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Abstract

Nonparametric regression with random design is considered. Estimates are de�ned by
minimzing a penalized empirical L2 risk over a suitably chosen class of neural networks
with one hidden layer via gradient descent. Here, the gradient descent procedure is
repeated several times with randomly chosen starting values for the weights, and from the
list of constructed estimates the one with the minimal empirical L2 risk is chosen. Under
the assumption that the number of randomly chosen starting values and the number of
steps for gradient descent are su�ciently large it is shown that the resulting estimate
achieves (up to a logarithmic factor) the optimal rate of convergence in a projection
pursuit model. The �nal sample size performance of the estimates is illustrated by using
simulated data.

AMS classi�cation: Primary 62G08; secondary 62G20.

Key words and phrases: gradient descent, neural networks, nonparametric regression,
rate of convergence, projection pursuit.

1. Introduction

1.1. Scope of this article

Motivated by the huge success of multilayer neural networks in applications (see, e.g.,
Schmidhuber (2015) and the literature cited therein) there has been an increasing interest
in the theoretical analysis of such estimates. Often this is done in the area of nonpara-
metric regression, and recently there has been a tremendous progress in the theoretical
understanding of least squares regression estimates based on deep neural networks, i.e.,
neural networks with many hidden layers. The corresponding theoretical results are based

∗Running title: Neural network regression estimates
†Corresponding author. Tel: +49-6151-16-23382, Fax:+49-6151-16-23381
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on the derivation of new approximation results for piecewise polynomials by neural net-
works, and they make extensive use of the network structure, which allows to exploit com-
pository assumptions on the structure of the regression function in order to circumvent
the curse of dimensionality (cf., Kohler and Krzy»ak (2017), Bauer and Kohler (2017),
Schmidt-Hieber (2017), Imaizumi and Fukumizu (2018), Kohler and Langer (2018), Eckle
and Schmidt-Hieber (2018) and Kohler, Krzy»ak and Langer (2019)).
In all the articles above the neural network regression estimate is de�ned as a nonlinear

least squares estimate, i.e., as a function which minimizes the empirical L2 risk over
a nonlinear class of neural networks. In practice, it is usually not possible to �nd the
global minimum of the empirical L2 risk over a nonlinear class of neural networks and one
usually tries to �nd a local minimum using, for instance, the steepest descent algorithm.
So although the above theoretical results are quite impressive, there is a big gap between
the estimates studied theoretically and the estimates used in practice.
The purpose of this paper is to narrow this gap. To do this, we consider the following

question: If we de�ne a neural network regression estimate theoretically exactly as it
is implemented in practice, can we show a rate of convergence result for this estimate?
The ultimative goal is to analyze theoretically neural network regression estimates which
are actually used in practice. As a �rst step in this direction we de�ne a simple neural
network regression estimate where we use gradient descent in order to learn the weights
of a neural network with one hidden layer in a projection pursuit model. We show that
if we repeatedly apply this procedure to starting values, which are chosen randomly
from a special structure, then, for su�ciently many starting values and steps in each
procedure, we will �nd an estimate which achieves the optimal rate of convergence up to
a logarithmic factor in this projection pursuit model.

1.2. Nonparametric regression

We study neural network estimates in the context of nonparametric regression with ran-
dom design. Here, (X,Y ) is an Rd × R�valued random vector satisfying E{Y 2} < ∞,
and given a sample of (X,Y ) of size n, i.e., given a data set

Dn = {(X1, Y1), . . . , (Xn, Yn)} , (1)

where (X,Y ), (X1, Y1), . . . , (Xn, Yn) are i.i.d. random variables, the aim is to construct
an estimate

mn(·) = mn(·,Dn) : Rd → R

of the regression function m : Rd → R, m(x) = E{Y |X = x} such that the L2 error∫
|mn(x)−m(x)|2PX(dx)

is �small� (see, e.g., Györ� et al. (2002) for a systematic introduction to nonparametric
regression and a motivation for the L2 error).
It is well�known that one needs smoothness assumptions on the regression function in

order to derive non�trivial results on the rate of convergence of nonparametric regression
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estimates (cf., e.g., Theorem 7.2 and Problem 7.2 in Devroye, Györ� and Lugosi (1996)
and Section 3 in Devroye and Wagner (1980)). To do this we will use the following
de�nition.

De�nition 1 Let p = q + s for some q ∈ N0 and 0 < s ≤ 1, where N0 is the set

of nonnegative integers. A function f : Rd → R is called (p, C)-smooth, if for every

α = (α1, . . . , αd) ∈ Nd0 with
∑d

j=1 αj = q the partial derivative ∂qf

∂x
α1
1 ...∂x

αd
d

exists and

satis�es ∣∣∣∣ ∂qf

∂xα1
1 . . . ∂xαdd

(x)− ∂qf

∂xα1
1 . . . ∂xαdd

(z)

∣∣∣∣ ≤ C · ‖x− z‖s
for all x, z ∈ Rd, where ‖ · ‖ denotes the Euclidean norm.

Stone (1982) showed that the optimal minimax rate of convergence in nonparametric
regression for (p, C)-smooth functions is n−2p/(2p+d). In case that d is large compared to
p this rate of convergence is rather slow (so called curse of dimensionality). In the sequel
we want to circumvent this curse of dimensionality by imposing the additional constraint
on the regression function that it satis�es a projection pursuit model, i.e., by assuming
that it satis�es

m(x) =

r∑
s=1

gs(c
T
s x) (x ∈ Rd) (2)

for some r ∈ N, cs ∈ Rd and (p, C)-smooth functions gs : R → R (s = 1, . . . , r). Under
this assumption our aim is to show that suitably de�ned neural network estimates, which
can be actually implemented in an application, can achieve the one-dimensional rate of
convergence.

1.3. Main result of this article

In this paper we study neural network regression estimates using neural networks with
one hidden layer in the above projection pursuit model, i.e., we assume that the regression
function satis�es (2). We learn the weights of our neural network regression estimate by
choosing in a �rst step randomly vectors for the directions cs of our projection pursuit
model, by de�ning in a second step an appropriate starting value for the weights of our
neural network regression estimate based on the randomly chosen directions, and by
applying in a third step successively many gradient descent steps in order to optimze the
weights of our neural network. Then we repeat this whole procedure several times and
choose from the list of estimates which we get the one with the minimal error on our
training data.
Our main result is that for a su�ciently large number of repititions of this procedure

and a su�ciently large number of gradient descent steps the expected L2 error of a
truncated version of our estimate converges towards zero in the projection pursuit model
(2) in case of (p, C)�smoth functions gs (where p ≤ 1) with the rate of convergence(

(log n)3

n

) 2p
2p+1

,
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i.e., with the optimal rate of convergence up to a logarithmic factor. Here, the rate of
convergence is independent of the dimension d ofX. Hence, our neural network regression
estimate is able to circumvent the curse of dimensionality in the projection pursuit model
(2).
We achieve this result by choosing our initial weights such that the initial network

basically computes a piecewise constant function and by showing that in this case the
gradient descent is able to choose the outer weights in the neural network in an optimal
way (provided the number of gradient descent steps is su�ciently large).

1.4. Discussion of related results

It is well-known that it is possible to circumvent the curse of dimensionality by imposing
additional constraints on the structure of the regression function. Stone (1985) assumed
that the regression function is additive, i.e., that m : Rd → R satis�es

m(x(1), . . . , x(d)) = m1(x(1)) + · · ·+md(x
(d)) (x(1), . . . , x(d) ∈ R)

for some (p, C)�smooth univariate functions m1, . . . ,md : R → R, and showed that
in this case suitably de�ned spline estimates achieve the corresponding univariate rate
of convergence. Stone (1994) extended this results to interaction models, where the
regression function is assumed to be a sum of functions applied to at most d∗ < d
components of x and showed in this case that suitably de�ned spline estimates achieve
the d∗�dimensional rate of convergence. Other classes of functions which enable us to
achieve a better rate of convergence results include single index models, where

m(x) = g(cTx) (x ∈ Rd)

for some c ∈ Rd and g : R → R (cf., e.g., Härdle and Stoker (1989), Härdle, Hall
and Ichimura (1993), Yu and Ruppert (2002), Kong and Xia (2007) and Lepski and
Serdyukova (2014)) and projection pursuit, where it is assumed that (2) holds for some
r ∈ N, cs ∈ Rd and gs : R→ R (s = 1, . . . , r) (cf., e.g., Friedman and Stuetzle (1981) and
Huber (1985)). Horowitz and Mammen (2007) studied the case of a regression function,
which satis�es

m(x) = g

 L1∑
l1=1

gl1

 L2∑
l2=1

gl1,l2

. . . Lr∑
lr=1

gl1,...,lr(x
l1,...,lr)

 ,

where g, gl1 , . . . , gl1,...,lr are (p, C)-smooth univariate functions and xl1,...,lr are single com-
ponents of x ∈ Rd (not necessarily di�erent for two di�erent indices (l1, . . . , lr)). With
the use of a penalized least squares estimate for smoothing splines, they proved the rate
n−2p/(2p+1).
For the L2 error of a single hidden layer neural network, Barron (1993, 1994) proves

the dimensionless rate of convergence n−1/2 (up to some logarithmic factor), provided the
Fourier transform has a �nite �rst moment (which basically requires that the function
becomes smoother with increasing dimension d of X). McCa�rey and Gallant (1994)
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showed a rate of n
− 2p

2p+d+5
+ε

for the L2 error of suitably de�ned single hidden layer
neural network estimate for (p, C)-smooth functions, but their study was restricted to
the use of a certain cosine squasher as the activation function.
Recently it was shown in several papers that neural networks can achieve a dimen-

sionality reduction in case that the regression function is a composition of (sums of)
functions, where each of the function is a function of at most d∗ < d variables. The �rst
paper in this respect was Kohler and Krzy»ak (2017), where it was shown that under a
corresponding assumption suitably de�ned multilayer neural networks achieve the rate
of convergence n−2p/(2p+d∗) (up to some logarithmic factor) in case p ≤ 1. Bauer and
Kohler (2017) showed that this result even holds for p > 1 provided the squashing func-
tion is suitably chosen. Schmidt-Hieber (2017) showed similar results for neural networks
with ReLU activation function, and Kohler and Langer (2018) showed that the results
of Bauer and Kohler (2017) also hold for very simply constructed fully connected feed-
forward neural networks. Eckle and Schmidt-Hieber (2018) showed that neural networks
with ReLU activation function can approximate well piecewise polynomials with rather
general partitions based on the intersection of hyperplanes and used this result to relate
the error of neural network estimates to the error of piecewise polynomial partitioning
estimates. Kohler, Krzy»ak and Langer (2019) derived a similar result for neural net-
works with squashing functions as activation function and used this result to prove that
neural networks are able to circumvent the curse of dimensionality in case that the re-
gression function has a low local dimensionality. Results concerning the approximation of
piecewise polynomials with partitions with rather general smooth boundaries by neural
networks have been derived in Imaizumi and Fukamizu (2018).
The above mentioned results show that least squares neural network regression es-

timates are able to circumvent the curse of dimensionality under much more general
assumptions than the projection pursuit model assumed in this paper. However, these
estimates cannot be computed in practice, whereas our result shows that in the projec-
tion pursuit model we can achieve this with neural networks even in the case where we
restrict ourselves to estimates which can be computed much easier.
Gradient descent has been studied in many di�erent papers, see, e.g., Karimi, Nutini

and Schmidt (2018) and the literature cited therein. A standard reference is the mono-
graph Luenberger and Ye (2016). We also mention Poljak (1981) as an early paper, where
the case of noise corrupted function values is considered, too. Stochastic approximation
deals with the latter �eld, see, e.g., the monograph Kushner and Yin (2003), and here
in a classic situation the constant factor at the gradient is replaced by a decreasing fac-
tor at a vector of divided di�erences (multidimensional Kiefer-Wolfowitz method). The
paper of White (1989, 1992) brings together the two �elds of stochastic approximation
and neural network models (see also Fabian (1994)). In Dippon and Fabian (1994) and
Dippon (1998) it is explained how gradient descent in stochastic approximation can be
combined with a slowly convergent global optimizer in order to �nd not only a local but
even a global minimum of a general function. The main di�culty of using such results to
derive rate of convergence results for neural network regression estimates lies in the fact
that for neural network regression estimates the neural network is using more and more
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neurons with increasing sample size. This means that it is not su�cient to analyze gra-
dient descent applied to a �xed function where the number of steps is tending to in�nity.
Instead the function is changing for increasing number of steps. Basically, this requires
the ability to analyze the behaviour of gradient descent for a �nite number of steps. As
far as we know such results do not exist in the literature in case of a general function
like the empirical L2 risk of a neural network (which is neither convex nor has a global
minimum or an easily analysable Hessian matrix considered as a real-valued function of
the weight vector).

1.5. Notation

Throughout the paper, the following notation is used: The sets of natural numbers,
natural numbers including 0 and real numbers are denoted by N, N0 and R, respectively.
For z ∈ R, we denote the smallest integer greater than or equal to z by dze. The
Euclidean norm of x ∈ Rd is denoted by ‖x‖, and ‖x‖∞ denotes its supremum norm. For
f : Rd → R let

‖f‖∞ = sup
x∈Rd

|f(x)|

denote its supremum norm. A �nite collection f1, . . . , fN : Rd → R is called an ε�L1�
cover of F on xn1 = (x1, . . . , xn) ∈ (Rd)n if for any f ∈ F there exists i ∈ {1, . . . , N}
such that

1

n

n∑
j=1

|f(xj)− fi(xj)| < ε.

The ε�L1- covering number of F on xn1 is the size N of the smallest ε�L1� cover of F on
xn1 and is denoted by N1(ε,F , xn1 ).

1.6. Outline

The outline of this paper is as follows: In Section 2 we de�ne our neural network regression
estimates and in Section 3 we present our main theoretical result. The �nite sample size
performance of our newly proposed estimate is illustrated in Section 4 by applying it to
simulated data. The proofs are given in Section 5.

2. De�nition of the estimate

In the construction of our estimate we assume that the regression function m satis�es
(2) and that the support of X is contained in the cube [−A,A]d for some given A ≥ 1.
We approximate each gs : R→ R by a neural network with logistic squasher

σ(x) =
1

1 + e−x

chosen such that it is close to a piecewise constant function of the form

u 7→
K∑
l=1

as,l · 1[bl,∞).
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As we will show in Lemma 5 below, such a neural network can be chosen of the form

u 7→
K∑
l=1

as,l · σ(ρn · (u− bl)),

where ρn > 0 is a large constant, and the error of this approximation will be small at
all those points, where ρn · |u− bl| is large. By replacing u with cTs x we see that we can
approximate m by networks with one hidden layer and K · r neurons in this hidden layer
de�ned by

fnet,(a,b)(x) =

K·r∑
k=1

ak · σ

 d∑
j=1

bk,j · x(j) + bk,0

+ a0. (3)

Here, K · r ∈ N is the number of neurons, σ : R→ R is the activation function and

ak ∈ R (k = 0, . . . ,K · r) and bk,j ∈ R (k = 1, . . . ,K · r, j = 0, . . . , d)

are the weights. The above condition that ρn · |u− bl| is large in order to achieve a small
error at point u of the above neural network approximation of the piecewise constant
function is replaced by the assumption that

min
i=1,...,n

|
d∑
j=1

bk,j ·X
(j)
i + bk,0|

is large, which will enable us to show that our approximation is good at all x-values of
the data points. And this condition in turn will be ensured by a proper choice of the
initial weights described below.
We will learn the weights by gradient descent. More precisely, we minimize the penal-

ized empirical L2 risk

F (a,b) =
1

n

n∑
i=1

|fnet,(a,b)(Xi)− Yi|2 +
c1

n
·
K·r∑
k=0

a2
k, (4)

where c1 > 0 is a constant, by choosing an appropriate starting value (a(0),b(0)) and by
setting (

a(t+1)

b(t+1)

)
=

(
a(t)

b(t)

)
− λn · (∇(a,b)F )(a(t),b(t)) (5)

for some λn > 0 chosen below and t = 0, 1, . . . , tn − 1.
Next, we explain how we choose the initial values (a(0),b(0)) for our weights. As

explained above, our choice is motivated by the structure of m in the projection pursuit
model (2). Here the number r of terms in this model is a parameter of our estimate
(which we will choose data-dependent in any application, cf., Remark 2 below). In a �rst
step we randomly choose values

c̄1, . . . , c̄r ∈ [−1, 1]d (6)
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as an independent sample from a uniform distribution on [−1, 1]d. Using these values as
approximation of the directions c1, . . . , cr of our projection pursuit model, we de�ne our
initial inner weights as follows: For s ∈ {1, . . . , r} we de�ne

b(s−1)·K+1,0, . . . , b(s−1)·K+1,d, . . . , bs·K,0, . . . , bs·K,d

according to cs: First we choose b1, . . . , bK ∈ R such that

b1 ≤ −A ·
√
d,

bK ≥ A ·
√
d− 4 ·

√
d ·A

K − 1
,

|bk+1 − bk| ≤
4 ·
√
d ·A

K − 1
(k = 1, . . . ,K − 1)

and

min
i=1,...,n,k=1,...,K

∣∣c̄TsXi − bk
∣∣ ≥ √

d ·A
(n+ 1) · (K − 1)

.

Such a choice is always possible, e.g., we can set b1 = −
√
d·A−2·

√
d·A/((n+1)·(K−1))

and de�ne bk (k = 2, . . . ,K) by subdividing the interval[
−
√
d ·A+ (k − 2) · 2 ·

√
d ·A

K − 1
,−d ·A+ (k − 1) · 2 ·

√
d ·A

K − 1

]
into (n+1) equidistant subintervals of length 2 ·

√
d ·A/((K−1) ·(n+1)) and by choosing

bk as the midpoint of one of those intervals which does not contain any of the n values
cTsXi (such an interval must exists since not every one of the n + 1 disjoint intervals
can contain one of the above n points). As soon as we have chosen b1, . . . , bK we de�ne
b(s−1)·K+k,j (s = 1, . . . , r, k = 1, . . . ,K, j = 0, . . . , d) such that we have for some ρn > 0
chosen below (cf., Theorem 1 below)

d∑
j=1

b(s−1)·K+k,j · x(j) + b(s−1)·K+k,0 = ρn · (c̄Ts x− bk) for all x ∈ Rd,

namely, we set

b(s−1)·K+k,j = ρn · c̄(j)
s and b(s−1)·K+k,0 = −ρn · bk

(s = 1, . . . , r, k = 1, . . . ,K, j = 0, . . . , d). Then we choose al = 0 for all l ∈ {0, . . . ,K ·r}.
After this choice of (a(0),b(0)) we de�ne (a(t+1),b(t+1)) recursively by (5) for λn > 0

and t = 0, 1, . . . , tn − 1.
We repeat this whole procedure Ln times, and let

m̃n

be the neural network which achieves the smallest penalized empirical L2 error (4) among
all the tn networks. Finally we truncate our estimate by selecting some βn > 0 and by
setting

mn(x) = Tβnm̃n(x),

where Tβnz = max{min{z, βn},−βn} for z ∈ R.
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3. Main result

Our main result is the following theorem.

Theorem 1 Let n ≥ 2, let A ≥ 1 and let (X,Y ), (X1, Y1), . . . , (Xn, Yn) be independent
and identically distributed random variables with values in [−A,A]d × R. Set m(x) =
E{Y |X = x} and assume that (X,Y ) satis�es

E
(
ec2·|Y |

2
)
<∞ (7)

for some constant c2 > 0, and that m satis�es

m(x) =

r∑
s=1

gs(c
T
s x) (x ∈ Rd)

for some r ∈ N, cs ∈ [−1, 1]d and gs : R → R (s = 1, . . . , r). Assume that gs is (p, C)-
smooth for s ∈ {1, . . . , r}, where p ∈ (0, 1] and C > 0 are �xed. De�ne the regression

estimate mn as in Section 2 with

σ(x) =
1

1 + e−x
,

with parameter r as in the above projection pursuit model, and with the other parameters

chosen by

βn = c3 · log n, K = Kn = d(n/(log n)3)1/(2p+1)]e, λn =
1

3 ·K
, ρn = n2 ·K,

and

tn = Kn · n · (log n)2 and Ln = d(log n) · nr·d/(2p+1)e.
Then mn satis�es

E

∫
|mn(x)−m(x)|2PX(dx) ≤ c4 ·

(
(log n)3

n

) 2p
2p+1

for some constant c4 > 0 which does not depend on n.

Remark 1. According to Stone (1982) the rate of convergence in the above theorem is
optimal up to a logarithmic factor in case of a (p, C)-smooth projection pursuit model.
Because of the fact that this rate of convergence is independent of the dimension d of X,
the above theorem shows that our newly proposed computable neural network regression
estimate is able to circumvent the curse of dimensionality in case that the regression
function satis�es the assumption of projection pursuit. We should however mention
that the number of repitions Ln of the initial random choices of the directions cs and
correspondingly the number of repititions of the tn gradient descent steps is rather huge.
Remark 2. The parameters r and Kn of the above algorithm depend on the projection
pursuit model and hence are unknown in any application. However, it is easy to choose
them data-dependent by using, e.g., the splitting of the sample technique es explained in
the next section. In this way it is possible to de�ne an estimate which does not depend
on the value of r of the projection pursuit model and which is nevertheless able to achieve
the rate of convergence in Theorem 1.
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4. Application to simulated data

In this section we illustrate the �nite sample size performance of our newly proposed
estimate by applying it to simulated data.
The simulated data which we use is de�ned as follows: We choose d = 4, X uniformly

distributed on [−1, 1]d, ε standard normal and independent of X, and we de�ne Y by

Y = mj(X) + σ · λj · ε, (8)

where mj : [−1, 1]d → R is described below, λj > 0 is a scaling value de�ned below and
σ is chosen from {0.05, 0.2} (j ∈ {1, 2}). As regression function we use

m1(x1, x2, x3, x4) = 2 · sin
(

2 · π√
4
· (−x1 + x2 − x3 + x4)

)
,

so m1 satis�es a single index model, and

m2(x1, x2, x3, x4)

= 4 · sin
(

2 · π√
4
· (−x1 + x2 − x3 + x4)

)
+

7

2 + 1√
30
· (x1 − 2 · x2 + 3 · x3 − 4 · x4)

,

hence m2 satis�es a single index model with r = 2 terms. λj is chosen approximately
as IQR of a sample of size 100, 000 of m(X), and we use the concrete values λ1 =
2.8289 and λ2 = 5.2841. From this distribution we generate a sample of size n = 100
and apply our newly proposed neural network regression estimate and two alternative
regression estimates to this sample. Then we compute the L2 errors of these three
estimate approximately by using the empirical L2 error εL2,N̄ (·) on an independent sample
of X of size N̄ = 10, 000. Since this error strongly depends on the behavior of the correct
function mj , we consider it in relation to the error of the simplest estimate for mj we
can think of, a completely constant function (whose value is the average of the observed
data according to the least squares approach). Thus, the scaled error measure we use for
evaluation of the estimates is εL2,N̄ (mn,i)/ε̄L2,N̄ (avg), where ε̄L2,N̄ (avg) is the median
of 50 independent realizations of the value one obtains if one plugs the average of n
observations into εL2,N̄ (·). To a certain extent, this quotient can be interpreted as the
relative part of the error of the constant estimate that is still contained in the more
sophisticated approaches. The resulting scaled errors of course depend on the random
sample of (X,Y ), and to be able to compare these values nevertheless we repeat the
whole computation 20 times and report the median and the interquartile range of the 20
scaled errors for each of our three estimates.
Our �rst estimate Tps is a smoothing spline estimate with parameter chosen by gen-

eralized cross validation as implemented in the routine Tps() of the library �elds in R.
Our second estimate neighbor is a nearest neighbor estimate where the number of

nearest neighbors is chosen from the set {1, 2, 4, 8, 16, 32} by splitting of the sample.
Here we split our sample in a learning sample of size nl = 0.8 · n and a testing sample of
size nt = 0.2 · n. We compute the estimate for all parameter values from the above set
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using the learning sample, compute the corresponding empirical L2 risk on the testing
sample and choose the parameter value which leads to the minimal empirical L2 risk on
the testing sample.
Our third estimate neural is our newly proposed neural network estimate presented

in this paper, which we have implemented in R. Here the parameters r and K of the
estimate are chosen via splitting of the sample (as described above) from the set {1, 2}
and {5, 10, 20}, respectively. In order to accelerate the computation of this estimate we
use only Ln = 50 random choices for the vectors of directions in the computation of the
estimate for each parameter value.
The results are summarized in Table 1. As we can see from the reported scaled errors,

our newly proposed neural network estimate outperforms in all four settings both the
smoothing spline estimate and the nearest neighbor estimate.

m1 m2

noise 5% 20% 5% 20%

ε̄L2,N̄ (avg) 2.0109 2.0157 10.3565 11.1144

approach median (IQR) median (IQR) median (IQR) median (IQR)

Tps 1.18 (0.52) 1.19 (0.13) 0.89 (0.08) 0.91 (0.14)
neighbor 1.06 (0.14) 1.13 (0.26) 0.91 (0.06) 0.86 (0.07)
neural 0.52 (0.33) 0.46 (0.24) 0.42 (0.14) 0.53 (0.13)

Table 1: Median and IQR of the scaled empirical L2 error of estimates for m1 and m2

for sample size n = 100.

5. Proofs

5.1. Learning of linear penalized least squares estimates by gradient
descent

Let (x1, y1), . . . , (xn, yn) ∈ Rd × R, let K ∈ N, let B1, . . . , BK : Rd → R and let c1 > 0.
In this subsection we consider the problem to minimize

F (a) =
1

n

n∑
i=1

|
K∑
k=1

ak ·Bk(xi)− yi|2 +
c1

n
· ‖a‖2, (9)

where

a = (a1, . . . , aK)T and ‖a‖2 =
K∑
j=1

a2
j ,

by gradient descent. To do this, we choose a(0) ∈ RK and set

a(t+1) = a(t) − λn · (∇aF )(a(t)) (10)

for some properly chosen λn > 0.

11



Lemma 1 Let F : RK → R be di�erentiable and de�ne a(t+1) by (10), where

λn =
1

Ln
(11)

for some Ln > 0. Let aopt ∈ RK be arbitrary.

a) If

‖(∇aF )(a1)− (∇aF )(a2)‖ ≤ Ln · ‖a1 − a2‖ (a1,a2 ∈ RK) (12)

holds, then we have

F (a(t+1))− F (a(t)) ≤ − 1

2 · Ln
· ‖(∇aF )(a(t))‖2.

b) If inequality (12) and, in addition,

‖(∇aF )(a)‖2 ≥ ρn · (F (a)− F (aopt)) (a ∈ RK) (13)

hold, then we have

F (a(t+1))− F (aopt) ≤
(

1− ρn
2 · Ln

)
· (F (a(t))− F (aopt)).

Proof. Lemma 1 follows from well-known bounds in the literature, see, e.g., Karimi,
Nutini and Schmidt (2018). For the sake of completeness a complete proof is given in
the supplementary material. �

Lemma 2 Let F be de�ned by (9). Then we have for any a1,a2 ∈ RK

‖(∇aF )(a1)− (∇aF )(a2)‖ ≤

(
2 ·

K∑
k=1

1

n

n∑
i=1

Bk(xi)
2 +

2 · c1

n

)
· ‖a1 − a2‖.

Proof. We have

F (a) =
1

n
· (B · a− y)T · (B · a− y) +

c1

n
· aT · a

where
B = (Bj(xi))1≤i≤n,1≤j≤K and y = (y1, . . . , yn)T .

Consequently,

(∇aF )(a) =
2

n
·
(
BTBa−BTy

)
+

2 · c1

n
· a

and

‖(∇aF )(a1)− (∇aF )(a2)‖ ≤ ‖ 2

n
·BTB · (a1 − a2)‖+

2 · c1

n
· ‖a1 − a2‖.

By applying twice the inequality of Cauchy�Schwarz we get∥∥∥∥ 2

n
·BTB · a

∥∥∥∥2

=
K∑
j=1

(
K∑
k=1

(
2

n

n∑
i=1

Bj(xi) ·Bk(xi)) · ak

)2

12



≤
K∑
j=1

K∑
k=1

(
2

n

n∑
i=1

Bj(xi) ·Bk(xi))2 · ‖a‖2

≤
K∑
j=1

K∑
k=1

4 · 1

n

n∑
i=1

Bj(xi)
2 · 1

n

n∑
i=1

Bk(xi))
2 · ‖a‖2

=

(
2 ·

K∑
k=1

1

n

n∑
i=1

Bk(xi)
2

)2

· ‖a‖2,

which implies the assertion. �

Lemma 3 Let F be de�ned by (9) and choose aopt such that

F (aopt) = min
a∈RK

F (a).

Then for any a ∈ RK we have

‖(∇aF )(a)‖2 ≥ c1

n
· (F (a)− F (aopt)).

Proof. Set

B = (Bj(xi))1≤i≤n,1≤j≤K and A =
1

n
·BT ·B +

c1

n
· 1,

where 1 is the unit matrix. Then A is positive de�nite and hence regular, from which
we can conlcude

F (a) =
1

n
· (B · a− y)T · (B · a− y) +

c1

n
· aT · a

= aTAa− 2yT
1

n
Ba +

1

n
yTy

= (a−A−1 1

n
BTy)TA(a−A−1 1

n
BTy) + F (aopt),

where

F (aopt) =
1

n
yTy − yT · 1

n
·BA−1 · 1

n
·BTy.

Using

bTAb ≥ c1

n
· bTb

and AT = A we conclude

F (a)− F (aopt)

= ((A1/2)T (a−A−1 1

n
BTy))TA1/2(a−A−1 1

n
BTy)

≤ n

c1
· ((A1/2)T (a−A−1 1

n
BTy))TAA1/2(a−A−1 1

n
BTy)
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=
n

c1
· ((A)T (a−A−1 1

n
BTy))TA(a−A−1 1

n
BTy)

=
n

c1
· ((Aa− 1

n
BTy))T (Aa− 1

n
BTy)

=
n

4 · c1
· ((2Aa− 2

n
BTy))T (2Aa− 2

n
BTy)

=
n

4 · c1
· ‖(∇aF )(a)‖2 ,

where the last equality follows from

(∇aF )(a) = ∇a

(
aTAa− 2yT

1

n
Ba +

1

n
yTy

)
= 2Aa− 2

n
BTy.

�

5.2. Result for neural networks with one hidden layer

In this subsection we study neural networks with one hidden layer, which are de�ned by

fnet,(a,b)(x) =
K∑
k=1

ak · σ

 d∑
j=1

bk,j · x(j) + bk,0

+ a0 (14)

(compare (3)), where K ∈ N is the number of neurons, σ : R → R is the activation
function and where the weights

ak (k = 0, . . . ,K) and bk,j ∈ R (k = 1, . . . ,K, j = 0, . . . , d)

are learned by gradient descent. More precisely, we minimize

F (a,b) =
1

n

n∑
i=1

|fnet,(a,b)(xi)− yi|2 +
c1

n
·
K∑
k=0

a2
k (15)

(compare (4)) by choosing an appropriate starting value (a(0),b(0)) and by setting(
a(t+1)

b(t+1)

)
=

(
a(t)

b(t)

)
− λn · (∇(a,b)F )(a(t),b(t)) (16)

for some λn > 0 chosen below.
Our main idea is, that in the case of the logistic squasher

σ(x) =
1

1 + e−x
(x ∈ R),

the neural network (14) is for appropriate weigths bk,j close to a linear combination of
indicator functions, and in this case the gradient descent will change the inner weights
bk,j only slightly. From this we will conclude from our results for linear least squares

14



estimates that for such networks the gradient descent leads to estimates where the outer
weights ak are chosen optimally.
In Lemma 5 below we study the approximation of Hölder continuous functions by

neural networks of the above form in the case of univariate functions and networks. To
do this, we will need the following auxiliary result.

Lemma 4 Let σ be the logistic squasher.

a) For any x ∈ R we have

|σ(x)− 1[0,∞)(x)| ≤ e−|x|.

b) For any b ∈ R, c > 0 and x ∈ R we have

|σ(c · (x− b))− 1[b,∞)(x)| ≤ e−c·|x−b|.

Proof. a) For x ≥ 0 we have

|σ(x)− 1[0,∞)(x)| = 1− 1

1 + e−x
=

e−x

1 + e−x
≤ e−x = e−|x|.

And for x < 0 we get

|σ(x)− 1[0,∞)(x)| = 1

1 + e−x
≤ ex = e−|x|.

b) From c > 0 and a) we get

|σ(c · (x− b))− 1[b,∞)(x)| = |σ(c · (x− b))− 1[0,∞)(c · (x− b))| ≤ e−|c·(x−b)| = e−c·|x−b|.

�

Lemma 5 Let σ be the logistic squasher. Let a, b ∈ R with a < b and let m : [a, b]→ R
be (p, C)-smooth for some p ∈ [0, 1] and C > 0. Let c > 0, K ∈ N and set

bk = a+ k · b− a
K

(k = 0, . . . ,K − 1).

Let

a0 = m(a) and ak = m(bk)−m(bk−1) (k = 1, . . . ,K − 1).

Then we have

sup
x∈[a,b]

∣∣∣∣∣a0 +
K−1∑
k=1

ak · σ(c · (x− bk))−m(x)

∣∣∣∣∣ ≤ 3 · (b− a)p · C
Kp

+C ·(b−a)p ·K1−p ·e−
c·(b−a)
K .

Proof. We have∣∣∣∣∣a0 +
K−1∑
k=1

ak · σ(c · (x− bk))−m(x)

∣∣∣∣∣

15



≤

∣∣∣∣∣
K−1∑
k=1

ak · σ(c · (x− bk))−
K−1∑
k=1

ak · 1[bk,∞)(x)

∣∣∣∣∣+

∣∣∣∣∣a0 +

K−1∑
k=1

ak · 1[bk,∞)(x)−m(x)

∣∣∣∣∣ .
For bk ≤ x < bk+1 we can conclude from the de�nition of ak and the (p, C)-smoothness
of m ∣∣∣∣∣a0 +

K−1∑
k=1

ak · 1[bk,∞)(x)−m(x)

∣∣∣∣∣
=

∣∣∣∣∣∣a0 +

k∑
j=1

aj −m(x)

∣∣∣∣∣∣ = |m(bk)−m(x)| ≤ C · |bk − x|p ≤
C · (b− a)p

Kp
.

It is easy to see that this inequality is also true for x = b, hence we have shown

sup
x∈[a,b]

∣∣∣∣∣a0 +

K−1∑
k=1

ak · 1[bk,∞)(x)−m(x)

∣∣∣∣∣ ≤ C · (b− a)p

Kp
.

We �nish the proof by showing

sup
x∈[a,b]

∣∣∣∣∣
K−1∑
k=1

ak · σ(c · (x− bk))−
K−1∑
k=1

ak · 1[bk,∞)(x)

∣∣∣∣∣
≤ 2 · (b− a)p · C

Kp
+ C · (b− a)p ·K1−p · e−

c·(b−a)
K .

For bk ≤ x ≤ bk+1 we have∣∣∣∣∣
K−1∑
k=1

ak · σ(c · (x− bk))−
K−1∑
k=1

ak · 1[bk,∞)(x)

∣∣∣∣∣
≤

k−1∑
j=1

|aj | ·
∣∣∣σ(c · (x− bj))− 1[bj ,∞)(x)

∣∣∣+ |ak|+ |ak+1|

+
K−1∑
j=k+2

|aj | ·
∣∣∣σ(c · (x− bj))− 1[bj ,∞)(x)

∣∣∣
≤ max

j=1,...,K−1
|aj | ·

(
2 + (K − 3) · max

j∈{1,2,...,k−1,k+2,k+3,...,K−1}

∣∣∣σ(c · (x− bj))− 1[bj ,∞)(x)
∣∣∣) .

Using the (p, C)-smoothness of m, which implies

|aj | ≤ C ·
(b− a)p

Kp
,

together with Lemma 4 we get for bk ≤ x ≤ bk+1∣∣∣∣∣
K−1∑
k=1

ak · σ(c · (x− bk))−
K−1∑
k=1

ak · 1[bk,∞)(x)

∣∣∣∣∣
16



≤ C · (b− a)p

Kp
· (2 + (K − 3) · max

j∈{1,2,...,k−1,k+2,k+3,...,K−1}
e−c·|x−bj |)

≤ 2(b− a)p · C
Kp

+ C · (b− a)p ·K1−p · e−
c·(b−a)
K .

�

Lemma 6 Let σ be the logistic squasher. De�ne F by (15) and set

b̄ = b− λn · (∇bF )(a,b)

for some λn > 0. Then we have for any k ∈ {1, . . . ,K} and any j ∈ {0, . . . , d}:

|b̄k,j − bk,j | ≤ λn · 2 ·
√
F (a,b) ·max{1,max

i,l
{|x(l)

i |}} · |ak|

· exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣

 .

Proof. Using

|σ′(x)| = |σ(x) · (1− σ(x))| ≤ min {|σ(x)|, |1− σ(x)|} ≤ |σ(x)− 1[0,∞)(x)|

(where the �rst inequality holds due to σ(x) ∈ [0, 1]) we can conclude from Lemma 4
that

max
i=1,...,n

∣∣∣∣∣∣σ′
 d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣
≤ max

i=1,...,n
exp

−
∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣


= exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣

 .

As a consequence, we get for k ∈ {1, . . . ,K} and j ∈ {1, . . . , d} by the inequality of
Cauchy-Schwarz∣∣∣∣ ∂F∂bk,j (a,b)

∣∣∣∣
=

∣∣∣∣∣∣ 2n
n∑
i=1

(fnet,(a,b)(xi)− yi) · ak · σ′
 d∑
j=1

bk,j · x
(j)
i + bk,0

 · x(j)
i

∣∣∣∣∣∣
≤ 2 · |ak| ·

1

n

n∑
i=1

|fnet,(a,b)(xi)− yi| · |x
(j)
i | ·

∣∣∣∣∣∣σ′
 d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣
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≤ 2 ·

√√√√ 1

n

n∑
i=1

|fnet,(a,b)(xi)− yi|2 · (x
(j)
i )2 · |ak| ·

√√√√ 1

n

n∑
i=1

|σ′(
d∑
j=1

bk,j · x
(j)
i + bk,0)|2

≤ 2 ·
√
F (a,b) ·max

i,l
{|x(l)

i |} · |ak| ·

√√√√ 1

n

n∑
i=1

|σ′(
d∑
l=1

bk,l · x
(j)
l + bk,0)|2

≤ 2 ·
√
F (a,b) ·max

i,l
{|x(l)

i |} · |ak| · exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣

 .

Hence, we have shown

|b̄k,j − bk,j |

= λn ·
∣∣∣∣ ∂F∂bk,j (a,b)

∣∣∣∣
≤ λn · 2 ·

√
F (a,b) ·max

i,l
{|x(l)

i |} · |ak| · exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣



for any k ∈ {1, . . . ,K} and any j ∈ {1, . . . , d} .
In case that k ∈ {1, . . . ,K} and j = 0 we get in a similar fashion

|b̄k,0 − bk,0| = λn ·
∣∣∣∣ ∂F∂bk,0 (a,b)

∣∣∣∣
≤ λn · 2 ·

√
F (a,b) · 1 · |ak| · exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

bk,j · x
(j)
i + bk,0

∣∣∣∣∣∣

 ,

which implies the assertion. �

Lemma 7 De�ne F by (15) and de�ne (a(t),b(t)) by (16). Assume that (a(t),b(t)) satisfy
for t ∈ {1, . . . , tn}

F (a(t),b(t)) ≤ c5 <∞, (17)

‖a(t)‖2 ≤ c6 · n <∞, (18)

min
i=1,...,n,k=1,...,K

∣∣∣∣∣∣
d∑
j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣∣∣∣∣∣ ≥ δn > 0 (19)

and

(d+ 1) · tn · λn · 2 ·
√
c5 ·max{1,max

i,l
{|x(l)

i |
2}} ·

√
c6 · n · exp (−δn/2) ≤ δn

2
. (20)

Then we have for every k ∈ {1, . . . ,K}, any j ∈ {0, . . . , d} and any t ∈ {1, . . . , tn}:

|b(t)k,j − b
(t−1)
k,j | ≤ λn · 2 ·

√
c5 ·max{1,max

i,l
{|x(l)

i |}} ·
√
c6 · n · exp (−δn/2) . (21)
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Proof. We show (21) by induction on t. For t = 1 the assertion follows from Lemma
6 and (17)-(19). Now, we assume that (21) holds for all t ∈ {1, . . . , s}, where s ∈
{1, . . . , tn − 1}. Then

|b(s)k,j − b
(0)
k,j | ≤ tn · λn · 2 ·

√
c5 ·max{1,max

i,l
{|x(l)

i |}} ·
√
c6 · n · exp (−δn/2) ,

from which, together with assumption (19), we can conlcude that

min
i=1,...,n,k=1,...,K

∣∣∣∣∣∣
d∑
j=1

b
(s)
k,j · x

(j)
i + b

(s)
k,0

∣∣∣∣∣∣
≥ min

i=1,...,n,k=1,...,K

∣∣∣∣∣∣
d∑
j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣∣∣∣∣∣
− max
i=1,...,n,k=1,...,K

 d∑
j=1

|b(s)k,j − b
(0)
k,j | · |x

(j)
i |+ |b

(s)
k,0 − b

(0)
k,0|


≥ δn − max

i=1,...,n,k=1,...,K

 d∑
j=0

|b(s)k,j − b
(0)
k,j | ·max{1,max

i,l
{|x(l)

i |}}


≥ δn − (d+ 1) · tn · λn · 2 ·

√
c5 ·max{1,max

i,l
{|x(l)

i |
2}} ·

√
c6 · n · exp (−δn/2)

≥ δn
2
, (22)

where the last inequality is implied by inequality (20). So, for the induction step, appli-
cation of Lemma 6 together with (17) and (22) yields

|b(s+1)
k,j − b(s)k,j | ≤ λn · 2 ·

√
F (a(s),b(s)) ·max{1,max

i,l
{|x(l)

i |}} · |a
(s)
k |

· exp

− min
i=1,...,n


∣∣∣∣∣∣
d∑
j=1

b
(s)
k,j · x

(j)
i + b

(s)
k,0

∣∣∣∣∣∣



≤ λn · 2 ·
√
c5 ·max{1,max

i,l
{|x(l)

i |}} ·
√
c6 · n · exp (−δn/2) ,

from which we conclude the assertion. �

Lemma 8 De�ne F by (15), set

λn =
3

K

and de�ne (a(t),b(t)) by (16). Assume that (a(0),b(0)) is chosen such that

F (a(0),b(0)) ≤ c5 <∞ (23)
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and

min
i=1,...,n,k=1,...,K

∣∣∣∣∣∣
d∑
j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

∣∣∣∣∣∣ ≥ δn ≥ 1 (24)

hold. Let tn ∈ N and assume 2 · c1 ≤ K · n,

36 ·max{1, c5

c1
} ·max{1, 1

c2
1

} · (d+ 1)2 · n2

K
·max{1,max

i,j
|x(j)
i |

4}

·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)4

· t2n · exp (−δn/2) ≤ 1 (25)

and

3 · tn · exp(−δn/4) ≤ 1. (26)

Then for any t ∈ {0, 1, . . . , tn − 1} we have

F (a(t+1),b(t+1))−min
a
F (a,b(0))

≤
(

1− c1

6 ·K · n

)t+1
·
(
F (a(0),b(0))−min

a
F (a,b(0))

)
+ (2
√
c5 + 1) · exp (−δn/4)

+
6 ·K · n
c1

· 3 · exp (−δn/4) .

Proof. We have

F (a(t+1),b(t+1))−min
a
F (a,b(0))

=
(
F (a(t+1),b(t+1))− F (a(t+1),b(t))

)
+
(
F (a(t+1),b(t))−min

a
F (a,b(t))

)
+
(

min
a
F (a,b(t))−min

a
F (a,b(0))

)
.

We take a look at the second and the third term on the right-hand side of the above
equality. Lemma 2 and |σ(x)| ≤ 1, which give us∥∥∥(∇aF )(a1,b

(t))− (∇aF )(a2,b
(t))
∥∥∥ ≤ (2 ·K +

2 · c1

n

)
· ‖a1 − a2‖ ≤ 3 ·K · ‖a1 − a2‖,

together with Lemma 3 allow us to conclude from Lemma 1 that

F (a(t+1),b(t))−min
a
F (a,b(t))

≤
(

1− c1

6 ·K · n

)
·
(
F (a(t),b(t))−min

a
F (a,b(t))

)
.

As a consequence,(
F (a(t+1),b(t))−min

a
F (a,b(t))

)
+
(

min
a
F (a,b(t))−min

a
F (a,b(0))

)
≤
(

1− c1

6 ·K · n

)
·
(
F (a(t),b(t))−min

a
F (a,b(t))

)
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+ min
a
F (a,b(t))−min

a
F (a,b(0))

=
(

1− c1

6 ·K · n

)
·
(
F (a(t),b(t))−min

a
F (a,b(0))

)
+

c1

6 ·K · n
·
(

min
a
F (a,b(t))−min

a
F (a,b(0))

)
(27)

and so

F (a(t+1),b(t+1))−min
a
F (a,b(0))

≤
(

1− c1

6 ·K · n

)
·
(
F (a(t),b(t))−min

a
F (a,b(0))

)
+

c1

6 ·K · n
·
(

min
a
F (a,b(t))−min

a
F (a,b(0))

)
+F (a(t+1),b(t+1))− F (a(t+1),b(t)). (28)

In order to bound this term further, we introduce the following notation for simplicity

γt =
(
F (a(t),b(t))−min

a
F (a,b(0))

)
,

α =
c1

6 ·K · n
.

In the sequel, we will derive upper bounds β1, β2 > 0 such that

β1 ≥ min
a
F (a,b(t))−min

a
F (a,b(0)),

β2 ≥ F (a(t+1),b(t+1))− F (a(t+1),b(t)).

Then, the above results imply that we have

γt+1 ≤ (1− α) · γt + α · β1 + β2,

and applying this relation recursively using standard techniques from the literature we
get

γt+1 ≤ (1− α) · ((1− α) · γt−1 + α · β1 + β2) + α · β1 + β2

= (1− α)2 · γt−1 + (1− α) · α · β1 + α · β1 + (1− α) · β2 + β2

≤ . . .

≤ (1− α)t+1 · γ0 +

t∑
k=0

(1− α)k · α · β1 +

t∑
k=0

(1− α)k · β2

≤ (1− α)t+1 · γ0 +

∞∑
k=0

(1− α)k · α · β1 +

∞∑
k=0

(1− α)k · β2

= (1− α)t+1 · γ0 +
α · β1

1− (1− α)
+

β2

1− (1− α)

= (1− α)t+1 · γ0 + β1 +
β2

α
.
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It remains to �nd β1 and β2. In order to derive and upper bound β1, we will apply
Lemma 7, for which we show the following claim for all s ∈ {0, 1, . . . , tn−1} by induction

max
{
F (a(s+1),b(s)), F (a(s+1),b(s+1))

}
−min

a
F (a,b(0))

≤ c5 +
1

n

n∑
i=1

y2
i + 3 · (s+ 1) · exp(−δn/4). (29)

While doing so, we will be deriving an upper bound β2 in the process. For s = 0 the
inequality trivially holds by (27), (28), (23) and by the bound

F (a(1),b(1))− F (a(1),b(0)) ≤ 3 · exp (−δn/4)

which will be proven below (cf., (32)).
So, for the induction hypothesis, assume that (29) holds for s = t − 1 for arbitrary

t ∈ {1, . . . , tn − 1}. Trivially we have

min
a
F (a,b(t))−min

a
F (a,b(0)) ≤ F (0,b(t)) =

1

n

n∑
i=1

y2
i ,

hence by (27) and by the induction assumption we get

F (a(t+1),b(t))−min
a
F (a,b(0))

≤
(

1− c1

6 ·K · n

)
·
(
F (a(t),b(t))−min

a
F (a,b(0))

)
+

c1

6 ·K · n
·
(

min
a
F (a,b(t))−min

a
F (a,b(0))

)
≤
(

1− c1

6 ·K · n

)
·

(
c5 +

1

n

n∑
i=1

y2
i + 3 · t · exp(−δn/4)

)

+
c1

6 ·K · n
· 1

n

n∑
i=1

y2
i

≤ c5 +
1

n

n∑
i=1

y2
i + 3 · t · exp(−δn/4). (30)

Next, by (28) and by the induction hypothesis we get

F (a(t+1),b(t+1))−min
a
F (a,b(0))

≤ c5 +
1

n

n∑
i=1

y2
i + 3 · t · exp(−δn/4) + F (a(t+1),b(t+1))− F (a(t+1),b(t)). (31)

Further, we have

F (a(t+1),b(t+1))− F (a(t+1),b(t))
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=
1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi) + fnet,a(t+1),b(t))(xi)− 2yi)

·(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))

=
1

n

n∑
i=1

(2fnet,(a(t+1),b(t))(xi)− 2yi) · (fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))

+
1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

≤ 2 ·
√
F (a(t+1),b(t)) ·

√√√√ 1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

+
1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2.

Since σ is Lipschitz continuous applying the inequality of Cauchy-Schwarz a second time
yields

1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

=
1

n

n∑
i=1

 K∑
k=1

(a(t+1))k ·

σ
 d∑
j=1

b
(t+1)
k,j · x(j)

i + b
(t+1)
k,0

− σ
 d∑
j=1

b
(t)
k,j · x

(j)
i + b

(t)
k,0

2

≤
K∑
k=1

(a(t+1))2
k ·max{1,max

i,j
|x(j)
i |

2} · (d+ 1) ·
K∑
k=1

d∑
j=0

|b(t+1)
k,j − b(t)k,j |

2

≤ n

c1
· F (a(t+1),b(t)) ·max{1,max

i,j
|x(j)
i |

2} · (d+ 1) ·
K∑
k=1

d∑
j=0

|b(t+1)
k,j − b(t)k,j |

2.

By Lemma 7 (where (17) and (18) are true because of the fact that the induction hy-
pothesis implies that we have

F (a(t),b(t)) ≤ c5 +
1

n

n∑
i=1

y2
i + 1 + F (0,b(0)) ≤ 1 + c5 +

2

n

n∑
i=1

y2
i ,

from which (together with the defnition of F ) we can conclude that (17) and (18) hold
if we replace there c5 and c6 by

1 + c5 +
2

n

n∑
i=1

y2
i and

(
1 + c5 +

2

n

n∑
i=1

y2
i

)
· 1

c1
, respectively,

and where (20) holds because of (25)) and because of (24) we know that for any k ∈
{1, . . . ,K} and any j ∈ {0, . . . , d} we have

|b(t+1)
k,j − b(t)k,j |
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≤ λn · 2 ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)
·max{1,max

i,l
{|x(l)

i |}} ·
√
n · exp (−δn/2) /

√
c1.

Together with

F (a(t+1),b(t)) ≤ F (a(t),b(t))

≤ min
a
F (a,b(0)) + c5 +

1

n

n∑
i=1

y2
i + 3 · t · exp(−δn/4)

≤ 1 + c5 +
2

n

n∑
i=1

y2
i

(where the �rst inequality follows trivially from Lemma 1, and where we have used the
induction assumption for the second inequality), this implies

1

n

n∑
i=1

(fnet,(a(t+1),b(t+1))(xi)− fnet,(a(t+1),b(t))(xi))
2

≤ 4 · n
2

c2
1

· λ2
n ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)3

·max{1,max
i,j
|x(j)
i |

4} · (d+ 1)2 ·K · exp (−δn)

≤ 36 · (d+ 1)2 · n2

c2
1 ·K

·max{1,max
i,j
|x(j)
i |

4} ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)4

· exp (−δn/2)

·min
{

1, (F (a(t+1),b(t)))−1
}
· exp (−δn/2)

≤ min
{

1, (F (a(t+1),b(t)))−1
}
· exp (−δn/2) .

(Here the last inequality follows from (25)). Summarizing the above results we get

F (a(t+1),b(t+1))− F (a(t+1),b(t)) ≤ 3 · exp (−δn/4) = β2. (32)

By combining this inequality with the results above we get (29) for s = t + 1. This
concludes the proof of (29).
Now, we see that the conditions of Lemma 7 are met, since we can conclude from

min
a
F (a,b(0)) ≤ F (0,b(0)) =

1

n

n∑
i=1

y2
i

and from inequalities (29) and (26) that also (17) and (because of the de�ntion of F )
(18) hold where c5 and c6 are replaced by

1 + c5 +
2

n

n∑
i=1

y2
i and

(
1 + c5 +

2

n

n∑
i=1

y2
i

)
· 1

c1
, respectively.

As above we also see that (20) holds.
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Next we derive an upper bound on

min
a
F (a,b(t))−min

a
F (a,b(0)).

Choose ā such that
F (ā,b(0)) = min

a
F (a,b(0)).

Then
c1

n
·
n∑
k=0

ā2
k ≤ F (ā,b(0)) ≤ F (a(0),b(0)) ≤ c5,

hence
K∑
k=0

ā2
k ≤

c5 · n
c1

.

We have

min
a
F (a,b(t))−min

a
F (a,b(0)) = min

a
F (a,b(t))− F (ā,b(0))

≤ F (ā,b(t))− F (ā,b(0))

=
1

n

n∑
i=1

(fnet,(ā,b(t))(xi) + fnet,(ā,b(0))(xi)− 2yi) · (fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))

=
1

n

n∑
i=1

(2fnet,(ā,b(0))(xi)− 2yi) · (fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))

+
1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤ 2 ·
√
F (ā,b(0)) ·

√√√√ 1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

+
1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2.

Applying the inequality of Cauchy-Schwarz a second time and since σ is Lipschitz con-
tinuous we get

1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

=
1

n

n∑
i=1

 K∑
k=1

āk ·

σ
 d∑
j=1

b
(t)
k,j · x

(j)
i + b

(t)
k,0

− σ
 d∑
j=1

b
(0)
k,j · x

(j)
i + b

(0)
k,0

2

≤
K∑
k=1

ā2
k ·max{1,max

i,j
|x(j)
i |

2} · (d+ 1) ·
K∑
k=1

d∑
j=0

|b(t)k,j − b
(0)
k,j |

2.
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By Lemma 7 we know that for any k ∈ {1, . . . ,K} and any j ∈ {0, . . . , d}

|b(t)k,j − b
(0)
k,j |

≤ |b(t)k,j − b
(t−1)
k,j |+ |b

(t−1)
k,j − b(t−2)

k,j |+ · · ·+ |b
(1)
k,j − b

(0)
k,j |

≤ t · λn · 2 ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)
·max{1, 1

c1
} ·max{1,max

i,l
{|x(l)

i |}} ·
√
n · exp (−δn/2) .

From this we conclude that

1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤
K∑
k=1

ā2
k ·max{1,max

i,j
|x(j)
i |

2} · (d+ 1) ·K · (d+ 1)

·

(
t · λn ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)
·max{1, 1

c1
} ·max{1,max

i,l
{|x(l)

i |}} ·
√
n · exp (−δn/2)

)2

≤ c5

c1
·max{1, 1

c1
} ·

(
1 + c5 +

2

n

n∑
i=1

y2
i

)2

· n2 ·max{1,max
i,j
|x(j)
i |

4} · (d+ 1)2

·K · t2 · λ2
n · exp (−δn)

≤ exp (−δn/2) ,

where the last inequality follows from (25). Hence,

min
a
F (a,b(t))−min

a
F (a,b(0))

≤ 2 ·
√
F (ā,b(0)) ·

√√√√ 1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

+
1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤ (2 ·
√
F (ā,b(0)) + 1) ·

√√√√ 1

n

n∑
i=1

(fnet,(ā,b(t))(xi)− fnet,(ā,b(0))(xi))
2

≤ (2 ·
√
c5 + 1) · exp (−δn/4) = β1.

Plugging in the above results yields

F (a(t+1),b(t+1))−min
a
F (a,b(0))

≤ (1− α)t+1 · γ0 + β1 +
β2

α
.

≤
(

1− c1

6 ·K · n

)t+1
·
(
F (a(0),b(0))−min

a
F (a,b(0))

)
+ (2 ·

√
c5 + 1) · exp (−δn/4)
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+
6 ·K · n
c1

· 3 · exp (−δn/4) ,

which concludes the proof.
�

5.3. Two auxiliary results from empirical process theory

Lemma 9 Let βn = c3 · log(n) for some suitably large constant c3 > 0. Assume that

the distribution of (X,Y ) satis�es (7) for some constant c2 > 0 and that the regression

function m is bounded in absolute value. Let Fn be a set of functions f : Rd → R and

assume that the estimate mn satis�es

mn = Tβnm̃n,

m̃n(·) = m̃n(·, (X1, Y1), . . . , (Xn, Yn)) ∈ Fn
and

1

n

n∑
i=1

|Yi − m̃n(Xi)|2 · I{|Yi|≤βn for all i∈{1,...,n}}

≤ min
l∈Θn

(
1

n

n∑
i=1

|Yi − gn,l(Xi)|2 + penn(gn,l) + εn,l

)

for some random functions gn,l : Rd → R, some nonempty parameter set Θn and some

random penalty terms penn(gn,l) ≥ 0, and some additional deterministic term εn,l, where
gn,l and penn(gn,l) are independent of the data (X1, Y1), . . . , (Xn, Yn).
Then mn satis�es

E

∫
|mn(x)−m(x)|2PX(dx) ≤

c7 · (log n)2 ·
(

log
(

supxn1 N1

(
1

n·βn ,Fn, x
n
1

))
+ 1
)

n

+ 2 ·E
{

inf
l∈Θn

(∫
|gn,l(x)−m(x)|2PX(dx) + penn(gn,l) + εn,l

)}
for n > 1 and some constant c7 > 0, which does not depend on n, βn or the parameters

of the estimate.

Proof. This lemma follows in a straightforward way from the proof of Theorem 1 in
Bagirov et al. (2009). A complete version of the proof is given in the Supplement. �

In order to bound the covering numberN1

(
1

n·βn ,Fn, x
n
1

)
we will use the following lemma.

Lemma 10 Let max{K,βn, γn} ≤ nc8 and de�ne F by

F =

{
f : Rd → R : f(x) =

K∑
k=0

ak · σ

 d∑
j=1

bk,j · x(j) + bk,0

 (x ∈ Rd)
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for some ak, bk,j ∈ R satisfying

K∑
k=0

a2
k ≤ γn.

}

Then we have for any xn1 ∈ (Rd)n:

log

(
N1

(
1

n · βn
,F , xn1

))
≤ c9 · log n ·K.

Proof. Using that
K∑
k=0

|ak|2 ≤ γn

implies
K∑
k=0

|ak| ≤
√
K + 1 ·

√√√√ K∑
k=0

|ak|2 ≤
√

(K + 1) · γn,

we can conclude from Lemma 16.6 in Györ� et al. (2002) that we have

N1

(
1

n · βn
,F , xn1

)

≤

(
e(
√

(K + 1)γn + 1/(n · βn))

1/(2 · n · βn)

)K+1

·

(
N1

(
1/(2 · n · βn)√

(K + 1)γn + 1/(n · βn)
,G, xn1

))K+1

,

where

G =

{
g : Rd → R : g(x) = σ

 d∑
j=1

bj · x(j) + b0

 (x ∈ Rd)

for some b0, . . . , bd ∈ R

}
.

By Lemma 16.3, Theorem 9.5 and Theorem 9.4 in Györ� et al. (2002) we get

N1

(
1/(2 · n · βn)√

(K + 1)γn + 1/(n · βn)
,G, xn1

)

≤ 3 ·

(
2e · (2 · n ·

√
K + 1 · βn ·

√
γn + 2)

· log
(

3e · (2 · n ·
√
K + 1 · βn ·

√
γn + 2)

))d+2

,

which implies the assertion. �
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5.4. Proof of Theorem 1

From the de�nition of the estimate and from Lemma 8 we get

1

n

n∑
i=1

|Yi − m̃n(Xi)|2 · I{|Yi|≤βn for all i∈{1,...,n}}

≤ min
a∈RK+1,l=1,...,Ln

(
1

n

n∑
i=1

|Yi − fnet,(a,(b(l))(0))(Xi)|2 +
c1

n

K·r∑
k=0

a2
k + εn

)

where

εn =
(

1− c1

6 ·K · n

)tn
· β2

n + (2 · βn + 1) · exp

(
−

√
d ·A · ρn

4 · (n+ 1) · (K − 1)

)

+
6 ·K · n
c1

· 3 · exp

(
−

√
d ·A · ρn

4(n+ 1) · (K − 1)

)

≤ exp
(
−c1

6
· (log n)2

)
· β2

n + (2 · βn + 1) · exp

(
−
√
d ·A · n

8

)

+
6 ·K · n
c1

· 3 · exp

(
−
√
d ·A
8
· n

)
.

Application of Lemma 9 and of Lemma 10 yields

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c10 ·
(log n)3 ·K

n

+2 ·E

{
min

a∈RK+1,l=1,...,Ln

(∫
|fnet,(a,(b(l))(0))(x)−m(x)|2PX(dx) +

c1

n

K·r∑
k=0

a2
k

)}

+2 · exp
(
−c1

6
· (log n)2

)
· β2

n + 2 · (2 · βn + 1) · exp

(
−
√
d ·A · n

8

)

+2 · 6 ·K · n
c1

· 3 · exp

(
−
√
d ·A
8
· n

)
.

The (p, C)-smoothness of the fk implies

|m(x)−
r∑
s=1

fs(c̄
T
s x)| = |

r∑
s=1

fs(c
T
s x)−

r∑
s=1

fs(c̄
T
s x)|

≤
r∑
s=1

C · |cTs x− c̄Ts x|p
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≤ r · C · ‖x‖p · max
s=1,...,r

‖cs − c̄s‖p.

Together with Lemma 5 this implies

E

∫
|mn(x)−m(x)|2PX(dx)

≤ c11 ·
(log n)3 ·K

n
+ c12 · r2 · C2 · 1

K2p
+ c13 ·E

{
min

l=1,...,Ln
max
s=1,...,r

‖cs − c̄(l)
s ‖2p

}
.

The de�nition of K implies

c11 ·
(log n)3 ·K

n
+ c12 · r2 · C2 · 1

K2p
≤ c14 ·

(
(log n)3

n

) 2p
2p+1

,

hence it remains to show that we also have

E

{
min

l=1,...,Ln
max
s=1,...,r

‖cs − c̄(l)
s ‖2p

}
≤ c15 ·

(
(log n)3

n

) 2p
2p+1

.

By the random choice of the c
(l)
s we know for any t ∈ (0, 1]

P

{
min

l=1,...,Ln
max
s=1,...,r

‖cs − c̄(l)
s ‖ > t

}
=

Ln∏
i=1

(
1−P

{
max
s=1,...,r

‖cs − c̄(i)
s ‖ ≤ t

})
)

≤

(
1−

(
t

2

)r·d)Ln
from which we conclude

E

{
min

l=1,...,Ln
max
s=1,...,r

‖cs − c̄(l)
s ‖2p

}
≤
(

(log n)3

n

) 2p
2p+1

+ (2d)2p ·P

{
min

l=1,...,Ln
max
k=1,...,r

‖ck − c̄
(l)
k ‖ >

(
(log n)3

n

) 1
2p+1

}

≤
(

(log n)3

n

) 2p
2p+1

+ (2d)2p ·

(
1− 1

2r·d
·
(

(log n)3

n

) r·d
2p+1

)Ln

≤ c15 ·
(

(log n)3

n

) 2p
2p+1

,

where the last inequality follows from

Ln ≥ (log n)2 ·
(

n

(log n)3

) r·d
2p+1

.

Summarizing the above results we get the assertion. �
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A. Supplementary material

A.1. Proof of Lemma 1.

a) For s ∈ [0, 1] set
H(s) = F (a(t) + s · (a(t+1) − a(t))).

Then the fundamental theorem of calculus, the chain rule, the Cauchy-Schwarz inequality
and assumption (12) imply

F (a(t+1))− F (a(t)) = H(1)−H(0) =

∫ 1

0
H ′(s) ds

=

∫ 1

0
(∇aF )(a(t) + s · (a(t+1) − a(t))) · (a(t+1) − a(t)) ds

=

∫ 1

0

(
(∇aF )(a(t) + s · (a(t+1) − a(t)))− (∇aF )(a(t))

)
· (a(t+1) − a(t)) ds

+

∫ 1

0
(∇aF )(a(t)) · (a(t+1) − a(t)) ds

≤
∫ 1

0
Ln · ‖s · (a(t+1) − a(t))‖ · ‖a(t+1) − a(t)‖ ds

+(∇aF )(a(t)) · (a(t+1) − a(t))

=
Ln
2
· ‖a(t+1) − a(t)‖2 + (∇aF )(a(t)) · (a(t+1) − a(t)).

Using (10) and (11) we get

F (a(t+1))− F (a(t)) ≤ Ln
2
· λ2

n · ‖(∇aF )(a(t))‖2 − λn‖(∇aF )(a(t))‖2

= − 1

2 · Ln
· ‖(∇aF )(a(t))‖2.

b) From a) and (13) we get

F (a(t+1))− F (aopt)

≤ F (a(t))− F (aopt)−
1

2 · Ln
· ‖(∇aF )(a(t))‖2

≤ F (a(t))− F (aopt)−
1

2 · Ln
· ρn · (F (a(t))− F (aopt))

=

(
1− ρn

2 · Ln

)
· (F (a(t))− F (aopt)).

�

A.2. Proof of Lemma 9

In the proof we use the following error decomposition:∫
|mn(x)−m(x)|2PX(dx)
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=
[
E
{
|mn(X)− Y |2|Dn

}
−E

{
|m(X)− Y |2

}
−
(
E
{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

})]
+

[
E
{
|mn(X)− TβnY |2|Dn

}
−E

{
|mβn(X)− TβnY |2

}
−2 · 1

n

n∑
i=1

(
|mn(Xi)− TβnYi|2 − |mβn(Xi)− TβnYi|2

)]

+

[
2 · 1

n

n∑
i=1

|mn(Xi)− TβnYi|2 − 2 · 1

n

n∑
i=1

|mβn(Xi)− TβnYi|2

−

(
2 · 1

n

n∑
i=1

|mn(Xi)− Yi|2 − 2 · 1

n

n∑
i=1

|m(Xi)− Yi|2
)]

+

[
2

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 −
1

n

n∑
i=1

|m(Xi)− Yi|2
)]

=

4∑
i=1

Ti,n,

where TβnY is the truncated version of Y and mβn is the regression function of TβnY ,
i.e.,

mβn(x) = E
{
TβnY |X = x

}
.

We start with bounding T1,n. By using a2 − b2 = (a− b)(a+ b) we get

T1,n = E
{
|mn(X)− Y |2 − |mn(X)− TβnY |2

∣∣∣Dn}
−E
{
|m(X)− Y |2 − |mβn(X)− TβnY |2

}
= E

{
(TβnY − Y )(2mn(X)− Y − TβnY )

∣∣∣Dn}
−E
{(

(m(X)−mβn(X)) + (TβnY − Y )
)(
m(X) +mβn(X)− Y − TβnY

)}
= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤
exp(c2/2 · |Y |2)

exp(c2/2 · β2
n)

(33)

we conclude

|T5,n| ≤
√
E
{
|TβnY − Y |2

}
·
√
E
{
|2mn(X)− Y − TβnY |2

∣∣Dn}
≤

√
E
{
|Y |2 · I{|Y |>βn}

}
·
√
E
{

2 · |2mn(X)− TβnY |2 + 2 · |Y |2
∣∣Dn}
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≤

√√√√E

{
|Y |2 · exp(c2/2 · |Y |2)

exp(c2/2 · β2
n)

}

·
√
E
{

2 · |2mn(X)− TβnY |2
∣∣Dn}+ 2E

{
|Y |2

}
≤

√
E
{
|Y |2 · exp(c2/2 · |Y |2)

}
· exp

(
−c2 · β2

n

4

)
·
√

2(3βn)2 + 2E
{
|Y |2

}
.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2

c2
· exp

(c2

2
· |Y |2

)
and hence E

{
|Y |2 · exp(c2/2 · |Y |2)

}
is bounded by

E

(
2

c2
· exp

(
c2/2 · |Y |2

)
· exp(c2/2 · |Y |2)

)
≤ E

(
2

c2
· exp

(
c2 · |Y |2

))
≤ c16

which is less than in�nity by the assumptions of the lemma. Furthermore the third term
is bounded by

√
18β2

n + c17 because

E(|Y |2) ≤ E(1/c2 · exp(c2 · |Y |2) ≤ c18 <∞, (34)

which follows again as above. With the setting βn = c3 · log(n) it follows for some
constants c19, c20 > 0 that

|T5,n| ≤
√
c16 · exp

(
−c19 · log(n)2

)
·
√

(18 · c2
3 · (log n)2 + c18) ≤ c20 ·

log(n)

n
.

From the Cauchy-Schwarz inequality we get

T6,n ≤

√√√√2 ·E

{
|(m(X)−mβn(X))|2

}
+ 2 ·E

{
|(TβnY − Y )|2

}

·

√√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2},

where we can bound the second factor on the right-hand side in the above inequality
in the same way we have bounded the second factor from T5,n, because by assumption
||m||∞ is bounded and furthermoremβn is bounded by βn. Thus we get for some constant
c21 > 0 √√√√E

{∣∣∣m(X) +mβn(X)− Y − TβnY
∣∣∣2} ≤ c21 · log(n).

Next we consider the �rst term. With Jensen's inequality it follows that

E
{
|m(X)−mβn(X)|2

}
≤ E

{
E
(
|Y − TβnY |2

∣∣∣X)} = E
{
|Y − TβnY |2

}
.
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Hence we get

T6,n ≤
√

4 ·E {|Y − TβnY |2} · c22 · log(n)

and therefore with the calculations from T5,n it follows that T6,n ≤ c23 · log(n)/n for some
constant c23 > 0. Altogether we get

T1,n ≤ c24 ·
log(n)

n

for some constant c24 > 0.
Next we consider T2,n and conclude for t > 0

P{T2,n > t} ≤ P

{
∃f ∈ Tβn,supp(X)Fn : E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
)

− 1

n

n∑
i=1

(∣∣∣∣f(Xi)

βn
−
TβnYi
βn

∣∣∣∣2 − ∣∣∣∣mβn(Xi)

βn
−
TβnYi
βn

∣∣∣∣2
)

>
1

2

(
t

β2
n

+ E

(∣∣∣∣f(X)

βn
−
TβnY

βn

∣∣∣∣2
)
−E

(∣∣∣∣mβn(X)

βn
−
TβnY

βn

∣∣∣∣2
))}

,

where Tβn,supp(X)Fn is de�ned as
{
Tβnf · 1supp(X) : f ∈ Fn

}
. Theorem 11.4 in Györ� et

al. (2002) and the relation

N1

(
δ,

{
1

βn
g : g ∈ G

}
, xn1

)
≤ N1

(
δ · βn,G, ‖ · ‖∞,supp(X)

)
for an arbitrary function space G and δ > 0 lead to

P{T2,n > t} ≤ 14 · sup
xn1

N1

(
t

80 · βn
,Fn, ‖ · ‖∞,supp(X)

)
· exp

(
− n

5136 · β2
n

· t
)
.

Since the covering number is decreasing in t, we can conclude for εn ≥ 80
n

E(T2,n) ≤ εn +

∫ ∞
εn

P{T2,n > t}dt

≤ εn + 14 · sup
xn1

N1

(
1

n · βn
,Fn, xn1

)
· exp

(
− n

5136 · β2
n

· εn
)
· 5136 · β2

n

n
.

Choosing

εn =
5136 · β2

n

n
· log

(
14 · sup

xn1

N1

(
1

n · βn
,Fn, xn1

))
(which satis�es the necessary condition εn ≥ 80

n if the constant c3 in the de�nition of βn
is not too small) minimizes the right-hand side and implies

E(T2,n) ≤
c25 · log(n)2 · log

(
supxn1 N1

(
1

n·βn ,Fn, x
n
1

))
n

.
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By bounding T3,n similarly to T1,n we get

E(T3,n) ≤ c26 ·
log(n)

n

for some large enough constant c26 > 0 and hence we get in total

E

(
3∑
i=1

Ti,n

)
≤

c27 · (log n)2 ·
(

log
(
N1

(
1

n·βn ,Fn, ‖ · ‖∞,supp(X)

))
+ 1
)

n

for some su�cient large constant c27 > 0.
We �nish the proof by bounding T4,n. Let An be the event, that there exists i ∈
{1, ..., n} such that |Yi| > βn and let IAn be the indicator function of An. Then we get

E(T4,n) ≤ 2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAn

)

+2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= 2 ·E
(
|mn(X1)− Y1|2 · IAn

)
+2 ·E

(
1

n

n∑
i=1

|mn(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

= T7,n + T8,n.

With the Cauchy-Schwarz inequality we get for T7,n

1

2
· T7,n ≤

√
E
(

(|mn(X1)− Y1|2)2
)
·
√
P(An)

≤
√
E
(

(2|mn(X1)|2 + 2|Y1|2)2
)
·
√
n ·P{|Y1| > βn}

≤
√

E (8|mn(X1)|4 + 8|Y1|4) ·

√
n · E (exp(c2 · |Y1|2))

exp(c2 · β2
n)

,

where the last inequality follows as in the proof of inequality (33). With x ≤ exp(x) for
x ∈ R we get

E
(
|Y |4

)
= E

(
|Y |2 · |Y |2

)
≤ E

(
2

c2
· exp

(c2

2
· |Y |2

)
· 2

c2
· exp

(c2

2
· |Y |2

))
=

4

c2
2

·E
(
exp

(
c2 · |Y |2

))
,

which is less than in�nity by assumption (7) of the lemma. Furthermore ||mn||∞ is
bounded by βn and therefore the �rst factor is bounded by

c28 · β2
n = c29 · (log n)2
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for some constant c29 > 0. The second factor is bounded by 1/n, because by the assump-
tions of the lemma E

(
exp

(
c2 · |Y1|2

))
is bounded by some constant c30 <∞ and hence

we get√
n · E (exp(c2 · |Y1|2))

exp(c2 · β2
n)

≤
√
n ·

√
c30√

exp(c2 · β2
n)
≤

√
n · √c30

exp((c2 · c2
3 · (log n)2)/2)

.

Since exp(−c · log(n)2) = O(n−2) for any c > 0, we get altogether

T7,n ≤ c31 ·
(log n)2√n

n2
≤ c32 ·

(log n)2

n
.

With the de�nition of Acn and m̃n de�ned as in the assumptions of this lemma we conclude

T8,n ≤ 2 ·E

(
1

n

n∑
i=1

|m̃n(Xi)− Yi|2 · IAcn −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

≤ 2 ·E

(
min
l∈Θn

1

n

n∑
i=1

|gl,n(Xi)− Yi|2 + penn(gn,l) + εn,l −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Hence by the independence of gn,l and
penn(gn,l) of (X1, Y1), . . . , (Xn, Yn) we get that

E(T4,n)

≤ c32 ·
(log n)2

n

+2 ·E

(
min
l∈Θn

1

n

n∑
i=1

|gl,n(Xi)− Yi|2 + penn(gn,l) + εn,l −
1

n

n∑
i=1

|m(Xi)− Yi|2
)

≤ c32 ·
(log n)2

n
+ 2 ·E

(
min
l∈Θn

(∫
|gl,n(x)−m(x)|2PX(dx) + 2 · penn(gn,l) + εn,l

))
holds. In combination with the other considerations in the proof this implies the asser-
tion of Lemma 6. �

39



Aline Braun
Fachbereich Mathematik, Technische Universitt Darmstadt

E-Mail: braun@mathematik.tu-darmstadt.de

Michael Kohler
Fachbereich Mathematik, Technische Universitt Darmstadt

E-Mail: kohler@mathematik.tu-darmstadt.de

Harro Walk
Fachbereich Mathematik, Universität Stuttgart, Stuttgart, Germany

E-Mail: walk@mathematik.uni-stuttgart.de

mailto:braun@mathematik.tu-darmstadt.de
mailto:kohler@mathematik.tu-darmstadt.de
mailto:walk@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2012-001
Komplette Liste: http://www.mathematik.uni-stuttgart.de/preprints

2019-003 Braun, A.; Kohler, M.; Walk, H.: On the rate of convergence of a neural network
regression estimate learned by gradient descent

2019-002 Györfi, L.; Henze, N.; Walk, H.: The limit distribution of the maximum probability
nearest neighbor ball

2019-001 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: An Alternative Proof of H1-Stability of the
L2-Projection on Graded Meshes

2018-003 Kollross, A.: Octonions, triality, the exceptional Lie algebra F4, and polar actions on
the Cayley hyperbolic plane
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2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for
Control Constrained Optimal Control Problems

2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive
Equations

2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds
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