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Abstract

Entropy numbers are an important tool for quantifying the compactness of operators. Besides

establishing new upper bounds on the entropy numbers of diagonal operators Dσ from `p to `q,

where p 6= q, we investigate the optimality of these bounds. In case of p < q optimality is proven for

fast decaying diagonal sequences, which include exponentially decreasing sequences. In case of p > q

we show optimality under weaker assumption than previously used in the literature. In addition, we

illustrate the benefit of our results with examples not covered in the literature so far.

Keywords Diagonal Operators, Entropy Numbers

1. Introduction and Main Results

For 1 ≤ p, q ≤ ∞ and a non-increasing sequence σ = (σk)k≥1 we write Dσ : `p → `q for the diagonal

operator between the sequence spaces `p and `q, i.e. Dσ(xk)k≥1 := (σkxk)k≥1. If we denote the closed

unit ball of `p by B`p then the entropy numbers of the operator Dσ : `p → `q are defined by

εn(Dσ) := inf
{
ε > 0 : ∃y1, . . . , yn ∈ `q with DσB`p ⊆

n⋃
i=1

yi + εB`q

}
for all n ≥ 1. In case of p = q Gordon et al. [8, Proposition 1.7] give a complete description of the

asymptotic behavior of the entropy numbers εn(Dσ) for all diagonal sequences σ. In case of p 6= q –

as far as we know – there are only partial answers, see e.g. [11, 12, 4]. The present work is a further

contribution to this problem: Our first theorem fills a gap in the literature by providing an upper

bound in case of p < q, which is optimal for sequences that decay at least exponentially in the sense

of (EXP). The second theorem considers the case p > q and gives an upper bound, which is optimal

for sequences that decrease at least polynomially in the sense of (ALP) as well as for sequences that
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decrease at most polynomially in the sense of (AMP). For the second type of sequences this recovers the

optimal bound of Kühn [12], while the first type of sequences have not been considered so far. A more

detailed comparison between our results and existing bounds can be found at the end of this section.

The proofs of both our theorems combine the ideas of Gordon et al. [8, Proposition 1.7] and Oloff [15,

Hilfsatz 2]. Moreover, in the appendix we summarize relations between the regularity conditions on σ

we consider and some other common regularity conditions.

Before we proceed let us introduce some notation. For real sequences (xn)n≥1 and (yn)n≥1 we write

xn 4 yn iff there is a constant c > 0 with xn ≤ cyn for all n ≥ 1 and xn � yn iff xn 4 yn as well as

xn < yn hold. In the following, we declare an upper or lower bound (xn)n≥1 on the entropy numbers to

be optimal if there is a corresponding lower resp. upper bound (yn)n≥1 with xn � yn.

1.1 Theorem (Bound for p < q) Let 1 ≤ p < q ≤ ∞ with 1
p = 1

q + 1
s and σ = (σk)k≥1 be a sequence

with σk > 0 and σk ↘ 0. Then the entropy numbers of the diagonal operator Dσ : `p → `q satisfy

εn(Dσ) 4 sup
k≥1

k−1/s
(

(σ1 + k1/sσk) · . . . · (σk + k1/sσk)

n

)1/k

. (1)

If, in addition, there is a real number b > 1 with

sup
k≤n

σnb
n

σkbk
<∞ (EXP)

then the bound in (1) is optimal and coincides with

εn(Dσ) � sup
k≥1

k−1/s
(
σ1 · . . . · σk

n

)1/k

.

Note that the supremum in Equation (EXP) is taken over all tuples (n, k) ∈ N2 with k ≤ n. Moreover,

Condition (EXP) implies σn 4 b−n and is independent of p and q.

To treat the case p > q we recall that the diagonal operator Dσ is well-defined if and only if σ ∈ `r
with 1

q = 1
p + 1

r . For this reason we restricted our considerations in this case to σ ∈ `r and define the

tail sequence for k ≥ 1

τk :=
( ∞∑
n=k

σrn

)1/r
. (2)

1.2 Theorem (Bound for p > q) Let 1 ≤ q < p ≤ ∞ with 1
q = 1

p + 1
r and σ = (σk)k≥1 ∈ `r be a

sequence with σk > 0 and σk ↘ 0. Then the entropy numbers of the diagonal operator Dσ : `p → `q

satisfy

εn(Dσ) 4 sup
k≥1

(
(τk + k1/rσ1) · . . . · (τk + k1/rσk)

n

)1/k

. (3)

Moreover, under each of the following additional assumptions the bound in (3) is optimal:

(i) Assumption (ALP): τn 4 σnn
1/r. In this case the bound in (3) coincides with

εn(Dσ) � sup
k≥1

k1/r
(σ1 · . . . · σk

n

)1/k
.
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(ii) Assumption (AMP): τn < σnn
1/r. In this case the bound in (3) coincides with

εn(Dσ) � τblog2(n)c+1.

According to Lemma A.3 (i) the Condition (ALP) implies σn 4 n−α for some α > 1/r. Moreover,

Lemma A.3 (ii) and Lemma A.2 say that the Condition (AMP) is equivalent to τn � τ2n and that this

implies τn < n−α for some α > 0. Furthermore, if we combine Lemma A.1 (iv) with (b) and (d) of

Lemma A.3 we get (EXP)⊆(ALP) resp. (EXP)∩(AMP)= ∅.
Let us now compare our results to the bounds previously obtained in the literature. Since essentially

all previously established results on the entropy (or covering) numbers of Dσ, see e.g. [9, 14, 13, 15, 3, 10]

and the references therein, are contained in [11, 12, 4], we restrict our comparison to the latter three

articles.

In case of p < q the most general entropy bounds are derived by Kühn in [11]. Namely, he obtained

optimal bounds under each of the following set of assumptions:

(i) polynomial: supk≤n
σnnα

σkkα
<∞ for some α > 0 and σn � σ2n,

(ii) fast logarithmic: supk≤n
σn
σk

(1+logn
1+log k

)1/s
<∞ and σn2 � σn,

(iii) slow logarithmic: infk≤n
σn
σk

(1+logn
1+log k

)1/s
> 0.

Note that Scenario (i) and (ii) both exclude sequences that decrease too slow as well as sequences that

decrease too fast. In contrast, (iii) only excludes sequences that decrease too fast. In comparison, the

optimal bounds we obtain in Theorem 1.1 require sequences that decay at least exponentially in the

sense of (EXP). Since all of the Scenarios (i)–(iii) imply σn � σ2n, we easily see that they all exclude

(EXP), that is, (EXP) is not covered by the results in [11].

In case of p > q, [11] also provides optimal bounds for sequences σ satisfying σn � σ2n and

sup
k≤n

σnn
α

σkkα
<∞

for some α > 1/r. According to Lemma A.3 the combination of both assumptions is equivalent to the

combination of (AMP) and (ALP), i.e. τn � σnn
1/r. In [12], Kühn generalizes the results of [11] by

establishing optimal bounds under Assumption (AMP), only. Consequently, Theorem 1.2 recovers the

upper bounds of [12] and additionally provides optimal bounds for σ that only satisfy (ALP).

Table 1 lists three types of sequences σ that are not covered by the literature, but for which we

obtain optimal bounds. Compared to [11, 12], another advantage of our results is that they actually

provide bounds for all 1 ≤ p 6= q ≤ ∞ and all sequences σ. However, in some cases the question of

optimality is not answered yet.

Finally, there is another strand of research, see e.g. [3, 4], that describes the asymptotic of the

entropy numbers in terms of (generalized) Lorentz spaces. The most general result in this direction is

[4, Corollary 1.2]:

σ ∈ `t,v,ϕ ⇐⇒ ε2n−1(Dσ) ∈ `u,v,ϕ ,

where `u,v,ϕ is a generalized Lorentz space with slowly varying function ϕ, see [4, Section 2] for

a definition, and the parameters satisfy 1 ≤ p, q ≤ ∞, 0 < t, v ≤ ∞, 1/t > (1/q − 1/p)+, and
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σn � τn � (AMP) (ALP) (EXP)

exp
(
−a logλ(n)

)
σn n

1/r log(1−λ)/r(n) no yes if λ > 1 no

exp
(
−anλ

)
σn n

(1−λ)+/r no yes yes if λ ≥ 1

exp
(
−aeλn

)
σn no yes yes

Table 1: Three types of sequences for which our results provide optimal bounds and which are not
covered by the existing literature. For all examples we assume a > 0 and λ > 0. In addition,
the conditions (AMP) and (ALP) are only considered in the case p > q, whereas (EXP) is
actually independent of p and q. Note some subtleties of the first example: For λ = 1 it
reduces to a plain polynomial decay, which is already well understood. Moreover, for λ < 1
the operator Dσ is not even bounded in case of p > q. Finally, for λ < 1 and p < q, Kühn [11]
leaves the behavior of εn(Dσ) as an open question, which our results cannot address, either.

1/u = 1/t− (1/q−1/p). Note that (⇐) is contained in Lemma 2.3 and (⇒) is contained in Theorem 1.2

if p > q and v =∞.
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2. Proofs

2.1. Preliminaries

Before we prove the main theorems we summarize some preparatory results. Because we will reduce

the investigation of diagonal operators to the case of finite dimensional diagonal operators on Rk we

will include this case in the following. To this end, we consider sequences over an index set I ⊆ N and

define, for 1 ≤ p ≤ ∞, the sequence space `p(I) := {x = (xi)i∈I ∈ RI : ‖x‖`p(I) <∞} with norm

‖x‖`p(I) :=

(∑
i∈I
|xi|p

)1/p

and closed unit ball B`p(I). With this notation we have `p = `p(N) and for k ≥ 1 we introduce the

abbreviation `kp := `p({1, . . . , k}). In the following, we fix 1 ≤ p, q ≤ ∞, a sequence σ = (σi)i∈I ∈ RI ,
and the corresponding diagonal operator Dσ : `p(I)→ `q(I) defined by Dσ(xi)i∈I := (σixi)i∈I . As a

consequence of Hölder’s inequality the operator norm of Dσ satisfies

‖Dσ‖ =

‖σ‖`r(I), p > q, 1
q = 1

p + 1
r

‖σ‖`∞(I), p ≤ q .
(4)
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Next, we introduce some concepts related to entropy numbers. For ε > 0 the covering number of Dσ is

defined by

N (Dσ, ε) := min
{
n ≥ 1 : ∃y1, . . . , yn ∈ `q(I) with DσB`p(I) ⊆

n⋃
i=1

yi + εB`q(I)

}
. (5)

The next result establishes a comparison between covering and entropy numbers.

2.1 Lemma Let 1 ≤ p, q ≤ ∞, (ak)k≥1 be a positive sequence and Dσ : `p → `q be a diagonal operator

with ‖Dσ‖ <∞. If we have the covering number estimate

N (Dσ, ε) ≤ sup
k≥1

ak

(1

ε

)k
for all 0 < ε < ‖Dσ‖, then for all n ≥ 1 the n-th entropy number satisfies

εn(Dσ) ≤ sup
k≥1

(ak
n

)1/k
.

Proof. Let n ≥ 1 be a natural number. In case of εn(Dσ) = 0 there is nothing to prove. Hence we

assume εn(Dσ) > 0 and choose 0 < ε < εn(Dσ). By the definition of entropy and covering numbers we

have n < N (Dσ, ε). Moreover, by our assumption there is, for every δ > 0, a kδ ≥ 1 with

n ≤ N (Dσ, ε) ≤ (1 + δ) akδ

(1

ε

)kδ
.

This implies

ε ≤
((1 + δ) akδ

n

)1/kδ
≤ (1 + δ)

(akδ
n

)1/kδ
≤ (1 + δ) sup

k≥1

(ak
n

)1/k
.

Letting δ ↘ 0 and ε↗ εn(Dσ) we get the assertion.

In the following, λk denotes the k-dimensional Lebesgue measure.

2.2 Lemma Let 1 ≤ p, q ≤ ∞, k ≥ 1 and σ1, . . . , σk > 0. Then for all ε > 0 the diagonal operator

Dσ : `kp → `kq satisfies

N (Dσ, 2ε) ≤ 2k
λk(B`kp)

λk(B`kq )

(
‖ idkq,p ‖+

σ1
ε

)
· . . . ·

(
‖ idkq,p ‖+

σk
ε

)
, (6)

where idkq,p : `kq → `kp denotes the identity operator.

In case of p = q the bound in (6) originates from Oloff [15, Hilfsatz 2]. Furthermore, note that the

proof of Kolmogorov and Tikhomirov [9, Theorem XVI] contains the case p = q = 2 and σn = n−α.

Proof. For this proof we use packing numbers, which for ε > 0 are defined by

P(Dσ, ε) := max
{
n ≥ 1 : ∃y1, . . . , yn ∈ DσB`kp with ‖yi − yj‖`kq > 2ε ∀i 6= j

}
.
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Recall from [9, Theorem IV] that P(Dσ, 2ε) ≤ N (Dσ, 2ε) ≤ P(Dσ, ε) holds for all ε > 0. Therefore it

is enough to prove that P(Dσ, ε) is bounded by the right hand side of (6).

Now, for ε > 0 and n := P(Dσ, ε) we choose x1, . . . , xn ∈ DσB`kp with ‖xi − xj‖`kq > 2ε for all i 6= j.

Then xi + εB`kq are disjoint sets contained in DσB`kp + εB`kq . Hence their volume satisfies

nεkλk(B`kq ) = λk
( n⋃
i=1

(
xi + εB`kq

))
≤ λk(DσB`kp + εB`kq ). (7)

Before we continue to estimate (7) we prove the following auxiliary result: For a second diagonal

operator Dω : `kp → `kq with ωi > 0 for all i = 1, . . . , k we have

DσB`kp +DωB`kp ⊆ 2Dσ+ωB`kp . (8)

Note that since Dσ+ω is invertible (8) is equivalent to D−1σ+ω(DσB`kp +DωB`kp) ⊆ 2B`kp . Now, to show

(8) we fix x, y ∈ B`kp and observe

‖D−1σ+ω(Dσx+Dωy)‖`kp ≤ ‖D
−1
σ+ωDσx‖`kp + ‖D−1σ+ωDωy‖`kp ≤ ‖D

−1
σ+ωDσ‖+ ‖D−1σ+ωDω‖.

SinceD−1σ+ωDσ is an operator from `kp to `kp the operator norm is given by ‖D−1σ+ωDσ‖ = maxi=1,...,k
σi

σi+ωi
≤

1. Analogously we have ‖D−1σ+ωDω‖ = maxi=1,...,k
ωi

σi+ωi
≤ 1 and therefore (8) is proven.

By the definition of the operator norm we have B`kq ⊆ ‖ idkq,p ‖B`kp . Together with (8) we get

DσB`kp + εB`kq ⊆ DσB`kp + ε‖ idkq,p ‖B`kp ⊆ 2Dσ+ε‖ idkq,p ‖
B`kp .

Continuing estimate (7) with this inclusion yields (6).

2.2. Entropy Bounds

In this subsection we provide lower and upper bounds on the entropy numbers. To this end, we define,

for k ≥ 1, the auxiliary operators

Dk
p,q : `kp → `kq , (xn)kn=1 7→ (σ1x1, . . . , σkxk),

P kp : `p → `kp, (xn)n≥1 7→ (x1, . . . , xk),

Ikp : `kp → `p, (xn)kn=1 7→ (x1, . . . , xk, 0, 0, . . .).

Note that these operators satisfy Dk
p,q = P kq DσI

k
p and ‖Ikp ‖ = ‖P kp ‖ = 1.

2.3 Lemma (Lower Bound) Let 1 ≤ p, q ≤ ∞ and σ = (σk)k≥1 with σk > 0 and σk ↘ 0 such that the

diagonal operator Dσ : `p → `q is bounded. Then for all n ≥ 1 we have

εn(Dσ) ≥ sup
k≥1

(λk(B`kp)

λk(B`kq )

σ1 · . . . · σk
n

)1/k

.

Note that this lower bound holds without any additional assumption on σ. Moreover, a combination
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of Wang [16] with Stirling’s formula yields

(λk(B`kp)

λk(B`kq )

)1/k

� k1/q−1/p. (9)

Proof. By the multiplicativity of entropy numbers, see [5, p. 11], we find εn(Dk
p,q) = εn(P kq DσI

k
p ) ≤

εn(Dσ), and hence it remains to give a lower bound for εn(Dk
p,q). To this end, choose for ε > εn(Dk

p,q)

some x1, . . . , xn ∈ Rk with DσB`kp ⊆
⋃n
i=1(xi + εB`kq ). Consequently, the volume of these sets satisfy

σ1 · . . . · σkλk(B`kp) = λk(DσB`kp) ≤
n∑
i=1

λk(xi + εB`kq ) = nεkλk(B`kq ),

and hence we find

ε ≥
(λk(B`kp)

λk(B`kq )

σ1 · . . . · σk
n

)1/k

.

Letting ε↘ εn(Dk
p,q) and taking the supremum over k ≥ 1 we get the assertion.

Since the upper bounds in (1) and (3) are based on the same decomposition we first introduce this

decomposition. To this end, recall that the covering numbers have an additivity and multiplicativity

property analogously to the entropy numbers, see [5, p. 11]. Using these properties yields

N (Dσ, ε) = N
(
IkqD

k
p,qP

k
p + (Dσ − IkqDk

p,qP
k
p ), ε

)
≤ N

(
IkqD

k
p,qP

k
p , ε/2

)
· N
(
Dσ − IkqDk

p,qP
k
p , ε/2

)
≤ N

(
Dk
p,q, ε/2

)
· N
(
Dσ − IkqDk

p,qP
k
p , ε/2

)
.

In the following, we will choose a suitable k with ‖Dσ − IkqDk
p,qP

k
p ‖ ≤ ε/2. Since in this case we have

N (Dσ − IkqDk
p,qP

k
p , ε/2) = 1 the estimate above reduces to

N (Dσ, ε) ≤ N (Dk
p,q, ε/2). (10)

Let us first treat the case p < q.

2.4 Lemma Let 1 ≤ p < q ≤ ∞ with 1
p = 1

q + 1
s and σ = (σk)k≥1 with σk > 0 and σk ↘ 0. Then for

all n ≥ 1 the diagonal operator Dσ : `p → `q satisfies

εn(Dσ) ≤ 4 sup
k≥1

(λk(B`kp)

λk(B`kq )

(2σ1 + k1/sσk) · . . . · (2σk + k1/sσk)

n

)1/k

.

Proof. Because of the monotonicity of σ, for every ε > 0 with ε < ‖Dσ‖ = σ1, there is a k ≥ 1 with

σk+1 ≤ ε/2 < σk. Equation (4) gives us ‖Dσ − IkqDk
p,qP

k
p ‖ = σk+1 ≤ ε/2. Using Equation (10) with

this k, Lemma 2.2, and ‖ idkq,p ‖ = k1/s we get

N (Dσ, ε) ≤ N (Dk
p,q, ε/2) ≤ 2k

λk(B`kp)

λk(B`kq )

(
k1/s +

4σ1
ε

)
· . . . ·

(
k1/s +

4σk
ε

)
.
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Using k1/s < 2σkk
1/s

ε and taking the supremum over k gives

N (Dσ, ε) ≤ sup
k≥1

{λk(B`kp)

λk(B`kq )

(
σkk

1/s + 2σ1
)
· . . . ·

(
σkk

1/s + 2σk
)(4

ε

)k}
.

Finally, Lemma 2.1 yields the assertion.

2.5 Lemma Let 1 ≤ q < p ≤ ∞ with 1
q = 1

p + 1
r , σ = (σk)k≥1 ∈ `r with σk > 0 and σk ↘ 0, and τ the

tail sequence defined by (2). Then for all n ≥ 1 the diagonal operator Dσ : `p → `q satisfies

εn(Dσ) ≤ 4 sup
k≥1

(
(τk + 2k1/rσ1) · . . . · (τk + 2k1/rσk)

n

)1/k

.

Proof. Because of the monotonicity of τ , for every 0 < ε < ‖Dσ‖ = τ1, there is a k ≥ 1 with

τk+1 ≤ ε/2 < τk. Equation (4) gives us ‖Dσ − IkqDk
p,qP

k
p ‖ = τk+1 ≤ ε/2. Using Equation (10) with this

k, the decomposition Dk
p,q = idkp,q ◦Dk

p,p, and ‖ idkp,q ‖ = k1/r we get

N (Dσ, ε) ≤ N (Dk
p,q, ε/2) ≤ N (Dk

p,p, k
−1/rε/2) · N (idkp,q, k

1/r) = N (Dk
p,p, k

−1/rε/2).

Using Lemma 2.2 and 1 < 2τk
ε gives

N (Dσ, ε) ≤ 2k
(

1 +
4k1/rσ1

ε

)
· . . . ·

(
1 +

4k1/rσk
ε

)
≤
(
τk + 2k1/rσ1

)
· . . . ·

(
τk + 2k1/rσk

)(4

ε

)k
.

Finally, taking the supremum over k and using Lemma 2.1 gives the assertion.

2.3. Optimality

Proof of Theorem 1.1. The upper bound in (1) is a consequence of Lemma 2.4 and Equation (9). It

remains to prove the optimality under the additional Assumption (EXP). To this end, we continue the

estimate of the upper bound as follows

εn(Dσ) 4 sup
k≥1

k−1/s
(
σ1 · . . . · σk

n

)1/k((
1 +

k1/sσk
σ1

)
· . . . ·

(
1 +

k1/sσk
σk

))1/k

.

Applying that the geometric mean is bounded by the arithmetic mean as well as the triangle inequality

in `ks (since s ≥ p ≥ 1) yields

((
1 +

k1/sσk
σ1

)
· . . . ·

(
1 +

k1/sσk
σk

))1/k

≤
(

1/k
k∑
i=1

(
1 +

k1/sσk
σi

)s)1/s

≤ 1 + σk

( k∑
i=1

σ−si

)1/s

.

According Lemma A.1 (iii) the right hand side is bounded in k and we get the claimed upper bound. If

we combine Lemma 2.3 with Equation (9) we get the corresponding lower bound.

Proof of Theorem 1.2. The upper bound in (3) directly follows from Lemma 2.5 and it thus remains to

prove the optimality under the additional Assumption (i) and (ii).
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(i) The upper bound (3) can be transformed into

εn(Dσ) 4 sup
k≥1

k1/r
(σ1 · . . . · σk

n

)1/k(( τk
k1/rσ1

+ 1
)
· . . . ·

( τk
k1/rσk

+ 1
))1/k

.

Since the last factor is bounded in k according to our additional Assumption (ALP) this yields the

claimed upper bound. If we combine Lemma 2.3 with Equation (9) we get the corresponding lower

bound.

(ii) Because of Lemma A.3 (ii) we have τn � τ2n. Hence Kühn [12, Theorem 1] yields εn(Dσ) �
τblog2(n)c+1 and it is enough to show that upper bound (3) is asymptotically bounded by τblog2(n)c+1.

According to (AMP) and Lemma A.2 (iii) applied to (τn)n≥1 there are constants c1, c2, β > 0 with

σi ≤ c1τii−1/r and τi ≤ c2τkkβi−β for all k ≥ i. Together we get for α = 1/r + β

τk + k1/rσi ≤ τk + c1c2τk
k1/r+β

i1/r+β
≤ τk

kα

iα
(1 + c1c2)

and all k ≥ i. Plugging this into bound (3) we get

εn(Dσ) 4 sup
k≥1

(
(τk + k1/rσ1) · . . . · (τk + k1/rσk)

n

)1/k

4 sup
k≥1

τk
n1/k

kα

(k!)α/k
.

From Stirling’s formula we know (k!)1/k � k. Hence we have εn(Dσ) 4 supk≥1
τk
n1/k and it remains

to show, that this supremum behaves asymptotically like τblog2(n)c+1. To this end, let c > 0 be the

doubling constant of τ , i.e. τ2n ≥ cτn for all n ≥ 1. Without loss of generality we can assume c < 1 and

define α := log(2)
2 log(1/c) > 0. For k ≤ α log2(n) we have

n
1
2k
− 1
k = n−

1
2k = exp

(
− log(n)

2k

)
≤ exp

(
− log(n)

2α log2(n)

)
= exp(− log(1/c)) = c ≤ τ2k

τk

and this implies
τk

n
1
k

≤ τ2k

n
1
2k

.

A recursive application of this inequality enables us to restrict our supremum to k > α log2(n). Moreover,

for such k we have

1 ≥ n−1/k = exp
(
− log(n)

k

)
≥ exp

(
− log(n)

α log2(n)

)
= 2−1/α.

Combining this with Lemma A.2 (ii) we get the assertion

εn(Dσ) 4 sup
k≥1

τk
n1/k

= sup
k>α log2(n)

τk
n1/k

� sup
k>α log2(n)

τk = τbα log2(n)c+1 � τblog2(n)c+1.

A. Conditions on Sequences

In this section we collect some characterizations of the conditions used on the diagonal sequence. Most

of them are consequences of the general theory of O-regular varying functions/sequences, but for

convenience we include the proofs, respectively give detailed references. These results enable us to
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compare our findings with [11, 12]. In the following, all supremums supk≤n and infimums infk≤n are

taken over all tuples (n, k) ∈ N2 with k ≤ n.

A.1 Lemma ((EXP) Sequences) Let r, s > 0, σ = (σk)k≥1 with σk > 0 and σk ↘ 0, τ be the tail

sequence given by (2), and vn :=
(∑n

k=1 σ
−s
k

)1/s
the partial sum sequence. Then the following statements

are equivalent:

(i) There is a real number b > 1 with supk≤n
σnbn

σkbk
<∞.

(ii) There is an n0 ≥ 1 and a real number 0 < a < 1 with σk+n0 ≤ a σk for all k ≥ 1.

(iii) σn � 1/vn.

(iv) σn � τn.

Note that Condition (i) and (ii) are independent of r > 0 and s > 0. Consequently, if σ satisfies

Condition (iii) or (iv) for some s > 0 resp. r > 0 then σ satisfies both conditions for all r, s > 0.

Proof. (i)⇒(iii) For c := supk≤n
σnbn

σkbk
<∞ we get

vsnσ
s
n =

n∑
k=1

(σn
σk

)s
≤ cs

n∑
k=1

b−s(n−k) = cs
n−1∑
k=0

b−sk ≤ (bc)s

bs − 1

for all n ≥ 1. Moreover, vnσn ≥ 1 always holds. By considering (τk/σk)
r we can analogously prove

(i)⇒(iv).

(iii)⇒(ii) Let c > 0 be a constant with vnσn ≤ c for all n ≥ 1. Because of the monotonicity of σ we

get for k, n0 ≥ 1

cs ≥ vsk+n0
σsk+n0

=

k+n0∑
i=1

(σk+n0

σi

)s
≥

k+n0∑
i=k

(σk+n0

σi

)s
≥
(σk+n0

σk

)s
(n0 + 1).

Choosing n0 := dcse yields
σk+n0

σk
≤ c

(n0 + 1)1/s
≤ c

(cs + 1)1/s
< 1

for all k ≥ 1.

(iv)⇒(ii) Let c > 0 be a constant with τk ≤ cσk for all k ≥ 1. Because of the monotonicity of σ we

get for k, n0 ≥ 1

cr ≥
τ rk
σrk

=

∞∑
n=k

(σn
σk

)r
≥

k+n0∑
n=k

(σn
σk

)r
≥
(σk+n0

σk

)r
(n0 + 1).

Hence Statement (ii) follows along the same line as (iii)⇒(ii).

(ii)⇒(i) For k ≤ n there is a unique m ≥ 0 with k+mn0 ≤ n < k+(m+1)n0. Using the monotonicity

of σ and Assumption (ii) m-times we get

σn ≤ σk+mn0 ≤ σkam ≤
σk
a
a
n−k
n0 =

σk
a
bk−n

with b = a−1/n0 > 1. Hence the supremum is bounded by a−1.
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A.2 Lemma (Doubling Condition) Let σ = (σk)k≥1 with σk > 0 and σk ↘ 0. Then the following

statements are equivalent:

(i) σn � σ2n.

(ii) σbxc+1 � σbλxc+1 as function in x > 0 for all λ > 0.

(iii) infk≤n
σnnα

σkkα
> 0 for some α > 0.

(iv) σn � (σ1 · . . . · σn)1/n.

Note that the symbol � in Statement (ii) means that there are constants c1, c2 > 0 with c1 ≤
σbλxc+1/σbxc+1 ≤ c2 for all x > 0. Moreover, Statement (iii) implies σn < n−α and hence σ decreases

at most polynomial.

Proof. (i)⇔(iii) This has already been pointed out by Kühn [11, p. 482] and is a direct consequence of

the monotonicity. (i)⇔(ii) There are some closely related results in the literature, see e.g. [7, Theorem 1],

but we did not exactly find this one. For this reason we present a proof. Obviously (ii) implies (i) and

for the inverse implication we first show that the set

Gσ :=
{
λ > 0 : ∃aλ, bλ > 0 : ∀x > 0 : aλ ≤

σbλxc+1

σbxc+1
≤ bλ

}
is a subgroup of the multiplicative group (0,∞). Clearly, 1 ∈ Gσ and if λ, µ ∈ Gσ then

σbλµxc+1

σbxc+1
=
σbλµxc+1

σbµxc+1

σbµxc+1

σbxc+1

≤ bλbµ≥ aλaµ

holds for all x > 0. Hence λµ ∈ Gσ. If λ ∈ Gσ then

σbx/λc+1

σbxc+1
=

σbx/λc+1

σbλ(x/λ)c+1

≤
1

a1/λ

≥ 1
b1/λ

holds for all x > 0. Hence λ−1 ∈ Gσ and Gσ is indeed a subgroup of (0,∞). Now, because of the

monotonicity of σ we have for 1 ≤ λ ≤ 2

1 ≥
σbλxc+1

σbxc+1
≥
σ2(bxc+1)

σbxc+1
≥ c

for all x > 0, where c > 0 is a constant satisfying σ2n ≥ cσn for all n ≥ 1. Hence [1, 2] ⊆ Gσ and this

implies Gσ = (0,∞).

(iii)⇒(iv) Because of the monotonicity of σ we always have (σ1 ·. . .·σn)
1
n ≥ σn. For c := infk≤n

σnnα

σkkα
>

0 we then have σk ≤ c−1σnnαk−α for all k ≤ n. Since Stirling’s formula yields (n!)1/n � n we get

(σ1 · . . . · σn)1/n ≤ c−1σn
(

n

(n!)1/n

)α
� σn.
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(iv)⇒(i) Let c > 0 with σn ≤ (σ1 · . . . · σn)1/n ≤ cσn for all n ≥ 1. Then we have

cσ2n ≥ (σ1 · . . . · σ2n)
1
2n = (σ1 · . . . · σn)

1
2n (σn+1 · . . . · σ2n)

1
2n ≥

√
σnσ2n.

for all n ≥ 1. Hence c2σ2n ≥ σn ≥ σ2n for all n ≥ 1.

A.3 Lemma (Tail Sequence) Let r > 0, σ = (σk)k≥1 with σk > 0 and σk ↘ 0 and τ be the tail sequence

given by (2). Then the following statements hold:

(i) The following statements are equivalent:

(a) supk≤n
σnnα

σkkα
<∞ for some α > 1/r.

(b) Condition (ALP): τn 4 σnn
1/r.

(ii) The following statements are equivalent:

(c) τn � τ2n.

(d) Condition (AMP): τn < σnn
1/r.

(iii) Condition σn � σ2n implies τn � τ2n, and if we additionally assume (a) then we have equivalence.

Proof. (a)⇒(b) For c := supk≤n
σnnα

σkkα
<∞ we get

τ rk
kσrk

=
1

k

∞∑
n=k

(σn
σk

)r
≤ crkαr−1

∞∑
n=k

n−αr

for all k ≥ 1. Estimating the remaining sum using integrals we get the assertion

kαr−1
∞∑
n=k

n−αr ≤ kαr−1
(
k−αr +

∫ ∞
k

t−αr dt

)
= kαr−1

(
k−αr +

k1−αr

αr − 1

)
≤ αr

αr − 1
.

(b)⇒(a) is a consequence of Bingham et al. [1, Theorem 2.6.3] to the positive and measurable function

f(x) := xσrbxc for x ≥ 1. To this end, we recall the definition of almost decreasing functions from [1,

Section 2.2.1] and the Matuszewska index α(f) of f , defined in [1, Section 2.1.2]. Moreover, we have

α(f) = inf
{
α ∈ R : x−αf(x) is almost decreasing

}
.

according to [1, Theorem 2.2.2]. Since x−1f(x) is decreasing we have α(f) ≤ 1 < ∞ and hence f is

of bounded increase, i.e. f ∈ BI, see [1, p. 71] for a definition. Consequently, [1, Theorem 2.6.3 (d)] is

applicable to the function f . For the f̃(x) :=
∫∞
x f(t)/tdt we have

f(x)

f̃(x)
=

xσrbxc

τ rbxc − (x− bxc)σrbxc
≥
xσrbxc

τ rbxc
≥
bxcσrbxc
τ rbxc

≥ c−r

for all x ≥ 1, where c > 0 is a constant satisfying τn ≤ cσnn
1/r for all n ≥ 1. Therefore,

lim infx→∞ f(x)/f̃(x) > 0 and [1, Theorem 2.6.3 (d)] yields α(f) < 0. Accordingly, there is a

α0 < 0 such that x−α0f(x) is almost decreasing. The definition of almost decreasing functions, see [1,

Section 2.2.1], gives us the assertion with α = 1−α0
r > 1/r.
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(c)⇒(d) This is from [12, first equation on p. 45]. (d)⇒(c) The following idea is from Bojanic and

Seneta [2, proof of Theorem 4]. According to our assumption the sequence

ρn := n
(

1−
τ rn+1

τ rn

)
= n

τ rn − τ rn+1

τ rn
=
nσrn
τ rn

is positive and bounded. Building a telescope product we get

τ rn
τ r1

=
n−1∏
k=1

τ rk+1

τ rk
=

n−1∏
k=1

(
1− ρk

k

)
.

Since 0 < 1− ρk
k < 1 this gives the representation τ rn = exp ◦ log(τ rn) = exp(γn −

∑n−1
k=1 ρk/k) with

γn := log τ r1 +
n−1∑
k=1

[
log
(

1− ρk
k

)
+
ρk
k

]
.

Below we will prove that (γn)n≥1 converges and hence the assertion is a consequence of this representation

of τ rn according to [6, Theorem 2]. Now, to the convergence of (γn)n≥1. Since (ρk)k≥1 is bounded the

sequence ak := ρk/k is square summable. Without loss of generality we assume that there is a 0 < q < 1

with an < q for all n ≥ 1. Using the Taylor series of the logarithm we get

log(1− ak) + ak = −
∞∑
`=1

a`k
`

+ ak = −
∞∑
`=2

a`k
`
.

Additionally, for ` ≥ 2 we have the estimate
∑∞

k=1 a
`
k ≤ ‖a‖2`2q

`−2. Together we get the absolute

convergence of the series

∞∑
k=1

| log(1− ak) + ak| =
∞∑
k=1

∞∑
`=2

a`k
`

=

∞∑
`=2

1

`

∞∑
k=1

a`k ≤
‖a‖2`2
q2

∞∑
`=2

q`

`
<∞.

(iii) According to our assumption there is a constant c > 0 with σ2n ≥ cσn for all n ≥ 1. Then the

assertion follows by

τ r2n ≥
∞∑
k=n

σr2k ≥ cr
∞∑
k=n

σrk = crτ rn.

For the inverse we additionally assume (a) and hence we have also (b) and (d), i.e. τn � σnn
1/r.

Consequently, σ satisfies the doubling condition σ2n � τ2n(2n)−1/r � τnn−1/r � σn.
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[12] T. Kühn. Entropy numbers in sequence spaces with an application to weighted function spaces. J.
Approx. Theory, 153:40–52, 2008.

[13] M. B. Marcus. The ε-entropy of some compact subsets of `p. J. Approx. Theory, 10:304–312, 1974.

[14] B. S. Mitjagin. Approximate dimension and bases in nuclear spaces. Uspehi Mat. Nauk, 16:63–132,
1961.

[15] R. Oloff. Entropieeigenschaften von Diagonaloperatoren. Math. Nachr., 86:157–165, 1978.

[16] X. Wang. Volumes of generalized unit balls. Math. Mag., 78:390–395, 2005.

14



Simon Fischer
Fachbereich Mathematik, Universität Stuttgart, Stuttgart, Germany

E-Mail: simon.fischer@mathematik.uni-stuttgart.de

mailto:simon.fischer@mathematik.uni-stuttgart.de




Erschienene Preprints ab Nummer 2013-001
Komplette Liste:
www.f08.uni-stuttgart.de/mathematik/forschung/publikationen/mathematische_berichte

2019-004 Fischer, S.: Some New Bounds on the Entropy Numbers of Diagonal Operators

2019-003 Braun, A.; Kohler, M.; Walk, H.: On the rate of convergence of a neural network
regression estimate learned by gradient descent

2019-002 Györfi, L.; Henze, N.; Walk, H.: The limit distribution of the maximum probability
nearest neighbor ball

2019-001 Gaspoz, F.D.; Heine, C.-J.; Siebert, K.G.: An Alternative Proof of H1-Stability of the
L2-Projection on Graded Meshes

2018-003 Kollross, A.: Octonions, triality, the exceptional Lie algebra F4, and polar actions on
the Cayley hyperbolic plane
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