 2 first. The proof relies of the following
version of the Efron-Stein inequality, see, for example, [3, Theorem 3.1].

Lemma 1. (Efron-Stein inequality.) Let X = (X1, . . . ,Xn) be a collection of indepen-
dent random variables taking values in some measurable set X and denote by X(i) =
(X1, . . . ,Xi−1,Xi+1, . . . ,Xn) the collection with the i-th random variable dropped. Let
f : X n→ R and g : X n−1→ R be measurable real-valued functions. Then

Var(f (X)) ≤ E

 n∑
i=1

(
f (X)− g(X(i))

)2
 .

Proof of Theorem 2

By the decomposition

Sn = Sn −E [Sn |Dn] +E [Sn |Dn] ,

we have that

Var(Sn) = E
[
(Sn −E [Sn |Dn])2

]
+Var(E [Sn |Dn]) .

Conditionally onDn, Sn is an average of independent, identically distributed (i.i.d.)
random variables bounded by L2, and therefore

E
[
(Sn −E [Sn |Dn])2

]
≤ L

4

n
.

Notice that we may write

mn(x) =
n∑
j=1

Yj1{x∈An(Xj )}

where

An(Xj) = {x ∈ Rd : Xj is the nearest neighbor of x among X1, . . . ,Xn}

(j = 1, . . . ,n), are the cells of the Voronoi partition of Rd . Then

E [Sn |Dn] =
∫
m(x)mn(x)µ(dx) =

n∑
j=1

Yj

∫
An(Xj )

m(x)µ(dx) .
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Putting Ln = E [Sn |Dn], this implies

Ln =
n∑
i=1

YiE{1X∈An(Xi )m(X) |Dn} .

Considering Ln as a function of the n i.i.d. pairs (Xi ,Yi)
n
i=1, we may use the Efron-

Stein inequality to bound the variance of Ln. Define L(j)
n as Ln when (Xj ,Yj) is

omitted from the sample. By Lemma 1,

Var(Ln) ≤ E

 n∑
j=1

(
Ln −L

(j)
n

)2
 = nE

[(
Ln −L

(1)
n

)2
]
.

Let {A′n(X2), . . . ,A′n(Xn)} be the Voronoi partition, when X1 is omitted from the sam-
ple. Then

|Ln −L
(1)
n | =

∣∣∣∣∣∣∣Y1

∫
An(X1)

m(x)µ(dx)−
n∑
i=2

Yi

∫
A′n(Xi )\An(Xi )

m(x)µ(dx)

∣∣∣∣∣∣∣
≤ L2

µ(An(X1)) +
n∑
i=2

µ(A′n(Xi) \An(Xi))


= 2L2µ(An(X1)) .

Thus, we have
Var(Ln) ≤ 4nL4E

[
µ(An(X1))2

]
.

Observe that

E
[
µ(An(X1))2

]
= P {Xn+1,Xn+2 ∈ An(X1)} .

It suffices to prove that

P {Xn+1,Xn+2 ∈ An(X1)} (4.1)
≤ 4P {Xn+1 and Xn+2 are the nearest neighbors of X1 among X2, . . . ,Xn+2} ,

because this implies

nE
[
µ(An(X1))2

]
≤ 4n(n+1

2
) ,

leading to

Var (E [Sn |Dn]) ≤ 32L4

n
,
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and therefore to the desired bound

Var(Sn) ≤ 33L4

n
.

In order to prove (4.1), note that

P {Xn+1,Xn+2 ∈ An(X1)} = E
[
(1−µ(BX,‖X−X1‖ ∪BX′ ,‖X′−X1‖))

n−1
]

and that

P {Xn+1 and Xn+2 are the nearest neighbors of X1 among X2, . . . ,Xn+2}
= E

[
(1−max{µ(BX1,‖X−X1‖),µ(BX1,‖X′−X1‖)})

n−1
]
.

(4.1) follows from

P
{
max{µ(BX1,‖X−X1‖),µ(BX1,‖X′−X1‖)} ≤ z

}
= P

{
µ(BX1,‖X−X1‖) ≤ z,µ(BX1,‖X′−X1‖) ≤ z

}
= E

[
P
{
µ(BX1,‖X−X1‖) ≤ z,µ(BX1,‖X′−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BX1,‖X−X1‖) ≤ z | X1

}
P
{
µ(BX1,‖X′−X1‖) ≤ z | X1

}]
= E

[
P
{
µ(BX1,‖X−X1‖) ≤ z | X1

}2]
= z2

and from

P
{
µ(BX,‖X−X1‖ ∪BX′ ,‖X′−X1‖) ≤ z

}
≥ P

{
2max{µ(BX,‖X−X1‖),µ(BX′ ,‖X′−X1‖)} ≤ z

}
= P

{
µ(BX,‖X−X1‖) ≤ z/2,µ(BX′ ,‖X′−X1‖) ≤ z/2

}
= E

[
P
{
µ(BX,‖X−X1‖) ≤ z/2,µ(BX′ ,‖X′−X1‖) ≤ z/2 | X1

}]
= E

[
P
{
µ(BX,‖X−X1‖) ≤ z/2 | X1

}
P
{
µ(BX′ ,‖X′−X1‖) ≤ z/2 | X1

}]
= E

[
P
{
µ(BX,‖X−X1‖) ≤ z/2 | X1

}2]
≥ E

[
P
{
µ(BX,‖X−X1‖) ≤ z/2 | X1

}]2
= P

{
µ(BX,‖X−X1‖) ≤ z/2

}2
= z2/4 .
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Proof of Theorem 1

In the proof of Theorem 1 we use the following two lemmas on the measure of
Voronoi cells.

Lemma 2. (Devroye, Györfi, Lugosi, and Walk [6]). Assume that µ has a density. Then
there for each k = 1,2, . . . there exists a positive constant ck such that

nkE
[
µ(An(X1))k

]
≤ ck .

Lemma 3. (Devroye, Györfi, Lugosi, and Walk [6]). Assume that µ has a density. Then

n2E
[
µ(An(X1))2 | X1 = x

]
→ α(d)

for µ-almost all x, where αd is defined in (2.1).

Introduce the notation
√
n (Sn −ESn) =Un +Vn +Wn ,

where
Un =

√
n (Sn −E[Sn |Dn])

and
Vn =

√
n (E[Sn |Dn]−E[Sn | X1, . . . ,Xn])

and
Wn =

√
n (E[Sn | X1, . . . ,Xn]−ESn) .

We prove Theorem 1 by showing that, for any u,v ∈ R,

P{Un ≤ u,Vn ≤ v} → Φ

(
u
σ1

)
Φ

(
v
σ2

)
, (4.2)

where Φ denotes the standard normal distribution function, and that

Var(Wn)→ 0. (4.3)

Györfi and Walk [14] proved that∣∣∣∣∣∣P{Un ≤ u,Vn ≤ v} −Φ
(
u
σ1

)
Φ

(
v
σ2

)∣∣∣∣∣∣
≤ E

∣∣∣∣∣∣P{Un ≤ u |Dn} −Φ
(
u
σ1

)∣∣∣∣∣∣+

∣∣∣∣∣∣P{Vn ≤ v} −Φ
(
v
σ2

)∣∣∣∣∣∣ .
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Thus, (4.2) holds if

P{Un ≤ u |Dn} → Φ

(
u
σ1

)
in probability (4.4)

and

P{Vn ≤ v} → Φ

(
v
σ2

)
. (4.5)

Proof of (4.4).
Let’s start with the decomposition

Un =
√
n

1
n

n∑
i=1

(Y ′imn(X ′i )−E[Y ′imn(X ′i ) |Dn])


=

1
√
n

n∑
i=1

(Y ′imn(X ′i )−E[Y ′imn(X ′i ) |Dn]) .

Next we apply a Berry-Esseen type central limit theorem (see Theorem 14 in Petrov
[18]). For a universal constant c > 0, we have∣∣∣∣∣∣P{Un ≤ u |Dn} −Φ

 u√
Var(Y ′1mn(X ′1) |Dn)

∣∣∣∣∣∣ ≤ c
√
n

E[|Y ′1mn(X ′1)|3 |Dn]√
Var(Y ′1mn(X ′1) |Dn)

3 .

Since

E[Y ′1mn(X ′1) |Dn] =
∫
m(x)mn(x)µ(dx) , (4.6)

we have

Var(Y ′1mn(X ′1) |Dn) = E[Y ′1
2mn(X ′1)2 |Dn]−E[Y ′1mn(X ′1) |Dn]2

=
∫
M2(x)mn(x)2µ(dx)−

(∫
m(x)mn(x)µ(dx)

)2

.

We need to show that∫
M2(x)mn(x)2µ(dx)→

∫
M2(x)2µ(dx) (4.7)

in probability and ∫
m(x)mn(x)µ(dx)→

∫
m(x)2µ(dx) (4.8)

13



in probability. Since mn(x) = Yj if x ∈ An(Xj), we get that∫
M2(x)mn(x)2µ(dx) =

n∑
j=1

∫
An(Xj )

M2(x)mn(x)2µ(dx)

=
n∑
j=1

Y 2
j

∫
An(Xj )

M2(x)µ(dx) .

We use this to prove (4.7). Indeed,∫
M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

=
n∑
j=1

Y 2
j

∫
An(Xj )

M2(x)µ(dx)−
n∑
j=1

∫
An(Xj )

M2(x)2µ(dx)

=
n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj )

M2(x)µ(dx)

+
n∑
j=1

∫
An(Xj )

M2(x)(M2(Xj)−M2(x))µ(dx) .

Thus,

E
[∣∣∣∣∣∫ M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

∣∣∣∣∣]

≤ E


∣∣∣∣∣∣∣∣
n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj )

M2(x)µ(dx)

∣∣∣∣∣∣∣∣


+E


∣∣∣∣∣∣∣∣
n∑
j=1

∫
An(Xj )

M2(x)(M2(Xj)−M2(x))µ(dx)

∣∣∣∣∣∣∣∣
 ,

14



and so

E
[∣∣∣∣∣∫ M2(x)mn(x)2µ(dx)−

∫
M2(x)2µ(dx)

∣∣∣∣∣]

≤

√√√√
Var

 n∑
j=1

(Y 2
j −M2(Xj))

∫
An(Xj )

M2(x)µ(dx)


+E

 n∑
j=1

∫
An(Xj )

M2(x)|M2(Xj)−M2(x)|µ(dx)


≤

√
nE

(Y 2
1 −M2(X1))2

(∫
An(X1)

M2(x)µ(dx)
)2

+nE
[∫

An(X1)
M2(x)|M2(X1)−M2(x)|µ(dx)

]
≤ L4

√
nE [µ(An(X1))2] +L2nE

[∫
An(X1)

|M2(X1)−M2(x)|µ(dx)
]

To complete the proof of (4.7), it suffices to show that the sum above converges to
zero as n→∞. To this end, note that Lemma 2 implies that

nE
[
µ(An(X1))2

]
≤ c2/n→ 0 ,

and furthermore

nE
[∫

An(X1)
|M2(X1)−M2(x)|µ(dx)

]
= nE

[∫
An(X1)

|M2(X1,n(x))−M2(x)|µ(dx)
]

= E
[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
.

It remains to show that

E
[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
→ 0 . (4.9)

Fix any ε > 0 and choose a bounded continuous function M̃2 such that∫
|M2(x)− M̃2(x)|µ(dx) < ε .

15



Then, with M∗2 =M2 − M̃2, one has

E
[∫
|M2(X1,n(x))−M2(x)|µ(dx)

]
≤ E

[∫
|M̃2(X1,n(x))− M̃2(x)|µ(dx)

]
+E

[∫
|M∗2(X1,n(x))|µ(dx)

]
+
∫
|M∗2(x)|µ(dx) .

On the right-hand side, the first term converges to 0 by of the dominated conver-
gence theorem, since, by Lemma 6.1 in [13],

X1,n(x)→ x a.s. for µ-almost all x .

The second term is bounded by

γd

∫
|M∗2(x)|µ(dx) ≤ γdε

by Lemma 6.3 in [13], where γd is introduced in Section 2. Thus, (4.9) is proved
and hence so is (4.7). For the proof of (4.8), we have that∫

m(x)mn(x)µ(dx) =
n∑
j=1

∫
An(Xj ))

m(x)mn(x)µ(dx)

=
n∑
j=1

Yj

∫
An(Xj ))

m(x)µ(dx). (4.10)

Similarly, the derivation for (4.7) implies that

E
[∣∣∣∣∣∫ m(x)mn(x)µ(dx)−

∫
m(x)2µ(dx)

∣∣∣∣∣]
≤ L2

√
nE [µ(An(X1))2] +LnE

[∫
An(X1)

|m(X1)−m(x)|µ(dx)
]

→ 0,

and so (4.8) is proved, too. Thus,

Var(Y ′1mn(X ′1) |Dn)→ σ2
1

in probability. Moreover,

E[|Y ′1mn(X ′1)|3 |Dn] ≤ L6.
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These relations imply (4.4).

Proof of (4.3).
(4.6) and (4.10) imply that

E[Sn |Dn] = E[Y ′1mn(X ′1) |Dn] =
∫
m(x)mn(x)µ(dx) =

n∑
j=1

Yj

∫
An(Xj )

m(x)µ(dx) .

Hence

E[Sn | X1, . . . ,Xn] =
n∑
j=1

m(Xj)
∫
An(Xj )

m(x)µ(dx) =
∫
m(x)m(X1,n(x))µ(dx).

We prove (4.3) by a slight extension of the proof of Theorem 2. Set

Ln :=
√
n

∫
m(x)m(X1,n(x))µ(dx) =

√
n

n∑
j=1

m(Xj)
∫
An(Xj )

m(x)µ(dx) .

Define L(j)
n as Ln when Xj is dropped. As in the proof of Theorem 2,

Var(Wn) = Var(Ln) ≤ E

 n∑
j=1

(
Ln −L

(j)
n

)2
 = nE

[(
Ln −L

(1)
n

)2
]
.

Then

L
(1)
n =

√
n

n∑
j=2

m(Xj)
∫
A′n(Xj )

m(x)µ(dx) ,

and so

Ln −L
(1)
n =

√
nm(X1)

∫
An(X1)

m(x)µ(dx)−
√
n

n∑
j=2

m(Xj)
∫
A′n(Xj )\An(Xj )

m(x)µ(dx)

=
√
n

(∫
An(X1)

m(X1,n(x))m(x)µ(dx)−
∫
An(X1)

m(X2,n(x))m(x)µ(dx)
)
,

whereX2,n(x) denotes the second nearest neighbor of x amongX1, . . . ,Xn. Therefore

|Ln −L
(1)
n | ≤

√
nL

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

by (2.2). Hence,

Var(Wn) ≤ L2E
(n∫

An(X1)
|m(X1,n(x))−m(X2,n(x))|µ(dx)

)2 . (4.11)
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As it is well known, for a real-valued random variable Z, by Hölder’s inequality,

E
[
Z2

]
= E

[
|Z |2/3|Z |4/3

]
≤ E [|Z |]2/3E

[
Z4

]1/3
. (4.12)

One has

E
[
n

∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)
]

≤ E
[
n

∫
An(X1)

|m(X1,n(x))−m(x)|µ(dx)
]

+E
[
n

∫
An(X1)

|m(X2,n(x))−m(x)|µ(dx)
]

= E
[∫
|m(X1,n(x))−m(x)|µ(dx)

]
+E

[∫
|m(X2,n(x))−m(x)|µ(dx)

]
→ 0 (4.13)

as n→∞, where the latter can be shown as the limit relation (4.9). Furthermore

E
(n∫

An(X1)
|m(X1,n(x))−m(X2,n(x))|µ(dx)

)4 ≤ 16L4E
[
n4µ(An(X1))4

]
≤ 16L4c4 (4.14)

by (2.2) and Lemma 2. With the notation

Z = n
∫
An(X1)

|m(X1,n(x))−m(X2,n(x))|µ(dx)

(4.11), (4.12), (4.13) and (4.14) imply (4.3).

Proof of (4.5).
For

Vn =

∑n
j=1Vn,j√
n

with

Vn,j = n(Yj −m(Xj))
∫
An(Xj )

m(x)µ(dx) ,

notice that the triangular array Vn,j , n = 1,2, . . . , j = 1, . . . ,n is (row-wise) exchange-
able, for which there is a classical central limit theorem:

Theorem 4. (Blum et al. [2], Weber [19].) Let {Vn,j} be a triangular array of exchange-
able random variables with zero mean and finite variance. Assume that

(i)
E[Vn,1Vn,2] = o(1/n) ,
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(ii)
lim
n→∞

max{|Vn,j |; j = 1, . . . ,n}/
√
n = 0

in probability,

(iii)

lim
n→∞

1
n

n∑
j=1

V 2
n,j = σ2

in probability.

Then ∑n
j=1Vn,j√
n

is asymptotically normal with mean zero and variance σ2.

Condition (i) of Theorem 4 is satisfied since

E[Vn,1Vn,2] = 0.

Condition (ii) of Theorem 4 follows from (2.2), Lemma 2 and Jensen’s inequality:

nE
[
max
j
µ(An(Xj)

]
≤ nE


∑
j

µ(An(Xj)
3


1/3

≤ n

E
∑
j

µ(An(Xj)
3




1/3

≤ n
(
n
c3

n3

)1/3

= o(
√
n) .

Condition (iii) in Theorem 4 is fulfilled if

lim
n→∞

E[V 2
n,1] = σ2

2 (4.15)

and

Var

1
n

n∑
j=1

V 2
n,j

→ 0. (4.16)
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We have that

lim
n→∞

E[V 2
n,1] = lim

n→∞
n2E

(Y1 −m(X1))2
(∫

An(X1)
m(x)µ(dx)

)2
= lim
n→∞

n2E
[
(Y1 −m(X1))2m(X1)2µ(An(X1))2

]
(4.17)

= lim
n→∞

n2E
[
(M2(X1)m(X1)2 −m(X1)4)µ(An(X1))2

]
.

(4.17) follows from

n2
∣∣∣∣E(Y1 −m(X1))2

(∫
An(X1)

m(x)µ(dx)
)2

−E
[
(Y1 −m(X1))2m(X1)2µ(An(X1))2

] ∣∣∣∣
≤ n24L2E

∣∣∣∣∣∣
(∫

An(X1)
m(x)µ(dx)

)2

−m(X1)2µ(An(X1))2

∣∣∣∣∣∣


≤ n28L3E
[∣∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)−m(X1)µ(An(X1))

∣∣∣∣∣∣µ(An(X1))
]

= n28L3E


∣∣∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣∣∣µ(An(X1))2


≤ n28L3

√√√√√
E


∣∣∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣∣∣
2

√
E
[
µ(An(X1))4]

≤ 8L3√c4

√√√√√
E


∣∣∣∣∣∣∣
∫
An(X1)

m(x)µ(dx)

µ(An(X1))
−m(X1)

∣∣∣∣∣∣∣
2 .

The expression on the right-hand side converges to zero. To show this, fix an ar-
bitrary ε > 0 and choose a decomposition m = m∗ +m∗∗ such that m∗ is Lipschitz
continuous with bounded support and E[m∗∗(X)2] < ε. Then it suffices to show
the limit relation for m∗. But this follows from the fact that diam(An(X1))→ 0 in
probability (Devroye, Györfi, Lugosi, and Walk [6, Section 5]). Lemma 3 implies
that

E
[
n2µ(An(X1))2 | X1

]
→ α(d) with probability one. (4.18)

Set
Zn = (M2(X1)m(X1)2 −m(X1)4)E

[
n2µ(An(X1))2 | X1

]
.

By (2.2) and Lemma 2 for k = 4 together with Jensen’s inequality for conditional
expectations we obtain

E[Z2
n] ≤ L8c4
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and thus uniform integrability of {Zn}, i.e.,

lim
K→∞

sup
n

E[Zn1{Zn>K}] = 0.

Then (4.18) yields

n2E
[
(M2(X1)m(X1)2 −m(X1)4)µ(An(X1))2

]
= E

[
(M2(X1)m(X1)2 −m(X1)4)E

[
n2µ(An(X1))2 | X1

]]
→ α(d)E

[
M2(X1)m(X1)2 −m(X1)4

]
= σ2

2 ,

verifying (4.15).

One may check (4.16) similarly to (4.3). Indeed, put

Ln :=
1
n

n∑
j=1

V 2
n,j = n

n∑
j=1

(Yj −m(Xj))
2

∫
An(Xj )

m(x)µ(dx)

2

.

Thus,

|Ln −L
(1)
n |

≤ n(Y1 −m(X1))2
(∫

An(X1)
m(x)µ(dx)

)2

+n
n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣∣∣
∫

An(Xj )
m(x)µ(dx)

2

−
∫

A′n(Xj )
m(x)µ(dx)

2
∣∣∣∣∣∣∣ .

Therefore

|Ln −L
(1)
n |

≤ 4L4nµ(An(X1))2

+ 4L2n
n∑
j=2

(Yj −m(Xj))
2

∣∣∣∣∣∣∣
∫
An(Xj )

m(x)µ(dx) +
∫
A′n(Xj )

m(x)µ(dx)

∣∣∣∣∣∣∣
·

∣∣∣∣∣∣∣
∫
A′n(Xj )\An(Xj )

m(x)µ(dx)

∣∣∣∣∣∣∣
≤ 4L4nµ(An(X1))2 + 8L4n

n∑
j=2

µ(A′n(Xj))µ(A′n(Xj) \An(Xj))

≤ 4L4nµ(An(X1))2 + 8L4n

(
max
j=2,...n

µ(A′n(Xj))
)
µ(An(X1)) ,
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which implies that

Var

1
n

n∑
j=1

V 2
n,j


≤ nE

[(
Ln −L

(1)
n

)2
]

≤ 32L8n3E
[
µ(An(X1))4

]
+ 128L8n3

√
E
[

max
j=2,...n

µ(A′n(Xj))4

]√
E
[
µ(An(X1))4]

≤ 32L8c4/n+ 128L8n

√√√√
E

 n∑
j=2

µ(A′n(Xj))4

√c4

by Lemma 2. Noticing that

E

 n∑
j=2

µ(A′n(Xj))
4

 = (n− 1)E
[
µ(A′n(X2))4

]
=O(n−3)

by Lemma 2, we obtain (4.16).

Proof of Theorem 3

As we mentioned in the proof (4.4), for given Dn, Sn is an average of i.i.d. random
variables bounded by L2. Therefore, by the Hoeffding inequality, one has

P{|Sn −E [Sn |Dn] | ≥ ε |Dn} ≤ 2e−nε
2/(2L4) . (4.19)

Note that

Mn := E [Sn |Dn] =
∫
mn(x)m(x)µ(dx)

and

mn(x) =
n∑
j=1

Yj1{Xj∈Sx,Rn(x)}

where Rn(x) = ‖X(1,n)(x)− x‖. Define ρn(x) as the solution of the equation

1
n

= µ(Sx,ρn(x)) .
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By the assumption that X has a density, the solution always exists. Put

m∗n(x) =
n∑
j=1

Yj1{‖Xj−x‖<ρn(x)} .

Define M(j)
n , m(j)

n (x), m∗(j)n (x) as Mn, mn(x), m∗n(x), respectively, when (Xj ,Yj) is re-
placed by (X̂j , Ŷj) (j = 1, . . . ,n), where (X1,Y1), . . . , (Xn,Yn), (X̂1, Ŷ1), . . . , (X̂n, Ŷn) are

i.i.d. random vectors. Further define m′(j)n (x) as mn(x) when (Xj ,Yj) is omitted.
We have

n∑
j=1

(
Mn −M

(j)
n

)2

=
n∑
j=1

(∫
mn(x)m(x)µ(dx)−

∫
m

(j)
n (x)m(x)µ(dx)

)2

≤ L sup
j=1,...,n

∫
|mn(x)−m(j)

n (x)|µ(dx) ·
n∑
j=1

∣∣∣∣∣∫ (mn(x)−m(j)
n (x))m(x)µ(dx)

∣∣∣∣∣ . (4.20)

The bounding of the supremum term on the right-hand side may be done by an
easy modification of the proof of Theorem 23.7 in Györfi, Kohler, Krzyżak, and
Walk [13]. For j = 1, . . .n, we have∫
|mn(x)−m(j)

n (x)|µ(dx)

≤
∫
|m∗n(x)−m∗(j)n (x)|µ(dx) +

∫
|mn(x)−m∗n(x)|µ(dx) +

∫
|m(j)
n (x)−m∗(j)n (x)|µ(dx) .

|m∗n(x)−m∗(j)n (x)| is bounded by 2L and can differ from zero only if ‖x −Xj‖ < ρn(x)
or ‖x − X̂j‖ < ρn(x). Observe that ‖x − Xj‖ < ρn(x) or ‖x − X̂j‖ < ρn(x) if and only
if µ(Sx,‖x−Xj‖) < 1/n or µ(Sx,‖x−X̂j‖) < 1/n. The measure of such x’s is bounded by
2 ·γd/n by [13, Lemma 6.2], and therefore∫

|m∗n(x)−m∗(j)n (x)|µ(dx) ≤
4Lγd
n

.

Further

|m∗n(x)−mn(x)| =

∣∣∣∣∣∣∣∣
n∑
j=1

Yj1{Xj∈Sx,ρn(x)} −
n∑
j=1

Yj1{Xj∈Sx,Rn(x)}

∣∣∣∣∣∣∣∣
≤ L

n∑
j=1

∣∣∣∣1{Xj∈Sx,ρn(x)} −1{Xj∈Sx,Rn(x)}

∣∣∣∣ .
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By considering the cases ρn(x) ≤ Rn(x) and ρn(x) > Rn(x) one gets that
1{Xj∈Sx,ρn(x)} −1{Xj∈Sx,Rn(x)} have the same sign for each j. It follows that

|m∗n(x)−mn(x)| ≤ L

∣∣∣∣∣∣∣∣
n∑
j=1

1{Xj∈Sx,ρn(x)} − 1

∣∣∣∣∣∣∣∣ = L|M∗n(x)− 1| ,

where M∗n is defined as m∗n with Y replaced by the constant random variable 1.
Thus, as before∫

|mn(x)−m∗n(x)|µ(dx) ≤ L
∫
|M∗n(x)− 1|µ(dx) ≤

4Lγd
n

.

Analogously, ∫
|m(j)
n (x)−m∗(j)n (x)|µ(dx) ≤

4Lγd
n

.

Therefore

sup
j=1,...,n

∫
|mn(x)−m(j)

n (x)|µ(dx) ≤
12Lγd
n

. (4.21)

Furthermore, as in the proof of (4.3)

n∑
j=1

∣∣∣∣∣∫ (mn(x)−m(j)
n (x))m(x)µ(dx)

∣∣∣∣∣
≤ 2

n∑
j=1

∣∣∣∣∣∫ (mn(x)−m′(j)n (x))m(x)µ(dx)
∣∣∣∣∣

= 2
n∑
j=1

∣∣∣∣∣∣∣∣
∫ n∑

i=1

Yi1{x∈An(Xi )}m(x)µ(dx)−
∫ ∑

i∈{1,...,n}\{j}
Yi1{x∈A(j)

n (Xi )}
m(x)µ(dx)

∣∣∣∣∣∣∣∣ ,
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where {A(j)
n (Xi), i ∈ {1, . . . ,n} \ {j}} is the Voronoi partition, when Xj is omitted from

the sample. Let Y2,n(x) be the label of X2,n(x). Then

n∑
j=1

∣∣∣∣∣∫ (mn(x)−m(j)
n (x))m(x)µ(dx)

∣∣∣∣∣
≤ 2

n∑
j=1

∣∣∣∣∣∣∣∣
n∑
i=1

Yi

∫
An(Xi )

m(x)µ(dx)−
∑

i∈{1,...,n}\{j}
Yi

∫
A

(j)
n (Xi )

m(x)µ(dx)

∣∣∣∣∣∣∣∣
= 2

n∑
j=1

∣∣∣∣∣∣∣∣
∫
An(Xj )

Y1,n(x)m(x)µ(dx)−
∑

i∈{1,...,n}\{j}

∫
A

(j)
n (Xi )\An(Xi )

Y2,n(x)m(x)µ(dx)

∣∣∣∣∣∣∣∣
= 2

n∑
j=1

∣∣∣∣∣∣∣
∫
An(Xj )

Y1,n(x)m(x)µ(dx)−
∫
An(Xj )

Y2,n(x)m(x)µ(dx)

∣∣∣∣∣∣∣
≤ 2

n∑
j=1

∫
An(Xj )

|Y1,n(x)−Y2,n(x)| · |m(x)|µ(dx)

≤ 4L2 . (4.22)

(4.20), (4.21), (4.22) yield

n∑
j=1

(
Mn −M

(j)
n

)2
≤

48L4γd
n

.

Thus, by the bounded differences inequality

P{|E [Sn |Dn]−E [Sn] | ≥ ε} ≤ 2e−nε
2/(96L4γd ) . (4.23)

(4.19) and (4.23) imply that

P{|Sn −E [Sn] | ≥ ε} ≤ P{|Sn −E [Sn |Dn] | ≥ ε/11}+P{|E [Sn |Dn]−E [Sn] | ≥ 10ε/11}

≤ 2e−nε
2/(2L4112) + 2e−nε

2102/(96L4112γd )

≤ 4e−nε
2/(121L4γd ) ,

where we applied that γd ≥ 2.
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