The limit distribution of the maximum probability nearest neighbor ball

László Györfi
Norbert Henze
Harro Walk
The limit distribution of the maximum probability nearest neighbor ball

László Györfi∗ Norbert Henze† Harro Walk‡
November 17, 2018

Abstract

Let X_1, \ldots, X_n be independent random points drawn from an absolutely continuous probability measure with density f in \mathbb{R}^d. Under mild conditions on f, we derive a Poisson limit theorem for the number of large probability nearest neighbor balls. Denoting by P_n the maximum probability measure of nearest neighbor balls, this limit theorem implies a Gumbel extreme value distribution for $nP_n - \ln n$ as $n \to \infty$. Moreover, we derive a tight upper bound on the upper tail of the distribution of $nP_n - \ln n$, which does not depend on f.

Keywords: Nearest neighbors; Gumbel extreme value distribution; Poisson limit theorem; exchangeable events

2010 AMS subject classifications: Primary 60F05; Secondary 60G09, 60G70.

∗Budapest University of Technology and Economics, gyorfi@cs.bme.hu
†Karlsruhe Institute of Technology, henze@kit.edu
‡Universität Stuttgart, walk@mathematik.uni-stuttgart.de
1 Introduction

Let $X, X_1, \ldots, X_n, \ldots$ be independent, identically distributed (i.i.d.) random vectors taking values in \mathbb{R}^d. We assume throughout the paper that the distribution of X, which is denoted by μ, has a density f with respect to Lebesgue measure λ.

Writing $\| \cdot \|$ for the Euclidean norm on \mathbb{R}^d, put

$$R_{i,n} := \min_{j \neq i, j \leq n} \|X_i - X_j\|,$$

and let

$$P_n := \max_{1 \leq i \leq n} \mu\{S(X_i, R_{i,n})\}$$

denote the maximum probability of the nearest neighbor (NN) balls, where $S(x, r) := \{y \in \mathbb{R}^d : \|y - x\| \leq r\}$ stands for the closed ball with center x and radius r. This paper deals with both the finite-sample and the asymptotic distribution of

$$nP_n - \ln n,$$

as $n \to \infty$.

There is a huge related literature for Poisson sample size. Let N be a random variable that is independent of X_1, X_2, \ldots and has a Poisson distribution with $\mathbb{E}(N) = n$. Then

$$X_1, \ldots, X_N$$

is a non-homogeneous Poisson process with intensity function nf. For the nucleuses X_1, \ldots, X_N, $\widetilde{A}_n(X_j)$ denotes the Voronoi cell around X_j, and \hat{r}_j and \hat{R}_j stand for the inscribed and circumscribed radii of $\widetilde{A}_n(X_j)$, respectively, i.e., we have

$$\hat{r}_j = \sup\{r > 0 : S(X_j, r) \subset \widetilde{A}_n(X_j)\}$$

and

$$\hat{R}_j = \inf\{r > 0 : \widetilde{A}_n(X_j) \subset S(X_j, r)\}.$$

If X_1, X_2, \ldots are i.i.d. uniformly distributed on the unit cube $[0,1]^d$, then (2a) and (2c) of Theorem 1 in Calka and Chenavier [3] read

$$\lim_{n \to \infty} \mathbb{P} \left(2^d n \lambda \{S(0, \max_{1 \leq j \leq N} \hat{r}_j)\} - \ln n \leq y \right) = G(y)$$

1
and

\[
\lim_{n \to \infty} \mathbb{P} \left(n \lambda \left\{ S \left(0, \max_{1 \leq j \leq N} \hat{R}_j \right) \right\} - \ln \left(\alpha_d n (\ln n)^{d-1} \right) \leq y \right) = G(y),
\]

\(y \in \mathbb{R} \). Here, \(\alpha_d > 0 \) is a universal constant, and

\[
G(y) = \exp(-\exp(-y))
\]
denotes the distribution function of the Gumbel extreme value distribution.

The paper is organized as follows. In Section 2 we study the distribution of \(nP_n - \ln n \). Theorem 1 is on a universal and tight bound on the upper tail of \(nP_n - \ln n \). Under mild conditions on the density, Theorem 2 shows that the number of exceedances of nearest neighbor ball probabilities over a certain sequence of thresholds has an asymptotic Poisson distribution as \(n \to \infty \). As a consequence, the limit distribution of \(nP_n - \ln n \) is the Gumbel extreme value distribution. Theorem 3 in Section 3 is the extension of Theorem 1 for Poisson sample size. All proofs are presented in Section 4. The main tool for proving Theorem 2 is a novel Poisson limit theorem for sums of indicators of exchangeable events, which is formulated as Proposition 1. The final section sheds some light on a technical condition on \(f \) that is used in the proof of the main result.

Although there is a weak dependence between the probabilities of nearest neighbor balls, a main message of this paper is that one can neglect this dependence when looking for the limit distribution of the maximum probability.

2 The maximum nearest neighbor ball

Under the assumption that the density \(f \) is sufficiently smooth and bounded away from zero, Henze [7] and [8] derived the limit distribution of the maximum approximate probability measure

\[
\max_{1 \leq i \leq n} f(X_i) R_{i,n}^d v_d
\]
of NN-balls. Here, \(v_d = \pi^{d/2} / \Gamma(1 + d/2) \) stands for the volume of the unit ball in \(\mathbb{R}^d \).

In the following, we consider the number of points among \(X_1, \ldots, X_n \) for which the probability content of the nearest neighbor ball exceeds some
(large) threshold. To be more specific, we fix \(y \in \mathbb{R} \) and consider the random variable

\[
C_n := \sum_{i=1}^{n} \mathbb{I}\{n \mu \{S(X_i, R_{i,n}) > y + \ln n\}\},
\]

where \(\mathbb{I}\{\cdot\} \) denotes the indicator function. Writing \(\overset{\mathcal{D}}{\rightarrow} \) for convergence in distribution, we will show that, under some conditions on the density \(f \),

\[
C_n \overset{\mathcal{D}}{\rightarrow} Z \quad \text{as} \quad n \to \infty,
\]

where \(Z \) is a random variable with the Poisson distribution \(\text{Po}(\exp(-y)) \). Now, \(C_n = 0 \) if, and only if, \(n P_n - \ln n \leq y \), and it follows that

\[
\lim_{n \to \infty} P(n P_n - \ln n \leq y) = P(Z = 0) = G(y), \quad y \in \mathbb{R}.
\] (3)

Since \(1 - G(y) \leq \exp(-y) \) if \(y \geq 0 \), (3) implies

\[
\limsup_{n \to \infty} P(n P_n - \ln n \geq y) \leq e^{-y}, \quad y \geq 0.
\] (4)

Our first result is a non-asymptotic upper bound on the upper tail of the distribution of \(n P_n - \ln n \). This bound holds without any condition on the density and thus entails (4) universally.

Theorem 1 Without any restriction on the density \(f \), we have

\[
P(n P_n - \ln n \geq y) \leq \exp\left(-\frac{n - 1}{n} y + \frac{\ln n}{n}\right) \mathbb{I}\{y \leq n - \ln n\}, \quad y \in \mathbb{R}.
\] (5)

Theorem 1 implies a non-asymptotic upper bound on the mean of \(n P_n - \ln n \), since

\[
E[n P_n - \ln n] \leq E\left[(n P_n - \ln n)^+\right] = \int_{0}^{\infty} P(n P_n - \ln n \geq y) \, dy \leq \int_{0}^{\infty} \exp\left(-\frac{n - 1}{n} y + \frac{\ln n}{n}\right) \, dy = \frac{n}{n - 1} \exp\left(\frac{\ln n}{n}\right).
\]
Notice that this upper bound approaches 1 for large \(n \), and that the mean of the standard Gumbel distribution is the Euler-Mascheroni constant, which is \(- \int_0^\infty e^{-y} \ln y \, dy = 0.5772 \ldots\)

Recall that the support of \(\mu \) is defined by

\[
\text{supp}(\mu) := \{ x \in \mathbb{R}^d : \mu\{S(x,r)\} > 0 \text{ for each } r > 0 \},
\]

i.e., the support of \(\mu \) is the smallest closed set in \(\mathbb{R}^d \) having \(\mu \)-measure one.

Theorem 2 Assume there are \(\beta \in (0,1) \), \(c_{\text{max}} < \infty \) and \(\delta > 0 \) such that, for any \(r, s > 0 \) and any \(x, z \in \text{supp}(\mu) \) with \(\|x - z\| \geq \max\{r, s\} \) and \(\mu(S(x,r)) = \mu(S(z,s)) \leq \delta \), one has

\[
\frac{\mu(S(x,r) \cap S(z,s))}{\mu(S(z,s))} \leq \beta
\]

and

\[
\mu(S(z,2s)) \leq c_{\text{max}} \mu(S(z,s)).
\]

Then

\[
\sum_{i=1}^n \mathbb{I}\{n \mu\{S(X_i, R_i,n)\} > y + \ln n\} \xrightarrow{D} \text{Po}(\exp(-y)), \quad y \in \mathbb{R},
\]

and hence

\[
\lim_{n \to \infty} \mathbb{P}(nP_n - \ln n \leq y) = G(y), \quad y \in \mathbb{R}.
\]

Remark 1 It is easy to see that (6) and (7) hold if the density is both bounded from above by \(f_{\text{max}} \) and bounded away from zero by \(f_{\text{min}} > 0 \). Indeed, putting

\[
\beta := 1 - \frac{1}{2} \cdot \frac{f_{\text{min}}}{f_{\text{max}}}, \quad c_{\text{max}} := 2^d \cdot \frac{f_{\text{max}}}{f_{\text{min}}},
\]

we have

\[
\frac{\mu(S(x,r) \cap S(z,s))}{\mu(S(z,s))} = 1 - \frac{\mu(S(z,s) \setminus S(x,r))}{\mu(S(z,s))} \leq 1 - \frac{f_{\text{min}} \lambda(S(z,s) \setminus S(x,r))}{f_{\text{max}} \lambda(S(z,s))} \leq \beta
\]
and

\[\mu(S(z,2s)) \leq f_{\text{max}} \lambda(S(z,2s)) \]
\[= f_{\text{max}} 2^d \lambda(S(z,s)) \]
\[\leq c_{\text{max}} \mu(S(z,s)). \]

A challenging problem left is to weaken the conditions of Theorem 2 or to prove that (8) and (9) hold without any conditions on the density. We believe that such universal limit results are possible, because the summands in (8) are identically distributed, and their distribution does not depend on the actual density. More discussion on condition (6) is given in Section 5.

3 The maximum nearest neighbor ball for a non-homogeneous Poisson process

In this section we consider the non-homogeneous Poisson process \(X_1, \ldots, X_N \) defined by (1). Putting

\[\tilde{R}_{i,n} := \min_{j \neq i, j \leq N} \|X_i - X_j\| \]

and

\[\tilde{P}_n = \max_{1 \leq i \leq N} \mu\{S(X_i, \tilde{R}_{i,n})\}, \]

the following result is the Poisson-analogue to Theorem 1.

Theorem 3 Without any restriction on the density \(f \) we have

\[\mathbb{P}\left(n\tilde{P}_n - \ln n \geq y\right) \leq e^{-y} \exp\left(\frac{(y + \ln n)^2}{n}\right), \quad y \in \mathbb{R}. \]

4 Proofs

Proof of Theorem 1. Since the right hand side of (5) is larger than 1 if \(y < 0 \), we take \(y \geq 0 \) in what follows. Moreover, in view of \(P_n \leq 1 \) the left hand side of (5) vanishes if \(y > n - \ln n \). We therefore assume without loss of generality that

\[\frac{y + \ln n}{n} \leq 1. \quad (10) \]
For a fixed \(x \in \mathbb{R}^d \), let
\[H_x(r) := \mathbb{P}(\|x - X\| \leq r), \quad r \geq 0, \tag{11} \]
be the distribution function of \(\|x - X\| \). By the probability integral transform (cf. Biau and Devroye [1], p. 8), the random variable
\[H_x(\|x - X\|) = \mu\{S(x,\|x - X\|)\} \]
is uniformly distributed on \([0, 1]\). We thus have
\[\mu\{S(x, H_x^{-1}(p))\} = p, \quad 0 < p < 1, \tag{12} \]
where \(H_x^{-1}(p) = \inf\{r : H_x(r) \geq p\} \). It follows that
\[
\mathbb{P}(nP_n - \ln n \geq y) = \mathbb{P}\left(\frac{n \max_{1 \leq i \leq n} \mu\{S(X_i, R_{i,n})\} - \ln n \geq y}{n} \right)
\leq n \mathbb{P}\left(\frac{n \mu\{S(X_1, R_{1,n})\} - \ln n \geq y}{n} \right)
= n \mathbb{P}\left(\frac{\mu\{S(X_1, R_{1,n})\} \geq \frac{y + \ln n}{n}}{n} \right)
= n \mathbb{P}\left(\frac{\min_{2 \leq j \leq n} \mu\{S(X_1, \|X_1 - X_j\|)\} \geq \frac{y + \ln n}{n}}{n} \right).
\]
Now, (10) implies
\[
\mathbb{P}(nP_n - \ln n \geq y) \leq n \mathbb{E}\left[\frac{\mathbb{P}\left(\frac{\min_{2 \leq j \leq n} \mu\{S(X_1, \|X_1 - X_j\|)\} \geq \frac{y + \ln n}{n}}{X_1}\right)}{n} \right]
= n \left(1 - \frac{y + \ln n}{n}\right)^{n-1}
\leq n \exp\left(-\frac{(y + \ln n)(n - 1)}{n}\right)
= \exp\left(-\frac{n - 1}{n}y + \frac{\ln n}{n}\right).
\]
\(\square\)

Proof of Theorem 3. We again assume (10) in what follows. By condi-
tioning on N, we have
\[
P \left(n \tilde{P}_n - \ln n \geq y \right) = \sum_{k=1}^{\infty} P \left(n \tilde{P}_n - \ln n \geq y \mid N = k \right) P \left(N = k \right)
\]
\[
= \sum_{k=1}^{\infty} P \left(nP_k - \ln n \geq y \mid N = k \right) P \left(N = k \right).
\]

Putting $y_n := (y + \ln n)/n$, we obtain
\[
P \left(nP_k - \ln n \geq y \right) = P \left(kP_k - \ln k \geq ky_n - \ln k \right),
\]
and Theorem 1 implies
\[
P \left(kP_k - \ln k \geq ky_n - \ln k \right) \leq \exp \left(- \frac{k-1}{k} (ky_n - \ln k) + \ln k \right) = \exp((k-1)y_n + \ln k).
\]

It follows that
\[
P \left(n \tilde{P}_n - \ln n \geq y \right) \leq \sum_{k=1}^{\infty} \exp \left(-(k-1)y_n + \ln k \right) P \left(N = k \right)
\]
\[
= e^{y_n-n} \sum_{k=1}^{\infty} k \left(e^{-y_n} \right)^{k} \frac{n^k}{k!}
\]
\[
= e^{y_n-n} \sum_{k=1}^{\infty} \frac{(ne^{-y_n})^k}{(k-1)!}
\]
\[
= ne^{y_n-n-y_n} \exp(\frac{\ln n}{n})
\]
\[
= n \exp(-n(1-e^{-y_n})).
\]

Since $z \geq 0$ entails $e^{-z} \leq 1 - z + z^2$, we finally obtain
\[
P \left(n \tilde{P}_n - \ln n \geq y \right) \leq n \exp \left(-n(y_n - y_n^2) \right) = \exp \left(\frac{(y + \ln n)^2}{n} \right).
\]

The main tool in the proof Theorem 2 is the following result.
Proposition 1 For each \(n \geq 2 \), let \(A_{n,1}, \ldots, A_{n,n} \) be exchangeable events, and let
\[
Y_n := \sum_{j=1}^{n} I\{A_{n,j}\}.
\]

If, for some \(\nu \in (0, \infty) \),
\[
\lim_{n \to \infty} n^k \mathbb{P}(A_{n,1} \cap \ldots \cap A_{n,k}) = \nu^k \quad \text{for each} \quad k \geq 1,
\]
then
\[
Y_n \overset{D}{\rightarrow} Y \quad \text{as} \quad n \to \infty,
\]
where \(Y \) has the Poisson distribution \(\text{Po}(\nu) \).

Proof. The proof uses the method of moments, see, e.g., [2], Section 30.
Putting
\[
S_{n,k} = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \mathbb{P}(A_{n,i_1} \cap \ldots \cap A_{n,i_k}), \quad k \in \{1, \ldots, n\},
\]
and writing \(Z^{(k)} = Z(Z-1)\cdots(Z-k+1) \) for the \(k \)th descending factorial of a random variable \(Z \), we have
\[
\mathbb{E}[Y_n^{(k)}] = k! S_{n,k}.
\]
Since \(A_{n,1}, \ldots, A_{n,n} \) are exchangeable, (13) implies
\[
\lim_{n \to \infty} \mathbb{E}[Y_n^{(k)}] = \nu^k, \quad k \geq 1.
\]
Now, \(\nu^k = \mathbb{E}[Y^{(k)}] \), where \(Y \) has the Poisson distribution \(\text{Po}(\nu) \). We thus have
\[
\lim_{n \to \infty} \mathbb{E}[Y_n^{(k)}] = \mathbb{E}[Y^{(k)}], \quad k \geq 1.
\]
(14)
Since
\[
Y_n^{(k)} = \sum_{j=0}^{k} \left\{ \begin{array}{c} k \\ j \end{array} \right\} Y_n^{(j)},
\]
where \(\left\{ \begin{array}{c} k \\ 0 \end{array} \right\}, \ldots, \left\{ \begin{array}{c} k \\ k \end{array} \right\} \) denote Stirling numbers of the second kind (see, e.g., [5], p. 262), (14) entails \(\lim_{n \to \infty} \mathbb{E}[Y_n^{(k)}] = \mathbb{E}[Y^{(k)}] \) for each \(k \geq 1 \). Since the distribution of \(Y \) is uniquely determined by the sequence of moments \(\mathbb{E}[Y^{(k)}] \), \(k \geq 1 \), the assertion follows. \(\square \)
Proof of Theorem 2. Fix $y \in \mathbb{R}$. In what follows, we will verify (13) for

$$A_{n,i} := \{ n \mu \{ S(X_i, R_{i,n}) \} \geq y + \ln n \}, \quad i \in \{1, \ldots, n\},$$

and $\nu = \exp(-y)$. Throughout the proof we tacitly assume

$$0 < y_n := \frac{y + \ln n}{n} < 1.$$

This assumption entails no loss of generality since n tends to infinity. With $H_x(\cdot)$ given in (11), we put

$$R_{i,n}^* := H_{X_i}^{-1}((y + \ln n)/n), \quad i \in \{1, \ldots, n\}.$$

For the special case $k = 1$, conditioning on X_1 and (12) yield

$$n \mathbb{P}(A_{n,1}) = n \mathbb{P} \left(\mu \left(S(X_1, R_{1,n}) \right) \geq y_n \right) \\
= n \mathbb{E} \left[\mathbb{P} \left(\mu \left(S(X_1, R_{1,n}) \right) \geq y_n \mid X_1 \right) \right] \\
= n \mathbb{E} \left[\left(1 - \mu \left(S(X_1, H_{X_1}^{-1}(y_n)) \right) \right)^{n-1} \right] \\
= n \left(1 - \frac{y + \ln n}{n} \right)^{n-1}.$$

Using the inequalities $1 - 1/t \leq \ln t \leq t - 1$ gives $\lim_{n \to \infty} n \mathbb{P}(A_{n,1}) = e^{-y}$. Thus (13) is proved for $k = 1$, remarkably without any condition on the underlying density f. We now assume $k \geq 2$ and put

$$\tilde{R}_{i,k,n} := \min_{k+1 \leq j \leq n} \| X_i - X_j \|, \quad r_{i,k} := \min_{j \neq i, j \leq k} \| X_i - X_j \|.$$

Then

$$R_{i,n} = \min \{ \tilde{R}_{i,k,n}, r_{i,k} \},$$

and because of $\tilde{R}_{i,k,n} \to 0 \mathbb{P}$-almost surely as $n \to \infty$, it follows that, on a set of probability 1,

$$R_{i,n} = \tilde{R}_{i,k,n} \quad \text{for each } i \in \{1, \ldots, k\}.$$
if n is large enough. Conditioning on X_1, \ldots, X_k we have

$$
P \left(\bigcap_{i=1}^k A_{n,i} \right)
= P \left(\bigcap_{i=1}^k \{ \mu(S(X_i, \min(\tilde{R}_{i,k,n}, r_{i,k})) \geq y_n) \} \right)
= P \left(\bigcap_{i=1}^k \{ \mu(S(X_i, \tilde{R}_{i,k,n})) \geq y_n, \mu(S(X_i, r_{i,k})) \geq y_n) \right)
= \mathbb{E} \left[P \left(\bigcap_{i=1}^k \{ \mu(S(X_i, \tilde{R}_{i,k,n})) \geq y_n) \mid X_1, \ldots, X_k \right) \prod_{i=1}^k \mathbb{I} \{ \mu(S(X_i, r_{i,k})) \geq y_n) \right].
$$

Furthermore, we obtain

$$
P \left(\bigcap_{i=1}^k \{ \mu(S(X_i, \tilde{R}_{i,k,n})) \geq y_n) \mid X_1, \ldots, X_k \right)
= P \left(\bigcap_{i=1}^k \{ \tilde{R}_{i,k,n} \geq H_{X_i}^{-1}(y_n) \mid X_1, \ldots, X_k \right)
= P \left(\bigcap_{i=1}^k \{ \tilde{R}_{i,k,n} \geq R_{i,n}^{*} \mid X_1, \ldots, X_k \right)
= P \left(X_{k+1}, \ldots, X_n \notin \cup_{i=1}^k S(X_i, R_{i,n}^{*}) \mid X_1, \ldots, X_k \right)
= (1 - \mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^{*}) \right))^{n-k}.
$$

Notice that we have the obvious lower bound

$$
n^k (1 - \mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^{*}) \right))^{n-k} \prod_{i=1}^k \mathbb{I} \{ \mu(S(X_i, r_{i,k})) \geq y_n) \}
\geq n^k \left(1 - k \frac{y + \ln n}{n} \right) \prod_{i=1}^k \mathbb{I} \{ \mu(S(X_i, r_{i,k})) \geq y_n) \}
= n^k \left(1 - k \frac{y + \ln n}{n} \right) \prod_{i=1}^k \mathbb{I} \{ \mu(S(X_i, r_{i,k})) \geq y_n) \}.
$$

Since the latter converges almost surely to e^{-ky} as $n \to \infty$, Fatou’s lemma
implies
\[
\liminf_{n \to \infty} n^k \mathbb{P}(\cap_{i=1}^k A_{n,i})
\]
\[
= \liminf_{n \to \infty} \mathbb{E}\left[n^k \left(1 - \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \prod_{i=1}^k \mathbb{I}\{\mu(S(X_i,r_{i,k})) \geq y_n\} \right]
\]
\[
\geq \mathbb{E}\left[\liminf_{n \to \infty} n^k \left(1 - \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \prod_{i=1}^k \mathbb{I}\{\mu(S(X_i,r_{i,k})) \geq y_n\} \right]
\]
\[
= e^{-ky}.
\]

It thus remains to show
\[
\limsup_{n \to \infty} n^k \mathbb{P}(\cap_{i=1}^k A_{n,i}) \leq e^{-ky}. \quad (15)
\]

Let \(D_n \) be the event that the balls \(S(X_i,R_{i,n}^*) \), \(i = 1, \ldots, k \), are pairwise disjoint. Putting
\[
\mathbb{I}_{n,k} := \prod_{i=1}^k \mathbb{I}\{\mu(S(X_i,r_{i,k})) \geq y_n\},
\]
we have
\[
\limsup_{n \to \infty} n^k \mathbb{P}(A_{n,1} \cap \ldots \cap A_{n,k})
\]
\[
= \limsup_{n \to \infty} n^k \mathbb{E}\left[\left(1 - \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \prod_{i=1}^k \mathbb{I}_{n,k} \right]
\]
\[
\leq \limsup_{n \to \infty} n^k \mathbb{E}\left[\exp \left(- (n-k) \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \mathbb{I}_{n,k} \right]
\]
\[
\leq \limsup_{n \to \infty} n^k \mathbb{E}\left[\exp \left(- (n-k) k y + \ln n \right) \right] \mathbb{I}\{D_n\}
\]
\[
+ \limsup_{n \to \infty} n^k \mathbb{E}\left[\exp \left(- (n-k) \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \mathbb{I}\{D_n^c\} \mathbb{I}_{n,k} \right]
\]
\[
\leq e^{-ky} + \limsup_{n \to \infty} n^k \mathbb{E}\left[\exp \left(- (n-k) \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \mathbb{I}\{D_n^c\} \mathbb{I}_{n,k} \right].
\]

It thus remains to show
\[
\lim_{n \to \infty} n^k \mathbb{E}\left[\exp \left(- (n-k) \mu \left(\bigcup_{i=1}^k S_{X_i,R_{i,n}^*} \right) \right) \mathbb{I}\{D_n^c\} \mathbb{I}_{n,k} \right] = 0. \quad (16)
\]
Under some additional smoothness conditions on the density, Henze [7] verified (16) for the related problem of finding the limit distribution of the random variable figuring in (2). By analogy with his way of proof, we introduce an equivalence relation on the set \(\{1, \ldots, k\} \) as follows: An equivalence class consists of a singleton \(\{i\} \) if

\[
S(X_i, R_{i,n}^*) \cap S(X_j, R_{j,n}^*) = \emptyset
\]

for each \(j \neq i \). Otherwise, \(i \) and \(j \) are called equivalent if there is a subset \(\{i_1, \ldots, i_\ell\} \) of \(\{1, \ldots, k\} \) such that \(i = i_1 \) and \(j = i_\ell \) and

\[
S(X_{im}, R_{in,m}^*) \cap S(X_{in,m+1}, R_{in,m+1,n}^*) \neq \emptyset
\]

for each \(m \in \{1, \ldots, \ell-1\} \). Let \(\mathcal{P} = \{Q_1, \ldots, Q_q\} \) be a partition of \(\{1, \ldots, k\} \), and denote by \(E_u \) the event that \(Q_u \) forms an equivalence class. For the event \(D_n \), the partition \(\mathcal{P}_0 := \{\{1\}, \ldots, \{k\}\} \) is the trivial one, while on the complement \(D_n^c \) any partition \(\mathcal{P} \) is non-trivial, which means that \(q < k \). In order to prove (16), we have to show that

\[
\limsup_{n \to \infty} n^k \mathbb{E} \left[\exp \left(-(n - k) \mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^*) \right) \right) \prod_{u=1}^q \mathbb{I}\{E_u\} \right] = 0 \quad (17)
\]

for each non-trivial partition \(\mathcal{P} \). Since balls that belong to different equivalence classes are disjoint, we have

\[
\mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^*) \right) \prod_{u=1}^q \mathbb{I}\{E_u\} = \mu \left(\cup_{u=1}^q \cup_{i \in Q_u} S(X_i, R_{i,n}^*) \right) \prod_{u=1}^q \mathbb{I}\{E_u\}
\]

for each non-trivial partition \(\mathcal{P} \). Since balls that belong to different equivalence classes are disjoint, we have

\[
\mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^*) \right) \prod_{u=1}^q \mathbb{I}\{E_u\} = \mu \left(\cup_{u=1}^q \cup_{i \in Q_u} S(X_i, R_{i,n}^*) \right) \prod_{u=1}^q \mathbb{I}\{E_u\}
\]

Writing \(|B| \) for the number of elements of a finite set \(B \), it follows that

\[
n^k \exp \left(-(n - k) \mu \left(\cup_{i=1}^k S(X_i, R_{i,n}^*) \right) \right) \prod_{i=1}^k \mathbb{I}\{\mu(S(X_i, r_{i,k})) \geq y_n\} \prod_{u=1}^q \mathbb{I}\{E_u\}
\]

\[
\leq e^k \prod_{u=1}^q \prod_{i \in Q_u} \mathbb{I}\{\mu(S(X_i, r_{i,k})) \geq y_n\} \prod_{u=1}^q \mathbb{I}\{E_u\}
\]

\[
= e^k \prod_{u=1}^q \left(n^{|Q_u|} e^{n \mu \left(\cup_{i \in Q_u} S(X_i, R_{i,n}^*) \right)} \prod_{i \in Q_u} \mathbb{I}\{\mu(S(X_i, r_{i,k})) \geq y_n\} \mathbb{I}\{E_u\} \right).
\]
In view of independence, we have
\[
n^k \mathbb{E} \left[e^{-n \mu \left(\bigcup_{i=1}^{k} S(X_{i}, R_{i,n}) \right)} \prod_{i=1}^{k} \mathbb{I} \{ \mu(S(X_{i}, r_{i,k})) \geq y_n \} \prod_{u=1}^{q} \mathbb{I} \{ E_u \} \right]
\]
\[
= \prod_{u=1}^{q} \mathbb{E} \left[n^{\vert Q_u \vert} e^{-n \mu \left(\bigcup_{i \in Q_u} S(X_{i}, R_{i,n}) \right)} \prod_{i \in Q_u} \mathbb{I} \{ \mu(S(X_{i}, r_{i,k})) \geq y_n \} \mathbb{I} \{ E_u \} \right].
\]
Thus, (17) is proved if we can show
\[
\lim_{n \to \infty} \mathbb{E} \left[n^{\vert Q_u \vert} e^{-n \mu \left(\bigcup_{i \in Q_u} S(X_{i}, R_{i,n}) \right)} \prod_{i \in Q_u} \mathbb{I} \{ \mu(S(X_{i}, r_{i,k})) \geq y_n \} \mathbb{I} \{ E_u \} \right] = 0
\]
for each \(u \) with \(2 \leq \vert Q_u \vert < k \). Without loss of generality assume
\[
Q_u = \{1, \ldots, \vert Q_u \vert \}.
\]
Then
\[
\cap_{i=1}^{\vert Q_u \vert} \{ \mu(S(X_{i}, r_{i,k})) \geq y_n \}
\]
\[
= \cap_{i=1}^{\vert Q_u \vert} \left\{ \mu(S(X_{i}, \min_{j \neq i, j \leq \vert Q_u \vert} \|X_{i} - X_{j}\|)) \geq y_n \right\}
\]
\[
= \cap_{i=1}^{\vert Q_u \vert} \left\{ \min_{j \neq i, j \leq \vert Q_u \vert} \mu(S(X_{i}, \|X_{i} - X_{j}\|)) \geq y_n \right\}
\]
\[
= \cap_{i=1}^{\vert Q_u \vert} \cap_{j \neq i, j \leq \vert Q_u \vert} \{ \mu(S(X_{i}, \|X_{i} - X_{j}\|)) \geq y_n \}
\]
\[
= \cap_{i=1}^{\vert Q_u \vert} \cap_{j \neq i, j \leq \vert Q_u \vert} \{ \|X_{i} - X_{j}\| \geq H_{X_{i}}^{-1}(y_n) \}
\]
\[
= \cap_{i,j \leq \vert Q_u \vert, i \neq j} \{ \|X_{i} - X_{j}\| \geq \max(R_{i,n}^{*}, R_{j,n}^{*}) \},
\]
and we obtain
\[
n^{\vert Q_u \vert} e^{-n \mu \left(\bigcup_{i \in Q_u} S(X_{i}, R_{i,n}) \right)} \prod_{i \in Q_u} \mathbb{I} \{ \mu(S(X_{i}, r_{i,k})) \geq y_n \} \mathbb{I} \{ E_u \}
\]
\[
= n^{\vert Q_u \vert} e^{-n \mu \left(\bigcup_{i=1}^{\vert Q_u \vert} S(X_{i}, R_{i,n}) \right)} \mathbb{I} \{ \cap_{i,j \leq \vert Q_u \vert, i \neq j} \{ \|X_{i} - X_{j}\| \geq \max(R_{i,n}^{*}, R_{j,n}^{*}) \} \} \mathbb{I} \{ E_u \}
\]
\[
\leq n^{\vert Q_u \vert} e^{-n \mu \left(\bigcup_{i=1}^{\vert Q_u \vert} S(X_{i}, R_{i,n}) \right)} \mathbb{I} \{ \cap_{i,j \leq \vert Q_u \vert, i \neq j} \{ \|X_{i} - X_{j}\| \geq \max(R_{i,n}^{*}, R_{j,n}^{*}) \} \} \mathbb{I} \{ E_u \}.
\]
Now, condition (6) implies
\[n \mu \left(\bigcup_{i=1}^{\infty} S(X_i, R_{i,n}^*) \right) = n \mu \left(S(X_1, R_{1,n}^*) \right) + n \mu \left(S(X_2, R_{2,n}^*) \right) - n \mu \left(S(X_2, R_{1,n}^*) \cap S(X_1, R_{1,n}^*) \right) \]
\[= n \frac{y + \ln n}{n} \left(2 - \frac{\mu \left(S(X_2, R_{2,n}^*) \cap S(X_1, R_{1,n}^*) \right)}{\mu \left(S(X_2, R_{2,n}^*) \right)} \right) \]
\[\geq (y + \ln n)(2 - \beta) =: (y + \ln n)(1 + \varepsilon) \]
(say). Notice that \(\varepsilon > 0 \) since \(0 < \beta < 1 \). Thus,
\[n |Q_u| \mathbb{E} \left[e^{-n \mu \left(\bigcup_{i \in Q_u} S(X_i, R_{i,n}^*) \right)} \prod_{i \in Q_u} \mathbb{I} \{ \mu(S(X_i, r_i, k)) \geq y_u \} \mathbb{I}\{E_u\} \right] \]
\[\leq n |Q_u| e^{-y + \ln n)(1 + \varepsilon)} \mathbb{E} \left[\mathbb{I}\{ \bigcup_{i,j \leq |Q_u|; i \neq j} \{ \|X_i - X_j\| \geq \max\{R_{i,n}^*, R_{j,n}^*\} \} \} \mathbb{I}\{E_u\} \right] \]
\[= O \left(n |Q_u|^{-1 - \varepsilon} \right) \mathbb{P}(E_u) . \]

In order to bound \(\mathbb{P}(E_u) \) we need the following lemma:

Lemma 1 On \(E_u \) there is a random integer \(L \in \{1, \ldots, |Q_u|\} \) depending on \(X_1, \ldots, X_{|Q_u|} \) such that \(Q_u \setminus \{L\} \) forms an equivalence class.

Proof. Let \(m := |Q_u| \). Regard \(X_1, \ldots, X_m \) as vertices of a graph in which any two vertices \(X_i \) and \(X_j \) are connected by a node if \(S(X_i, R_{i,n}^*) \cap S(X_j, R_{j,n}^*) \neq \emptyset \). Since \(Q_u = \{1, \ldots, m\} \) is an equivalence class, this graph is connected. If there is at least one vertex \(X_j \) (say) with degree 1, put \(L := j \). Otherwise, the degree of each vertex is at least two, and we have \(m \geq 3 \). If \(m = 3 \), the graph is a triangle, and we can choose \(L \) arbitrarily. Now suppose the lemma is true for any graph having \(m \geq 3 \) vertices, in which each vertex degree is at least 2. If we have an additional \((m + 1) \)th vertex \(X_{m+1} \), this is connected to at least two other vertices \(X_i \) and \(X_j \) (say). Of the graph with vertices \(X_1, \ldots, X_m \) we can delete one vertex, and the remaining graph is connected. But \(X_{m+1} \) is then connected to either \(X_i \) or \(X_j \), and we may choose \(L = i \) or \(L = j \). Notice that for \(d = 1 \) the proof is trivial since \(\bigcup_{i \in Q_u} S(X_i, R_{i,n}^*) \) is an interval, and we can take either \(L = 1 \) or \(L = m \).

By induction, we now show that
\[\mathbb{P}(E_u) = O \left((\ln n/n)^{|Q_u| - 1} \right) \]
as $n \to \infty$ for each $m := |Q_n| \in \{2, \ldots, k - 1\}$. We start with the base case $m = 2$. Notice that $\P(E_n) \leq \P(\|X_2 - X_1\| \leq R^*_2, n + R^*_1, n)$. We start with the base case $m = 2$. Notice that $\P(E_n) \leq \P(\|X_2 - X_1\| \leq R^*_2, n + R^*_1, n)$ and

\[
\P(\|X_2 - X_1\| \leq R^*_2, n + R^*_1, n | X_1)
\]

Now, condition (7) entails

\[
\P(\|X_2 - X_1\| \leq R^*_1, n | X_1) = \mu(S(X_1, 2R^*_1, n)) \leq c_{\max} \mu(S(X_1, R^*_1, n)) = c_{\max} \frac{y + \ln n}{n}.
\]

Putting $\tilde{R}_2, n := H^{-1}_x(c_{\max}(y + \ln n)/n)$, a second appeal to (7) yields

\[
\mu(S(X_2, 2R^*_2, n)) \leq c_{\max} \mu(S(X_2, R^*_2, n)) = c_{\max} \frac{y + \ln n}{n}
\]

and thus $2R^*_2, n \leq \tilde{R}_2, n$. Consequently,

\[
P(\|X_2 - X_1\| \leq 2R^*_1, n | X_1) \leq \P(\|X_2 - X_1\| \leq \tilde{R}_2, n | X_1).
\]

Let γ_d be the minimum number of cones of angle $\pi/3$ centered at 0 such that their union covers \mathbb{R}^d. Then the cone covering lemma (cf. Lemma 10.1 in Devroye and Győrfi [4], and Lemma 6.2 in Győrfi et al. [6]) says that, for any $0 \leq a \leq 1$ and any x_1, we have

\[
\mu(\{x_2 \in \mathbb{R}^d : \mu(S(x_2, \|x_2 - x_1\|)) \leq a\}) \leq \gamma_d a.
\]

(19)

Now, (19) implies

\[
\mu(\{x_2 \in \mathbb{R}^d : \|x_2 - x_1\| \leq H^{-1}_x(a)\}) \gamma_d a,
\]

whence

\[
P(\|X_2 - X_1\| \leq \tilde{R}_2, n | X_1) \leq \gamma_d c_{\max} \frac{y + \ln n}{n}.
\]

We thus obtain

\[
P(\|X_2 - X_1\| \leq R^*_2, n + R^*_1, n | X_1) = O\left(\frac{\ln n}{n}\right), \quad (20)
\]

15
and so (18) is proved for $m = 2$. For the induction step, assume (18) holds for $|Q_u| = m \in \{2, \ldots, k - 2\}$. If Q_u with $|Q_u| = m + 1$ is an equivalence class, then by Lemma 1 there are random integers L_1 and L_2 less than $m + 2$, such that $Q_u \setminus \{L_1\}$ forms an equivalence class, and

$$\|X_{L_1} - X_{L_2}\| \leq R_{L_1,n}^* + R_{L_2,n}^*.$$

It follows that

$$\mathbb{P}(E_u) \leq (m + 1)m \mathbb{P}(E_u \cap \{L_1 = m + 1, L_2 = 1\})$$

$$\leq k(k - 1) \mathbb{P}(\{Q_u \setminus \{m + 1\} \text{ forms an equivalence class} \)$$

$$\cap \{\|X_{m+1} \setminus X_1\| \leq R_{m+1,n}^* + R_{1,n}^*\})$$

$$= k(k - 1) \mathbb{E}\left[\mathbb{I}\{Q_u \setminus \{m + 1\} \text{ forms an equivalence class} \)$$

$$\cdot \mathbb{P}(\|X_{m+1} \setminus X_1\| \leq R_{m+1,n}^* + R_{1,n}^* \mid X_1, \ldots, X_m)\right]$$

$$= k(k - 1) \mathbb{E}\left[\mathbb{I}\{Q_u \setminus \{m + 1\} \text{ forms an equivalence class} \)$$

$$\cdot \mathbb{P}(\|X_{m+1} \setminus X_1\| \leq R_{m+1,n}^* + R_{1,n}^* \mid X_1)\right]$$

$$\leq O\left(\frac{\ln n}{n}\right) \mathbb{P}(Q_u \setminus \{m + 1\} \text{ forms an equivalence class})$$

$$= O\left(\frac{\ln n}{n}\right) O\left((\ln n/n)^m\right)$$

$$= O\left((\ln n/n)^m\right).$$

Notice that the penultimate equation follows from the induction hypothesis, and the last ”\leq” is a consequence of (20). Notice further that these limit relations imply (18), whence

$$n^{\mid Q_u \mid} \mathbb{E}\left[e^{-\mu(\cup_{i \in Q_u} S(X_i, R_{i,n}^*))} \prod_{i \in Q_u} \mathbb{I}\{\mu(S(X_i, r_{i,k})) \geq y_u\} \mathbb{I}\{E_u\}\right]$$

$$= O\left(n^{\mid Q_u \mid - 1 - \varepsilon}\right) \mathbb{P}(E_u)$$

$$= O\left(n^{\mid Q_u \mid - 1 - \varepsilon}\right) O\left((\ln n/n)^{|Q_u|-1}\right)$$

$$= o(1).$$

Summarizing, we have shown (17) and thus (15). Hence (13) is verified with $\nu = \exp(-y)$, and the theorem is proved. \qed
5 Discussion on condition (6)

In this final section we comment on condition (6). For \(d = 1 \), we verify (6) if on \(S(x, r) \cup S(z, s) \) the distribution function \(F \) of \(\mu \) is either convex or concave. If \(\|x - z\| \geq r + s \), then \(S(x, r) \) and \(S(z, s) \) are disjoint, therefore suppose \(r + s \geq \|x - z\| \geq \max(r, s) \). Assume that \(F \) is convex, the proof for concave \(F \) is similar. If \(x < z \), the convexity of \(F \) and

\[
\mu(S(z, s)) = F(z + s) - F(z - s) =: p
\]

(say) imply \(F(z) - F(z - s) \leq p/2 \). Thus

\[
\mu(S(x, r) \cap S(z, s)) = \mu([z - s, x + r]) \\
\leq \min\{\mu([z - s, z]), \mu([x, x + r])\} \\
= \min\{F(z) - F(z - s), F(x + r) - F(x)\} \\
\leq F(z) - F(z - s) \\
\leq p/2
\]

and hence

\[
\frac{\mu(S(x, r) \cap S(z, s))}{\mu(S(z, s))} \leq \frac{1}{2}.
\]

Thus (6) is satisfied with \(\beta = 1/2 \).

For \(d > 1 \), the problem is more involved. Again, suppose \(r + s \geq \|x - z\| \geq \max(r, s) \). Writing \(\langle \cdot, \cdot \rangle \) for the inner product in \(\mathbb{R}^d \), introduce the half spaces

\[
H_1 := \{u \in \mathbb{R}^d : \langle u - x, z - x \rangle \geq 0\}, \quad H_2 := \{u \in \mathbb{R}^d : \langle u - z, x - z \rangle \geq 0\}.
\]

Then

\[
\mu(S(x, r) \cap S(z, s)) = \mu((S(z, s) \cap H_2) \cap (S(x, r) \cap H_1)) \\
\leq \frac{\mu(S(z, s) \cap H_2) + \mu(S(x, r) \cap H_1)}{2}.
\]

We introduce another implicit condition as follows: Assume there are \(\alpha \in (1, 2) \) and \(\delta > 0 \) such that, for any \(r, s > 0 \) and any \(x, z \in \text{supp}(\mu) \) with \(r + s \geq \|x - z\| \geq \max(r, s) \) and \(\mu(S(z, s)) = \mu(S(x, r)) \leq \delta \), one has either

\[
\mu(S(z, s) \cap H_2) \leq \alpha \mu(S(x, r) \cap H_1^c)
\]

(21)
or
\[\mu(S(x, r) \cap H_1) \leq \alpha \mu(S(z, s) \cap H_2^c). \] \hspace{1cm} (22)

In case of (21) we have
\[
\frac{\mu(S(z, s) \cap H_2) + \mu(S(x, r) \cap H_1)}{2} \leq \frac{\alpha \mu(S(x, r) \cap H_1^c) + \mu(S(x, r) \cap H_1)}{2} \\
= \frac{\alpha}{2} \mu(S(x, r)),
\]
and (6) is verified with \(\beta = \alpha/2 \). The case of (22) is similar. For the univariate case and for \(x < z \), (21) and (22) mean
\[
F(z) - F(z-s) \leq \alpha (F(x) - F(x-r)) \] \hspace{1cm} (23)

and
\[
F(x+r) - F(x) \leq \alpha (F(z+s) - F(z)). \] \hspace{1cm} (24)

For convex \(F \) and small \(\delta \), (24) is approximately satisfied with \(\alpha \approx 1 \). Vice versa, (23) holds for concave \(F \).

References

László Györfi
Budapest University of Technology and Economics
E-Mail: gyorfi@cs.bme.hu

Norbert Henze
Karlsruhe Institute of Technology
E-Mail: henze@kit.edu

Harro Walk
Fachbereich Mathematik, Universität Stuttgart, Stuttgart, Germany
E-Mail: walk@mathematik.uni-stuttgart.de
Erschienene Preprints ab Nummer 2012-001
Komplette Liste: [http://www.mathematik.uni-stuttgart.de/preprints]

2018-003 Kollross, A.: Octonions, triality, the exceptional Lie algebra F4, and polar actions on the Cayley hyperbolic plane

2018-002 Díaz-Ramos, J.C.; Domínguez-Vázquez, M.; Kollross, A.: On homogeneous manifolds whose isotropy actions are polar

2018-001 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Embeddings of hermitian unitals into pappian projective planes

2017-009 Steinke, G.; Stroppel, M.: On elation Laguerre planes with a two-transitive orbit on the set of generators

2017-008 Steinke, G.; Stroppel, M.: Laguerre planes and shift planes

2017-007 Blunck, A.; Knarr, N.; Stroppel, B.; Stroppel, M.: Transitive groups of similitudes generated by octonions

2017-006 Blunck, A.; Knarr, N.; Stroppel, B.; Stroppel, M.: Clifford parallelisms defined by octonions

2017-005 Knarr, N.; Stroppel, M.: Subforms of Norm Forms of Octonion Fields

2017-003 Fischer, S.; Steinwart, I.: Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm

2017-002 Farooq, M.; Steinwart, I.: Learning Rates for Kernel-Based Expctile Regression

2016-004 Blaschzyk, I.; Steinwart, I.: Improved Classification Rates under Refined Margin Conditions

2016-003 Feistauer, M.; Roskovec, F.; Sändig, AM.: Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear Newton Boundary Conditions in a Polygon

2016-002 Steinwart, I.: A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths

2016-001 Köster, I.: Sylow Numbers in Spectral Tables

2015-016 Hang, H.; Steinwart, I.: A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning
2015-015 Steinwart, I.: Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes
2015-014 Muhammad, F.; Steinwart, I.: An SVM-like Approach for Expectile Regression
2015-013 Nava-Yazdani, E.: Splines and geometric mean for data in geodesic spaces
2015-012 Kimmerle, W.; Köster, I.: Sylow Numbers from Character Tables and Group Rings
2015-010 Gorodski, C, Kollross, A.: Some remarks on polar actions
2015-007 Kollross, A.: Hyperpolar actions on reducible symmetric spaces
2015-005 Hinrichs, A.; Markhasin, L.; Oettershagen, J.; Ullrich, T.: Optimal quasi-Monte Carlo rules on higher order digital nets for the numerical integration of multivariate periodic functions
2015-004 Kutter, M.; Rohde, C.; Sändig, A.-M.: Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with Elasticity
2015-003 Rossi, E.; Schleper, V.: Convergence of a numerical scheme for a mixed hyperbolic-parabolic porous medium in two space dimensions
2015-002 Döring, M.; Györfi, L.; Walk, H.: Exact rate of convergence of kernel-based classification rule
2015-001 Kohler, M.; Müller, F.; Walk, H.: Estimation of a regression function corresponding to latent variables
2014-021 Neusser, J.; Rohde, C.; Schleper, V.: Relaxed Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition
2014-020 Kabil, B.; Rohde, C.: Persistence of undercompressive phase boundaries for isothermal Euler equations including configurational forces and surface tension
2014-019 Bilyk, D.; Markhasin, L.: BMO and exponential Orlicz space estimates of the discrepancy function in arbitrary dimension
2014-018 Schmid, J.: Well-posedness of non-autonomous linear evolution equations for generators whose commutators are scalar
2014-017 Margolis, L.: A Sylow theorem for the integral group ring of $PSL(2, q)$
2014-010 Köster, I.: Finite Groups with Sylow numbers $\{q^a, a, b\}$
2014-009 Kahnert, D.: Hausdorff Dimension of Rings
2014-008 Steinwart, I.: Measuring the Capacity of Sets of Functions in the Analysis of ERM
2014-007 Steinwart, I.: Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties
2014-004 Markhasin, L.: \(L_2\) and \(S_{p,q}^{r,B}\)-discrepancy of (order 2) digital nets
2014-003 Markhasin, L.: Discrepancy and integration in function spaces with dominating mixed smoothness
2014-002 Eberts, M.; Steinwart, I.: Optimal Learning Rates for Localized SVMs
2014-001 Gieselmann, J.: A relative entropy approach to convergence of a low order approximation to a nonlinear elasticity model with viscosity and capillarity
2013-016 Steinwart, I.: Fully Adaptive Density-Based Clustering
2013-015 Steinwart, I.: Some Remarks on the Statistical Analysis of SVMs and Related Methods
2013-014 Rohde, C.; Zeiler, C.: A Relaxation Riemann Solver for Compressible Two-Phase Flow with Phase Transition and Surface Tension
2013-012 Moroianu, A.; Semmelmann, U.: Generalized Killing Spinors on Spheres
2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive Equations
2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau's Algorithm on Manifolds
2013-008 Bächle, A.; Margolis, L.: Rational conjugacy of torsion units in integral group rings of non-solvable groups
2013-007 Knarr, N.; Stroppel, M.J.: Heisenberg groups over composition algebras
2013-006 Knarr, N.; Stroppel, M.J.: Heisenberg groups, semifields, and translation planes
2013-003 Kabi, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces on the Stability of Liquid-Vapor Interfaces
2012-012 Moroianu; A.; Semmelmann, U.: Weakly complex homogeneous spaces
2012-011 Moroianu; A.; Semmelmann, U.: Invariant four-forms and symmetric pairs
2012-010 Hamilton, M.J.D.: The closure of the symplectic cone of elliptic surfaces
2012-009 Hamilton, M.J.D.: Iterated fibre sums of algebraic Lefschetz fibrations
2012-008 Hamilton, M.J.D.: The minimal genus problem for elliptic surfaces
2012-007 Ferrario, P.: Partitioning estimation of local variance based on nearest neighbors under censoring
2012-006 Stroppel, M.: Buttons, Holes and Loops of String: Lacing the Doily
2012-005 Hantsch, F.: Existence of Minimizers in Restricted Hartree-Fock Theory
2012-004 Grundhöfer, T.; Stroppel, M.; Van Maldeghem, H.: Unitals admitting all translations
2012-003 Hamilton, M.J.D.: Representing homology classes by symplectic surfaces
2012-002 Hamilton, M.J.D.: On certain exotic 4-manifolds of Akhmedov and Park
2012-001 Jentsch, T.: Parallel submanifolds of the real 2-Grassmannian