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Embeddings and ambient automorphisms
of the Pappus configuration

Norbert Knarr, Markus J. Stroppel

Abstract

We classify embeddings (i.e., “labeled drawings”) of the Pappus configuration in projective
planes over commutative fields, up to projective equivalence. Using pairs of field elements, we
parameterize the space of classes of projectively equivalent embeddings, and then explicitly
determine the group of ambient automorphisms (or dualities) for any given parameter pair,
i.e., the subgroup of the group of all automorphisms (and dualities) of the abstract configu-
ration that are induced by projective collineations (or dualities) leaving invariant the image
under under any embedding in the given class. It turns out that the existence of an ambient
duality implies an ambient polarity.

We show that these parameter pairs can be interpreted as pairs of cross ratios associated in
a rather natural way with the embedded configuration. The number of equivalence classes of
embeddings in a projective plane over a given finite field is determined.

The groups that occur as full ambient groups are identified in the subgroup lattice of the full
automorphism group of the abstract configuration.

Finally, we use our results to understand embeddings of the Möbius-Kantor configuration.

MSC 2010: 05B30, 51A10, 51E30.

Keywords: Pappus configuration, Möbius-Kantor configuration, automorphism, embedding,
duality, polarity.

Introduction

The Pappus configuration is (together with the Desargues configuration) one of the most impor-
tant configurations in the foundations of (projective) geometry; it is used to secure that coordinates
from a commutative field can be introduced for a given projective space.

Hilbert and Cohn-Vossen ([11, p. 132]) refer to the Pappus configuration as occurring in a special
case of Pascal’s theorem, writing1 “Therefore we may say that Pascal’s theorem is the only sig-
nificant theorem on incidence in the plane and that the configuration (93)1 is the most impor-
tant figure in plane geometry.” The earliest known formulation of Pappus’ theorem is contained
in Propositions 138, 139, 141, and 143 of Book VII of Pappus’ Collection, see [21, 7.(206)–7.(211),
pp. 270–277] (or the older edition [20, pp. 888–893]).

In the present paper, we consider embeddings of the abstract configuration into pappian pro-
jective planes (i.e., projective planes over commutative fields), and study those automorphisms of
the abstract configuration that extend to projective collineations of the ambient plane. Analogous

1 In the German original ([10, p. 117]): “[. . . ] so können wir sagen, daß der Satz von Pascal der einzig wesentliche
Schnittpunktsatz der Ebene ist, daß also die Konfiguration (93)1 die wichtigste Figur der ebenen Geometrie darstellt.”
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studies for the Desargues configuration have been documented in [13]. Our present study extends
observations by Coxeter ([4], [5], [6]) and Mielants [17]; see the more detailed remarks below.

The Pappus configuration Π is obtained as follows. Points of Π are the elements of the set
{0,1,2,3,4,5,03,14,25} of nine symbols, blocks are the sets {0,2,4}, {1,3,5}, {03,14,25}, and { j ,k,uv}
with j ,k ∈ {0,1,2,3,4,5} such that |k − j | = 3 and { j ,k}∩ {u, v} =;. See Figures 2, 3 and 8 below for
various graphic representations of Π in the real projective (or the euclidean) plane; the blocks are
indicated by straight line segments.

Each one of the three sets {0,3,03}, {1,4,14}, and {2,5,25}, respectively, consists of three points
such that no two of them are joined by a line ofΠ. We refer to these sets as the triads of the Pappus
configuration; they will play an important role in the study of embeddings of Π into projective
planes. Dually, we have three parallel classes inΠ (i.e., sets of three pairwise disjoint lines ofΠ).

The earliest study of Π as a configuration in its own right that we know of is in Levi’s mono-
graph [16, pp. 108 ff]. Coxeter ([4], [5], [6]) studies embeddings of Π into P2(F) for F ∈ {R,C}, con-
centrating on the case where at least one of the triads is not collinear under the embedding. In
those papers, the (essentially unique, see 2.1 below) embedding into P2(F3) is employed to under-
stand the full group of automorphisms and dualities of Π. A clearer (and much earlier) statement
about Aut(Π) is proved in [16, pp. 110]. In the present paper, we consider embeddings into planes
over arbitrary (commutative) fields, without any restrictions regarding collinearity of triads or con-
fluence of parallel classes.

In Section 9, we use our present results in order to study related questions for the Möbius-Kantor
configuration which is closely related to the Pappus configuration.

1 Automorphisms, embeddings and dualities

1.1 Definitions. Let A0 = (A0,B0,∗0) and A1 = (A1,B1,∗1) be incidence structures, with point
sets A j , block (or line) sets B j , and incidence relations ∗ j , respectively. Without loss of generality,
we assume that the sets A j and B j are disjoint, and consider the incidence relations as symmetric
relations.

An embedding fromA0 intoA1 is an injective map ε : A0∪̇B0 → A1∪̇B1 such that Aε
0 ⊆ A1, Bε

0 ⊆ B1,
and a∗0 b ⇐⇒ aε∗1 bε holds for all (a,b) ∈ A0×B0. An isomorphism fromA0 ontoA1 is a surjective
embedding, and an automorphism ofA0 is an isomorphism ofA0 onto itself.

A duality from A0 onto A1 is a bijection δ : A0 ∪̇B0 → B1 ∪̇ A1 such that Aε
0 = B1, Bε

0 = A1, and
a ∗0 b ⇐⇒ aδ ∗1 bδ holds for all (a,b) ∈ A0 ×B0. (Note that we use symmetry of the incidence
relation here.) A polarity of A0 is an involutory duality of A0 onto itself. A dual embedding (or
dumbedding, for short) fromA0 intoA1 is an injective map ε : A0 ∪̇B0 → A1 ∪̇B1 such that Aε

0 ⊆ B1,
Bε

0 ⊆ A1, and a ∗0 b ⇐⇒ aε∗1 bε holds for all (a,b) ∈ A0 ×B0. In other words, a dumbedding is the
concatenation of a duality and an embedding, or vice versa.

If every block of A is determined by the set of points incident with it, any embedding (or dum-
bedding) is determined by its restriction on the point set ofA. Abusing notation, we will sometimes
use the same name for the embedding and for its restriction to the point set.

1.2 Remark. In general, our definition of embeddings imposes more severe restrictions than just
requiring an injective map of points such that collinear point sets are mapped into collinear point
sets. (E.g., minors of the Desargues configuration occur in this way, see [13, Sect. 2].) For embed-
dings of the Pappus configuration into projective spaces, however, we do not lose any interesting
examples. In fact, dropping the injectivity condition on the block set would only add injective
maps from the point set of Π into a single line of P2(F), see [26, 1.8]. Moreover, the injectivity con-
ditions on both the point and the line map imply that the image of a non-incident point-line pair
will not be incident because the incidence graph ofΠ has diameter 4, see Figure 5.
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1.3 Examples. Let F be a commutative field, and let n be a positive integer. We consider the vec-
tor space Fn+1 of rows and the dual space of linear forms, written as columns. The projective
spacePn(F) of (projective) dimension n over Fwill be interpreted as the incidence structure (P,L,<)
with P the set of all one-dimensional vector subspaces, and L the set of all two-dimensional vector
subspaces of Fn+1, respectively; incidence is containment. Every linear bijection of Fn+1 onto it-
self induces an automorphism of Pn(F); such automorphisms are called projective transformations
of Pn(F). We write Φ := PGL3(F) for the group of all projective transformations of the projective
plane P2(F) over F.

If n = 2 then interchanging F(x, y, z) with ker(x, y, z)ᵀ = {
(u, v, w) ∈ F3

∣∣ ux + v y +w z = 0
}

is a du-
ality (in fact, a polarity) θ of P2(F) onto itself. A duality of P2(F) onto itself is called a projective
duality (see [15, IV.7, pp. 124 f]) if it is of the form θϕ with a projective transformation ϕ.

1.4 Definitions. Two embeddings ε and ε′ from A0 = (A0,B0,∗0) into A1 = (A1,B1,∗1) are called
equivalent if there exists an automorphism γ1 ofA1 such that ε= ε′γ1. The embeddings are called
quasi-equivalent if there exists an automorphism γ0 ofA0 such that γ0ε and ε′ are equivalent, i.e.,
if there exists a pair (γ0,γ1) of automorphisms γ j ofA j such that ε= γ−1

0 ε′γ1.
Two embeddings ε, ε′ from A0 into Pn(F) are called projectively equivalent if there exists a pro-

jective transformation ϕ ∈ Φ such that ε = ε′ϕ, and the embeddings are called projectively quasi-
equivalent if there exist an automorphism γ of A0 and a projective transformation ϕ such that
γε= ε′ϕ.

1.5 Definitions. For a given incidence structure A = (A,B ,∗), we abbreviate Γ := Aut(A), and
write Γ for the group of all automorphisms and dualities ofA.

Let ε : A→P2(F ) be a an embedding. An automorphism γ ∈ Γ is called ambient (under ε) if there
exists ϕ ∈Φ such that γε= εϕ; i.e., if the embeddings γε and ε are projectively equivalent. Loosely
speaking, an ambient automorphism extends to a projective collineation. A duality δ ∈ ΓàΓ is
called ambient (under ε) if there existsϕ ∈Φ such that δε= εθϕ; i.e., if the dumbeddings δε and εθ
are projectively equivalent.

The set of all ambient automorphisms with respect to ε forms a subgroup Γamb := Γεamb ≤ Γ, and
that subgroup together with the set of all ambient dualities with respect to ε forms a subgroup
Γamb := Γεamb ≤ Γ.

1.6 Lemma. (a) We have actions
(
ε, (γ,ϕ)

) 7→ γ−1εϕ of the direct product Γ×Φ (from the right) on
the set of all embeddings of A intoP2(F), and

(
δ, (γ,ϕ)

) 7→ γ−1δϕ on the set of all dumbeddings
fromA into P2(F).

(b) The classes of embeddings of A into P2(F) modulo projective equivalence are orbits εΦ (under
the group {id}×Φ∼=Φ), while the classes modulo projective quasi-equivalence are orbits ΓεΦ
under Γ×Φ.

1.7 Lemma. Let A0 = (A0,B0,∗0) and A1 = (A1,B1,∗1) be incidence structures.

(a) Let ι : A0 →A1 and η : A0 →A1 be both embeddings or both dumbeddings. Then (A0 ∪B0)ι =
(A0 ∪B0)η holds if, and only if, there exists γ ∈ Γ such that η= γι.

(b) Let ι : A0 → A1 be an embedding, and let ψ : A0 → A1 be a dumbedding. Then (A0 ∪B0)ι =
(A0 ∪B0)ψ holds if, and only if, there exists a duality δ ∈ ΓàΓ such that ψ= δι.

Proof. Consider first ι and η as in assertion (a). For each x ∈ A0∪B0 we then have a unique element
xγ ∈ A0 ∪B0 such that (xγ)ι = xη. This defines a bijection γ of A0 ∪B0 onto itself such that Aγ

0 = A0

and Bγ
0 = B0. For a ∈ A0 and b ∈ B0 we find a ∗0 b ⇐⇒ aη ∗1 bη ⇐⇒ (aγ)ι ∗1 (bγ)ι ⇐⇒ aγ ∗0 bγ.

This shows that γ is an automorphism ofA0, as claimed.
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The proof of assertion (b) is completely analogous; using the bijection δ such that (xδ)ι = xψ;
here Aδ

0 = B0 and Bδ
0 = A0.

1.8 Remark. In 1.7, it is crucial that we consider the image of an incidence structure (consisting of
points and lines) and not just the image of the point set.

For example, every embedding of the Pappus configurationΠ into the projective plane P2(F3) of
order 3 is projectively equivalent to the one given in 2.1 below. The image of the point set of Π is
thus the complement of some line W in the point set of P2(F3), while the image of the line set is
the union of three classes of parallel lines in the affine plane obtained by deleting W from P2(F3);
one parallel class is missing. The embedding is determined (up to an automorphism of Π) by the
choice of that parallel class.

1.9 Definition. Let ε : Π→P2(F) be an embedding of the Pappus configuration into the projective
plane over a commutative field F. Then the image Πε (considered as a set of 9 points and 9 lines)
is called the Pappus figure obtained by ε. Two Pappus figures Πε and Πι are called projectively
equivalent if there exists ϕ ∈Φ such thatΠε =Πιϕ.

From 1.7 we infer that the same Pappus figure is obtained by two embeddings ε and ι if, and
only if, there exists γ ∈ Aut(Π) such that ε = γι. Consequently, two Pappus figures are projectively
equivalent precisely if they are obtained by projectively quasi-equivalent embeddings.

2 Automorphisms of the Pappus configuration

We start with an embedding of the Pappus configuration in the projective plane P2(F3) of order 3.
This embedding is very convenient (and, in fact, special — see 3.5 below) because it exhibits all
automorphisms and all dualities of the abstract configuration.

2.1 The Pappus configuration in the affine plane of order three. Up to projective equivalence,
there is only one embedding ofΠ into P2(F3), i.e. only one way to “draw” the Pappus configuration
in the projective plane of order three; see [26, 3.1], cp. also our result in 6.1 below.

In order to give such an embedding explicitly, we define a map p 7→ p from the set of points of
the Pappus configuration to the projective plane P2(F3), as follows:

0 = F3(1,0,0), 2 = F3(1,1,0), 4 = F3(1,2,0),
03 = F3(1,0,1), 25 = F3(1,1,1), 14 = F3(1,2,1),

1 = F3(1,2,2), 3 = F3(1,0,2), 5 = F3(1,1,2);

the effect on the line set can be seen from Figure 1.
The points of the Pappus figure Π obtained by this embedding are just those not on the line

F3(0,1,0)+F3(0,0,1), and the blocks are induced by the lines not through the point F3(0,0,1).
The stabilizer of the figure Π in PGL3(F3) is thus induced by (and isomorphic to) the subgroup{(
1 a12 a13
0 a22 a23
0 0 a33

)∣∣∣∣ a j k ∈ F3, a22a33 6= 0

}
of GL3(F3). Note that this stabilizer is a Borel subgroup (i.e., a

minimal parabolic subgroup) in PGL3(F3).
This group has order 22·33 = 3!·2·32, and induces2 the full groupΓ := Aut(Π) of all automorphisms

of the (abstract) Pappus configuration Π. In other words, every automorphism of Π is ambient
under the present embedding into P2(F3).

2 See [26, 3.1]. The order of Aut(Π) has already been determined by Schoenflies [25, p. 59]; its isomorphism type has
been noted in Levi’s 1929 monograph [16, pp. 108 ff]. A different description of the group is given in [4, Section 4,
pp. 261–266].
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3 5 1

03 25 14

0 2 4

1,0,2 1,1,2 1,2,2

1,0,1 1,1,1 1,2,1

1,0,0 1,1,0 1,2,0

Figure 1: The Pappus configuration (left), and a Pappus figure inA2(F3) (right).

2.2 Example. The Pappus configuration admits dualities, and each one of those dualities extends
to a duality of P2(F3). For instance, let π̃ be the polarity of P2(F3) interchanging F3(x, y, z) with
the kernel of the linear map with matrix (z,−y, x)ᵀ. Then π̃ interchanges the point F3(0,0,1) with
the line F3(0,1,0)+F3(0,0,1) and thus (via the embedding given in 2.1) induces a polarity π on the
abstract Pappus configurationΠ. The set of all dualities ofΠ is then the coset πΓ, and Γ= Γ∪πΓ is
the group of all automorphisms and dualities ofΠ.

2.3 Definition. By a bow tie inΠwe mean an ordered quintuple (a,b,c,d ,e) of five different points
ofΠ such that {a,b}, {b,c,d}, {d ,e}, and {e,c, a} are collinear inΠ.

0

1

2

3

4

5

03

14

25

Figure 2: The bow tie (0,2,14,3,5) inΠ (left), and a more formal bow tie (right)

2.4 Lemma. The bow ties inΠ form a single orbit under Γ.

Proof. From the representation in A2(F3) we see that Γ is transitive on collinear pairs (i.e., pairs
of points joined by a line in Π). So we may assume without loss of generality that (a,b) = (0,2).
The point c is joined to both a and b, so c ∈ {1,14}. Applying a reflection with axis {0,2,4} we can
interchange the two, and may assume c = 14. Now d and e are determined as the remaining points
on the lines {2,14,3} and {0,14,5}.

2.5 Remark. There are four orbits of (ordered) quadrangles under Γ, represented by (0,2,1,5)
(quadrangles with first diagonal), by (2,1,5,0) (quadrangles with second diagonal), by (0,2,3,5)
(quadrangles with first dual diagonal), and by (0,5,3,2) (quadrangles with second dual diagonal),
respectively. Only the quadrangles with first dual diagonal can be extended to bow ties by inserting
a central point between the second and third entry.
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3 Embeddings, and ambient automorphisms

The following embeddings will serve as representatives for the classes of projectively equivalent
embeddings ofΠ in a projective plane P2(F).

3.1 Definitions. Let F be any commutative field. For (x, y) ∈ (Fà {0,1})2 we define η(x,y) : Π→P2(F)
by

0η(x,y) = F(1,0,0), 1η(x,y) = F(0,1, y), 2η(x,y) = F(1,0,1),
3η(x,y) = F(0,1,0), 4η(x,y) = F(1,0, x), 5η(x,y) = F(0,1,1),

14η(x,y) = F(1,1,1), 25η(x,y) = F(y, x, x y), 03η(x,y) = F(y −1, x −1, x y −1)

{0,1,25}η(x,y) = ker
( 0

y
−1

)
, {0,2,4}η(x,y) = ker

(
0
1
0

)
, {0,5,14}η(x,y) = ker

(
0
1−1

)
,

{1,2,03}η(x,y) = ker
( 1

y
−1

)
, {1,3,5}η(x,y) = ker

(
1
0
0

)
, {2,3,14}η(x,y) = ker

(
1
0−1

)
,

{3,4,25}η(x,y) = ker
( x

0−1

)
, {4,5,03}η(x,y) = ker

( x
1−1

)
, {03,14,25}η(x,y) = ker

( x−x y
x y−y
y−x

)
.

Then η(x,y) is an embedding ofΠ into P2(F), cp. Figure 3.

4

5

03 25

1

14

2

3

0 1,0,x

0,1,1

y−1,x−1,x y−1 y,x,x y

0,1,y

1,1,1

1,0,1

0,1,0

1,0,0

Figure 3: The embedding η(x,y).

3.2 Theorem. For every embedding ε : Π→P2(F) there exists a unique parameter pair ε̂ ∈ (Fà{0,1})2

such that ε is projectively equivalent to the embedding ηε̂. Two embeddings ε, ι : Π → P2(F) are
projectively equivalent precisely if ε̂= ι̂.
Proof. Consider any embedding ε : Π→ P2(F). As the points 0ε, 2ε, 3ε, and 5ε form a quadrangle
inP2(F), there exists a unique elementϕ ∈Φ such that 0εϕ = F(1,0,0), 2εϕ = F(1,0,1), 3εϕ = F(0,1,0),
and 5εϕ = F(0,1,1). Then 14εϕ = F(1,1,1). The lines 0εϕ + 2εϕ and 3εϕ + 5εϕ meet in the point
F(0,0,1). This implies that this point is not an image under εϕ. Therefore, there exist x, y ∈ Fà{0,1}
such that 4εϕ = F(1,0, x) and 1εϕ = F(0,1, y). Straightforward computations yield 25εϕ = F(y, x, x y)
and 03εϕ = F(y −1, x −1, x y −1). So ε is projectively equivalent to ηε̂, where ε̂= (x, y).

The representative εϕ for the orbit εΦ is uniquely determined because the images 0ε, 2ε, 3ε,
and 5ε form a quadrangle in P2(F). Thus the parameter pair ε̂ is also uniquely determined by εΦ.

If ε and ι are embeddings with ε̂ = ι̂ then both are projectively equivalent to ηε̂ = ηι̂, and thus
projectively equivalent to each other.

3.3 Remark. The parameter pair ε̂ for an embedding ε can be computed as a pair of cross ratios,
see 8.1 below.

Via pre-composition, the group Γ acts (from the right) on the orbits of Φ= PGL3(F) on the set of
all embeddings ofΠ into P2(F): every such orbit is of the form εΦ= {

ι
∣∣ ι̂= ε̂}, and γ ∈ Γmoves it to

γ−1εΦ. We translate that action of Γ on the set of all classes of projectively equivalent embeddings
into an action on the space (Fà {0,1})2 of parameters, namely

(Fà {0,1})2 ×Γ→ (Fà {0,1})2 : (ε̂,γ) 7→ ε̂γ := �γ−1ε.

6
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We collect our findings so far:

3.4 Proposition. Consider any commutative field F.

(a) The orbits of Φ = PGL3(F) on the set of Pappus figures in P2(F) are in one-to-one correspon-
dence to the orbits of Γ on (Fà {0,1})2.

(b) A class of projectively equivalent Pappus figures contains the images of just one class of pro-
jectively equivalent embeddings if, and only if, every automorphism of Π is ambient for the
embeddings involved.

(c) For each automorphism γ ∈ Γ and each parameter pair u ∈ (Fà {0,1})2, there exists a unique
parameter pair uγ and a unique element γ̃u ∈Φ such that γηuγ = ηu γ̃u .

(d) For each duality δ ∈ ΓàΓ of Π and each parameter pair u ∈ (Fà {0,1})2, there exists a unique
parameter pair uδ and a unique element δ̃u ∈ θΦ such that δηuδ = ηu δ̃u .

(e) The map ω : (Fà {0,1})2 ×Γ→ (Fà {0,1})2 : (u,β) 7→ uβ is an action of Γ on (Fà {0,1})2.

3.5 Proposition. Let (x, y) ∈ (Fà {0,1})2; we determine (x, y)γ for some automorphisms γ ∈ Γ.

(a) For τ= (0,03,3)(1,4,14)(2,25,5) ∈ Γwe have (x, y)τ = (x, y).

(b) For σ= (0,5,1)(2,4,03)(3,25,14) ∈ Γwe have (x, y)σ = (
x, 1

1−y

)
.

(c) For σ∗ = (0,5,4)(1,3,25)(2,14,03) ∈ Γwe have (x, y)σ
∗ = ( 1

1−x , y
)
.

(d) For µ= (0,2,4)(1,3,5)(03,25,14) ∈ Γwe have (x, y)µ = ( x−1
x , y−1

y

)
.

(e) For µ∗ = (0,03,3)(2,5,25) ∈ Γwe have (x, y)µ
∗ = ( 1

1−x , y−1
y

)
.

(f ) For central reflections ζ in the 〈τ〉-orbit ζ〈τ〉0 = {
ζ0,ζτ0,ζτ

2

0

}
of ζ0 = (1,25)(2,4)(3,03)(5,14), we

have (x, y)ζ = ( 1
y , 1

x

)
.

For ζ in the 〈τ〉-orbit of ζ1 = (0,25)(2,03)(3,5)(4,14), we have (x, y)ζ = (1− y ,1−x).
For ζ in the 〈τ〉-orbit of ζ2 = (0,4)(1,03)(3,14)(5,25), we have (x, y)ζ = ( y

y−1 , x
x−1

)
.

(g) For axial reflections α in the 〈τ〉-orbit of α0 = (2,5)(3,03)(4,14), we have (x, y)α = ( y−1
y , 1

1−x

)
.

For α in the 〈τ〉-orbit of α1 = (0,3)(4,14)(5,25), we have (x, y)α = ( 1
1−y , x−1

x

)
.

For α in the 〈τ〉-orbit of α2 = (1,14)(3,03)(5,25), we have (x, y)α = (y, x).

(h) The triad reflections are α0ζ0, ατ
2

1 ζ0, α2ζ0, α0ζ1, α1ζ1, ατ
2

2 ζ1, ατ
2

0 ζ2, α1ζ2, and α2ζ2, respec-
tively. Each one of those commutes with τ. We obtain

(x, y)α0ζ0 = (
1−x, y

y−1

)
, (x, y)α

τ2
2 ζ1 = (1−x,1− y), (x, y)α1ζ2 = (

1−x, 1
y

)
,

(x, y)α1ζ1 = ( 1
x , y

y−1

)
, (x, y)α

τ2
0 ζ2 = ( 1

x ,1− y
)
, (x, y)α2ζ0 = ( 1

x , 1
y

)
,

(x, y)α2ζ2 = ( x
x−1 , y

y−1

)
, (x, y)α

τ2
1 ζ0 = ( x

x−1 ,1− y
)
, (x, y)α0ζ1 = ( x

x−1 , 1
y

)
.
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Proof. Let u = (x, y) ∈ (Fà {0,1})2 be an arbitrary parameter pair. In order to prove the claims of
the proposition for γ ∈ {τ,σ,σ∗,µ,µ∗} and for selected involutions, we give the respective projec-
tive transformation γ̃u such that γηuγ = ηu γ̃u (where square brackets around matrices indicate
that we consider the induced projective transformation), and leave it to the reader to verify these
statements by straightforward computations:

τ̃(x,y) =
[

x(1−y) x(1−x) x(1−x y)
(x−1)y 0 0

y−x 0 x(y−1)

]
, σ̃(x,y) =

[
0 x(y−1) x(y−1)
−y x y(y−1) −x y
y x(1−y) x

]
, σ̃∗

(x,y) =
[

0 x x
(1−x)y 1 y

x−1 −1 −1

]
,

µ̃(x,y) =
[

x 0 x
0 y y
0 0 −1

]
, µ̃∗

(x,y) =
[

x−1 x y x y−1
(x−1)y 0 0

1−x −y 1−y

]
.

The 〈τ〉-conjugates of ζ0 are ζτ0 := τ−1ζ0τ= (0,3)(1,2)(4,5)(14,25) and ζτ
2

0 = (0,03)(1,5)(2,14)(4,25).

We have (ζ̃τ0)(x,y) =
[ 0 x 0

y 0 0
0 0 1

]
; any two 〈τ〉-conjugates of ζ0 have the same effect on the parameter

pairs (by assertion (a)). The observations ζ1 = ζ
τ2µ2

0 and ζ2 = ζ
µ
0 allow to compute the effect of the

〈τ〉-conjugates of ζ1, and of ζ2, respectively.

For ατ2 = (0,3)(1,4)(2,5) we verify (x, y)α
τ
2 = (y, x) using (α̃τ2)(x,y) =

[
0 1 0
1 0 0
0 0 1

]
; the effect of the conju-

gates of α0 can then be computed using information that we already have.
The values for the action of triad reflections can be computed from the values for the central and

axial reflections, using uαζ = (uα)ζ.

3.6 Corollary. For any embedding, the automorphism τ (leaving invariant each triad and each dual
triad, and generating the center of the Sylow 3-subgroup of Γ) is ambient.

3.7 Definitions. The transformations m0 := x 7→ 1
x , m1 := x 7→ 1− x, and m2 := x 7→ x

x−1 are in-
volutions on Fà {0,1}; they generate a dihedral subgroup M of order 6 in the stabilizer of {0,1,∞}
in the group of Moebius transformations on P1(F) = F∪ {∞}; apart from m2

0 = m2
1 = m2

2 = id and
the generating involutions m0, m1, m2 = m0m1m0, that subgroup contains the elements m0m1 =
m1m2 = m2m0 = x 7→ x−1

x and m1m0 = m2m1 = m0m2 = x 7→ 1
1−x of order 3.

We let M×M act (from the right) on the cartesian productP1(F)×P1(F), and also consider the in-
volution ρ : (x, y) 7→ (y, x). Thus we obtain the semidirect product 〈ρ〉n(M×M); the multiplication
is given by

(id,(a,b))(id, (c,d)) = (id, (ac,bd)), (id, (a,b))(ρ, (c,d)) = (ρ, (bc, ad)),
(ρ, (a,b))(id, (c,d)) = (ρ, (ac,bd)), (ρ, (a,b))(ρ, (c,d)) = (id, (bc, ad)).

3.8 Remark. The actionω of Γ on the space of parameter pairs may be interpreted as a homomor-
phism ω̂ from Γ into the group 〈ρ〉n (M ×M). From 3.5 (cp. 3.6) we know that τ ∈ kerω̂ holds for
any3 embedding, and

σω̂ = (id, (id,m1m0)), (σ∗)ω̂ = (id, (m1m0, id)), µω̂ = (id, (m0m1,m0m1)),
(ζ0)ω̂ = (ρ, (m0,m0)), (ζ1)ω̂ = (ρ, (m1,m1)), (ζ2)ω̂ = (ρ, (m2,m2)),
(α0)ω̂ = (ρ, (m0m1,m1m0)), (α2)ω̂ = (ρ, (m1m0,m0m1)), (α1)ω̂ = (ρ, (id, id)).

It follows that kerω̂ coincides with 〈τ〉. The group Γ
ω̂

has order 108 ·2/3 = 72, while Γω̂ has order

108/3 = 36. So Γ
ω̂ = 〈ρ〉n (M ×M), and Γω̂ has index 2 in the latter group. Note that Γω̂ differs from

the normal subgroup M ×M .

3 For embeddings into P2(R) or P2(C), this has been observed already by Levi [16, pp. 116], see also [5, p. 276]. For
embeddings into P2(R) such that no triad is collinear and no parallel class is confluent, Kommerell [14, p. 32] reports
that he has not found any ambient automorphisms apart from those in 〈τ〉.
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We interpret the group M as the symmetric group on the three-element set {0,1,∞}, and use the
corresponding sign function. The elements of Γ considered in 3.5 suffice to generate all of Γ. So we
read off from 3.5:

3.9 Proposition. The group Γω̂ equals
{
(r, (m,n))

∣∣ r ∈ 〈ρ〉,m,n ∈ M , sign(mn) = 1
}
.

If one chooses x ∈ Fà {0,1} and searches for y ∈ Fà {0,1} such that the embedding η(x,y) has
no ambient involutions, one just has to avoid the orbit of x under M . That orbit has length 6, in
general; it will be shorter if x is fixed by at least one of the non-trivial elements of M .

3.10 Lemma. Let F be any commutative field, and let W be the (possibly empty) set of roots of the
polynomial X 2 −X +1 in F. The orbit decomposition of P1(F) under the group M is the following.

(a) In any case, the set {0,1,∞} is an orbit of length 3. The set W is either empty, or an orbit.

(b) If char(F) = 2 then the orbit of 2 = 0 is {0,1,∞} = {0,1,∞}. The set W forms an orbit of length 2
unless it is empty. All other orbits are regular (of length 6).

(c) If char(F) = 3 then W = {2}. Every element outside {0,1,2,∞} has a regular orbit (of length 6).

(d) If char(F) ∉ {2,3} then the orbit of 2 is {2, 1
2 ,−1}. The set W is either empty, or forms an orbit of

length 2. All other orbits are regular (of length 6).

Proof. A straightforward computation yields that {0,1,∞} is an orbit under M . The fixed points of
m1m2 and m2m0 = (m1m0)−1 are the roots of X 2−X +1 in F (if any). The sets of fixed points of m0,
of m1, and of m2, respectively, are {1,−1}, {∞,h}, and {0,2}, where 2h =−1. Note that these sets are
singletons if char(F) = 2. In particular, each element of Fà (W ∪ {0,1,−1,2,h}) has trivial stabilizer
in M , and a regular orbit under M .

3.11 Remarks. The group M ∼= Sym3 acts on the projective line P1(F), and 〈ρ〉n (M ×M) acts on
P1(F)×P1(F). On a generic orbit, this action of M is regular (i.e., sharply transitive; these orbits
have length 6). See 3.10 for a discussion of the orbits.

On P1(F)×P1(F), we have generic orbits of length 36, and orbits of length 9, and 18. Depending
on char(F) and the existence of roots of X 2 − X + 1, we also have orbits of length 1, 2, 3, 4, or 6,
respectively.

The generic orbits on P1(F)×P1(F) contain parameter pairs (x, y) such that the embedding η(x,y)

has an ambient group of order 3 (generated by τ: this group is the center of the Sylow 3-subgroup
of Γ).

Over F= R, we visualize the distribution of orbits in Figure 4. Note that then M acts by homeo-
morphisms of the projective line P1(R) (which, topologically, is a circle). Deleting the non-regular
orbits {0,1,∞} (of values that are not admitted in parameter pairs) and {2,1/2,−1} we obtain six dis-
joint intervals; these intervals are permuted by the action of M . Each one of these intervals forms
a set of representatives for the generic orbits under M .

This decomposition of P1(R) yields a decomposition of P1(R)×P1(R) into 36 sets (roughly, of tri-
angular shape); each one of those forms a set of representatives for the generic orbits under M×M .
The orbits not covered by these representatives are the orbits of points on the quadrics (hyperbolas
and lines, respectively) that contain the parameter pairs for embeddings with ambient groups of
order 6 or 12 (the latter occur for pairs on the intersection of two quadrics).

The embeddings with at least one parameter in the orbit {2,1/2,−1} are just those where we have
ambient polarities, see 4.5 below.
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pairs not suited as parameters (involving 0 or 1)

parameter pairs involving the orbit {2,1/2,−1} (ambient polarities)

y = x (α2 ambient) y = 1
x (ζ0 ambient) y = x

x−1 (ζ2 ambient)

y = 1−x (ζ1 ambient) y = 1
1−x (α0 ambient) y = x−1

x (α1 ambient)

Figure 4: The space of parameter pairs.
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3.12 Remark. For the special case of embeddings ofΠ into P2(R) one knows that at least one triad
is not collinear (e.g., see [26, 3.7]). Levi [16, § 5] and Coxeter [5, pp. 273–278] use parameterizations
for those embeddings, differing from our parameterization which also covers the cases where more
than one triad is collinear.

The picture given by Levi [16, p. 115] is similar to our Figure 4, with the crucial difference that
Levi ignores dualities (and thus obtains only 36 cells, while we have 72), and his picture lives in
the projective plane (and some of the maps on the parameter space are rational transformations
that are not defined in every point of that plane) while we consider the space of parameters as
contained in a torus.

4 Polarities and Dualities

The Pappus configuration Π admits 108 dualities, among them 18 polarities (see [26, 7.1]). Some
of these dualities can easily be seen from pictures of the incidence graph, as in Figure 5.

4.1 Theorem. There are 5 conjugacy classes of dualities in Γ. These classes are represented by duali-
ties of order 2, 4, 6, and 12, respectively; only the elements of order 12 fall in different classes.

With respect to the labeling in the drawing on the left in Figure 5 (where the polarity π inter-
changes two vertices of different color if they carry the same label), the conjugacy classes of dualities
are represented by the following:

(a) A polarity π (of order 2), given by 0π = {0,2,4}, 1π = {1,2,03}, 2π = {0,1,25}, 3π = {03,14,25},
4π = {0,5,14}, 5π = {4,5,03}, 03π = {1,3,5}, 14π = {3,4,25}, and 25π = {2,3,14}.

(b) The duality (α0π)3 = (0,14π,1,3π)(14,0π,3,1π)(03,4π,4,03π)(2,25π)(5,5π)(25,2π) of order 4.

(c) The duality σπ= (0,5π,1,0π,5,1π)(2,4π,03,2π,4,03π)(3,25π,14,3π,25,14π) of order 6.

(d) The duality α0π= (0,0π,4,14π,3,03π,1,1π,03,3π,14,4π)(2,5π,25,25π,5,2π) of order 12.

(e) The duality (α0π)5 = (0,03π,14,14π,03,0π,1,4π,3,3π,4,1π)(2,2π,5,25π,25,5π) of order 12.

Each one of the corresponding conjugacy classes has size 18, except for the class containing dualities
of order 6, which has size 36.

Proof. The picture of the incidence graph ofΠ in Figure 5 (on the left) exhibits one of the polarities
as the half turn π; the labels for the lines are chosen in such a way that π interchanges each point
with the line carrying the same label. In coordinates as used in 2.1, the polarity π maps the point
F3(x, y, z) to the kernel of the linear form with matrix

(
z,−y, x

)ᵀ; cp. 2.2. On the left hand side in
Figure 5, one sees three more polarities, namely, the reflections π′, π′′, π′′′ in axes through mid-
points of edges of the outer hexagon. Note that those three polarities form a coset modulo 〈σ〉 in
the centralizer of π, here σ = (0,5,1)(2,4,03)(3,25,14) is the automorphism considered in 3.5 (b),
showing up as a counterclockwise rotation by 120 degrees in the picture.

This drawing of the incidence graph also shows that the centralizer CΓ(π) contains a dihedral
subgroup of order 6, and that CΓ(π) contains a dihedral subgroup of order 12. As every polarity ofΠ
belongs to the conjugacy class πΓ and that set has size 18 = |Γ|/6 (see [26, 7.1]), those subgroups
indeed coincide with the centralizers.

Rotation of the hexagon shows dualities of order 6, in fact, the clockwise rotation is

σπ = (0,5π,1,0π,5,1π)(2,4π,03,2π,4,03π)(3,25π,14,3π,25,14π).

11
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1
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2
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2
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2
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5
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5

Figure 5: Two representations of the incidence graph of the Pappus configuration: points are white
vertices, lines are black vertices (each of those labeled by the label of its image under the
polarity π which is obvious in the drawing on the left). In the drawing on the right, we
identify vertices (labeled by x ∈ {2,5,25}); the identifications are indicated by dotted lines.

The third power of that duality is the polarityπ, so CΓ(σπ) ≤ CΓ(π). However, the polarityπ′ ∈ CΓ(π)

does not centralize σπ. Thus CΓ(σπ) = 〈σπ〉 has order 6, and the conjugacy class of σπ in Γ has
size 36.

The drawing on the right in Figure 5 exhibits the duality

(α0π)3 = (0,14π,1,3π)(14,0π,3,1π)(03,4π,4,03π)(2,25π)(5,5π)(25,2π) = πα1

of order 4, and the dualities

α0π = (0,0π,4,14π,3,03π,1,1π,03,3π,14,4π)(2,5π,25,25π,5,2π)
(α0π)5 = (0,03π,14,14π,03,0π,1,4π,3,3π,4,1π)(2,2π,5,25π,25,5π)

of order 12.
We note α0π=πζ2, and (α0π)6 =ατ2

0 ζ2, so CΓ((α0π)6) = 〈ατ2

0 ,ζ2〉 and CΓ((α0π)6) = 〈π,ζ2〉.
For δ ∈ {α0π, (α0π)5, (α0π)3}, we have (α0π)6 ∈ {δ6,δ2} and thus 〈α0π〉 ≤ CΓ(δ) ≤ CΓ((α0π)6) =

〈π,ζ2〉. The latter group is dihedral of order 24, but π does not belong to CΓ(δ) because π acts as a
reflection on the drawing. So CΓ(δ) = 〈α0π〉 is a cyclic group of order 12, and the conjugacy class
of δ has size 18.

Any element conjugating α0π into (α0π)5 would belong to the centralizer 〈π,ζ2〉 of (α0π)6. How-
ever, the two elements are not conjugates in that dihedral group. Thus α0π and (α0π)5 represent
different conjugacy classes in Γ. Summing up the sizes of conjugacy classes of dualities found so
far, we see that our study of the two representations of the incidence graph has indeed revealed all
the dualities ofΠ, up to conjugacy.

4.2 Lemma. Let δ be any duality of Π. Then 〈δ〉 either contains a polarity, or a triad reflection.

Proof. We know the dualities (up to conjugacy) from 4.1. If δ has order 2 or 6 then δ3 is a polarity.
If δ has order 12 then δ3 has order 4. So it remains to note that the square of any duality of order 4
is a triad reflection.
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4.3 Proposition. As in 4.1, let π be the polarity of Πwith

0π = {0,2,4}, 2π = {0,1,25}, 4π = {0,5,14},
14π = {3,4,25}, 25π = {2,3,14}, 03π = {1,3,5},

3π = {03,14,25}, 5π = {4,5,03}, 1π = {1,2,03}.

(a) We have πω̂ = (id, (m0, id)); i.e., (x, y)π = ( 1
x , y

)
holds for each (x, y) ∈ (Fà {0,1})2 (see 3.8).

(b) We have ψω̂ ∈ {
(id, (id,m0)), (id,(id,m1)), (id,(id,m2)), (id,(m0, id)), (id, (m1, id)), (id, (m2, id))

}
for every polarity ψ of Π.

Proof. Lines will be given as kernels of linear forms, and the latter will be given as matrices of the
form (u, v, w)ᵀ, consisting of a single column.

For each pair (x, y) ∈ (Fà {0,1})2, we determine the images under πη(x,y) as

0πη(x,y) = ker(0,1,0)ᵀ, 2πη(x,y) = ker(0, y,−1)ᵀ, 4πη(x,y) = ker(0,1,−1)ᵀ,
14πη(x,y) = ker(x,0,−1)ᵀ, 25πη(x,y) = ker(1,0,−1)ᵀ, 03πη(x,y) = ker(1,0,0)ᵀ,

3πη(x,y) = ker(x(y −1), (1−x)y, x − y)ᵀ, 5πη(x,y) = ker(x,1,−1)ᵀ, 1πη(x,y) = ker(1, y,−1)ᵀ.

Let π̃(x,y) be the (projective) duality of P2(F) mapping the point F(a,b,c) to the line

ker

 0 1− y 0
x(y −1) (1−x)y x − y

0 x y −1 1−x

a
b
c

 .

For each pair (x, y) ∈ (Fà {0,1})2 we then verify πη(x,y) = η( 1
x ,y) π̃(x,y) = η(x,y)π π̃(x,y), as required.

The polarities ofΠ form a single conjugacy class. Soψω̂ lies in the conjugacy class of (id,(m0, id))
in 〈ρ〉n (M ×M) if ψ is any polarity. As any two involutions in M are conjugates, this conjugacy
class is

{
(id, (id,m0)), (id,(id,m1)), (id,(id,m2)), (id,(m0, id)), (id, (m1, id)), (id, (m2, id))

}
.

4.4 Remark. For any polarity ofΠ, one can use the homomorphism ω̂ : Γ→〈ρ〉n(M ×M) in order
to compute the effect of that polarity on the parameters.

4.5 Theorem. An embedding ε of Π into P2(F) admits an ambient polarity precisely if at least one
of the entries in the parameter pair ε̂ lies in the orbit of 2 under M in F. In particular, ambient
polarities can occur only if charF 6= 2.

Proof. From 4.3 we know the effect of a polarity on the space of parameter pairs. The polarity in
question is ambient if the parameter pair is fixed. This means that at least one of the two parame-
ters is fixed by an involution in M , and thus lies in the orbit of 2.

4.6 Proposition. If a given embedding has an ambient duality then it also has an ambient polarity.

Proof. Let ε be an embedding with an ambient duality δ. Without loss of generality, we may as-
sume ε= η(x,y) for (x, y) = ε̂.

The group 〈δ〉 consists of ambient dualities and automorphisms. According to 4.2, it contains
either a polarity or a triad reflection. According to 3.5 (h), we have (x, y) ∈ {2,1/2,−1}2 in the latter
case, and infer from 4.3 that some polarities are ambient.

Ambient polarities under embeddings of Π into P2(R) are in the focus of [4] and [5], together
with the corresponding conics in P2(R). Kommerell [14, p. 20] searched for ambient polarities (un-
der embeddings into P2(R)) but did not find any; this seems to be due to the fact that he only
considered embeddings such that no triad becomes collinear.
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4.7 Remarks. Using the bijection 0 ↔ 3Z, 1 ↔ 1+3Z, ∞↔−1+3Z, we translate the action of Γ on
{0,1,∞}2 ⊆ P1(F)2 into an action on F2

3 = (Z/(3Z))2 which is in fact an action by automorphisms of
A2(F3). The kernel of that action is Z := 〈τ〉.

More explicitly, the elements σ and σ∗ in Γ induce translations of A2(F3) (in the “vertical” and
“horizontal” directions, respectively). Each one of the central or axial reflections in Γ induces a
reflection in a (“diagonal”) line of the affine plane; the triad reflections induce reflections in points
of the affine plane. The polarities in ΓàΓ act as reflections in lines parallel to one of the coordinates
axes. Each duality of order 4 or 12 in ΓàΓ induces an automorphism of order 4 fixing one point
ofA2(F3) but no line; the dualities of order 6 act as glide reflections.

Assume charF ∉ {2,3}, and identify ( j ,k) ∈ {0,1,−1}2 with (−(−2) j ,−(−2)k ) on the one hand, and
with a pair in F2

3 on the other hand. This translates the action of Γ/Z on {2,1/2,−1} into an action on
the affine planeA2(F3). That action onA2(F3) is equivalent to the action discussed in the previous
paragraph.

5 Existence of ambient automorphisms or dualities

We have seen in 3.5 (a) that the group generated by τ (i.e., the center of the Sylow 3-subgroup of Γ)
is ambient under every embedding ofΠ into a projective plane over a commutative field.

The actions of the groups M and 〈ρ〉n (M ×M) introduced in 3.7 and in 3.8 play a crucial role
in the understanding of ambient automorphisms. From 3.5 and 4.3 we can actually derive explicit
conditions for ambiance of any given element of Γ, as follows.

5.1 Theorem. Let ε̂ = (x, y) ∈ (Fà {0,1})2 be the parameter pair for an embedding ε of Π into the
projective plane over a given commutative field F. We consider conjugacy classes under Γ.

(a) An ambient conjugate of α0 (i.e., an ambient axial reflection in one of the lines of Π) exists
precisely if y is in the orbit of x under the Sylow 3-subgroup of M (i.e., if y either equals x or
is the image of x under one of the elements of order 3 in M).

(b) An ambient conjugate of ζ0 (i.e., an ambient central reflection in one of the points of Π) exists
precisely if y is the image of x under one of the involutions in M.

(c) An ambient conjugate of α0ζ0 (i.e., an ambient reflection in a triad) exists precisely if (x, y) is
in the orbit of (2,2) under M ×M. In particular, this will never happen if charF= 2.

(d) An ambient involution — i.e., an ambient (central, axial, or triad) reflection — exists precisely
if y is in the orbit of x under M.

(e) An ambient element of order 3 in Γà 〈τ〉 exists precisely if the set {x, y} contains a root of
X 2 −X +1. The whole Sylow 3-subgroup of Γ is ambient precisely if both x and y are roots
of that polynomial.

(f ) The following are equivalent:

• The ambient group Γamb is transitive on the point set of Π.

• The ambient group Γamb is transitive on the line set of Π.

• The set {x, y} contains a root of X 2 −X +1.

(g) An ambient duality exists precisely if {x, y} contains an element in the orbit {2,1/2,−1} of 2
under M. In particular, this will never happen if charF= 2.
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5.2 Corollary. A central reflection in Γ is ambient under a given embedding if, and only if, the triad
containing the center is collinear under the embedding. Dually, an axial reflection in Γ is ambient
if, and only if, the parallel class containing the axis is confluent under the embedding.

A central reflection in Γ is ambient if, and only if, each reflection in a center in the same triad is
ambient. Dually, an axial reflection in Γ is ambient if, and only if, each reflection in an axis in the
same parallel class is ambient.

5.3 Examples. Assume that F contains a root w of X 2 −X +1, and consider the embedding η(w, 1
w ).

Then the whole Sylow 3-subgroup of Γ is ambient, and every central reflection ofΠ is ambient. The
embedding η(w, 1

w ) then extends to an embedding of the affine planeA2(F3).
However, an ambient triad reflection (under η(w, 1

w )) will only exist if w is in the orbit of 2 un-
der M ; this happens if, and only if, the field F has characteristic three. As each axial reflection
of Π is a product of an (ambient) central reflection and a triad reflection, we obtain an analogous
restriction for the existence of ambient axial reflections.

However, if the field F admits an automorphismκ interchanging w with 1
w then the non-ambient

axial reflection ατ2 is induced by the semilinear bijection mapping (x, y, z) to (yκ, xκ, zκ). The triad
reflections (which are conjugates of α0ζ0) are also not ambient, but induced by semilinear bijec-
tions in this case. (See also the discussion of the Möbius-Kantor configuration MK in Section 9
below.)

This observation is of interest because A2(F3) is isomorphic to the unital of order 2, and that
unital is embedded in P2(F4) as the geometry induced on the set of absolute points of a unitary
polarity. Every automorphism of the unital (and thus every automorphism ofA2(F3), in particular,
the non-ambient axial reflection ατ2) is induced by some semi-linear bijection of F3

4.
More generally, embeddings of hermitian unitals into arbitrary pappian projective planes have

been studied in [9]. The existence of embeddings that do not correspond to embeddings of coor-
dinatizing fields is a unique feature of the smallest unital, viz.,A2(F3).

5.4 Remarks. Not every field containing roots of X 2 −X +1 admits automorphisms interchanging
those roots; trivial examples are prime fields of order p ≡ 1 (mod 3).

Here is a less obvious example4. In the fieldC of complex numbers, consider the roots w = 1+i
p

3
2

and 1
w = 1−i

p
3

2 = 1− w of the polynomial X 2 − X + 1, and a root a of X 2 − w + 2. Then w − 2 is
not a square in Q(w) because the norm (w −2)(w −2) = 3 is not a square in Q. So 1, a are linearly
independent overQ(w). Aiming at a contradiction, we assume that there exists α ∈ Aut(Q(a)) such
that α(w) = 1−w . There exist x, y ∈Q(w) with α(a) = x + y a, and y 6= 0 because α(a) ∉Q(w). We
compute −1−w =α(w −2) =α(a2) =α(a)2 = (x + y a)2 = x2+2x y a+ y2a2 = x2+ y2(w −2)+2x y a.
Comparing coefficients, we obtain x = 0 (since 2y 6= 0) and −1−w = y2(w −2). So y2 = −1−w

w−2 = w
would be a square in Q(w). But then w = −w4 yields that −1 is a square in Q(w), and there exist
r, s ∈Q such that −1 = (r +sw)2 = r 2−s2+(2r s+s2)w . As s 6= 0, this leads to s =−2r and −1 =−3r 2,
contradicting the fact that 3 is not a square inQ.

A quite general result ([24], see also [7, Cor. 2]) asserts that there exists an extension field K of
Q[X ]/(X 2 −X +1) such that Aut(K) is isomorphic to any given group: in particular, one can have
the trivial group, or a finite group without elements of even order.

In Table 1, we collect information about ambient automorphisms and dualities under an embed-
ding η(x,y), depending on the lengths of the two orbits xM and y M . The first column gives the set of
lengths of those orbits. Note that the orbits necessarily coincide if they have the same length and
that length is less than 6; only in the last case we need a further distinction. The second column

4 The authors are grateful to Peter Müller at Würzburg for providing this example plus the theory necessary to under-
stand it in context.
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(marked “duality”) says whether there is at least one ambient duality (from 4.5 and 4.6 we know
that this happens if at least one of the parameters is in the orbit of 1, which has length 1 or 3 de-
pending on charF). The orders of the groups Γ

η(x,y)

amb and Γ
η(x,y)

amb of all ambient automorphisms and of
all ambient automorphisms and dualities, respectively, are given in the last two columns; we indi-
cate by “=” the cases where no ambient dualities exist (and the two groups coincide). The columns
marked “#2” and “#3” give the size of the Sylow 2- and 3-subgroups in Γ

η(x,y)

amb , respectively. The en-
tries “projective” and “affine” indicate those embeddings that extend to embeddings of P2(F3) or
ofA2(F3) (up to duality), respectively.

orbit lengths{|xM |, |y M |} ambient
duality?

#2 #3 conditions remarks
∣∣∣Γη(x,y)

amb

∣∣∣ ∣∣∣Γη(x,y)

amb

∣∣∣
{1} yes 4 27 charF= 3, |F| ≥ 3 projective 216 108

{1,6} yes 1 9 charF= 3, |F| ≥ 9 18 9

{2} no 2 27 charF 6= 3, |F| ≥ 4 affine = 54
{2,3} yes 1 9 charF ∉ {2,3}, |F| ≥ 7 18 9
{2,6} no 1 9 charF 6= 3, |F| ≥ 13 = 9

{3} yes 4 3 charF ∉ {2,3} |F| ≥ 5 24 12
{3,6} yes 1 3 charF ∉ {2,3}, |F| ≥ 11 6 3

{6} no 2 3 same orbit, |F| ≥ 8 = 6
no 1 3 different orbits, |F| ≥ 16 = 3

Table 1: Ambient automorphisms under η(x,y) (depending on orbit lengths)

6 Counting

6.1 Theorem. Let q be a power of a prime, let t ∈ {0,1} denote the representative of q (mod 2), and
let r ∈ {0,1,2} denote the representative of q + 1 (mod 3). Then the number of equivalence classes
(up to projective transformations of subsets in the projective plane) of Pappus figures in P2(Fq ) is
Nq = 1

36

(
q2 + (2+4r )q +4r (r +1)+9t −8

)
.

The number of equivalence classes up to projective transformations and projective dualities is
DNq := 1

2 Nq + t
12 (q +2r +1) = 1

72

(
q2 + (2+4r +6t )q +4r (r +1)+ (12r +15)t −8

)
.

Proof. From 3.4(a) we know that the equivalence classes are the orbits under Γ×PGL3(F), and thus
correspond to the orbits of Γ/Z on the parameter space (Fà {0,1})2.

In order to count the parameter pairs fixed under some element of Γ, we note that t gives the
number of fixed points of an involution in M on Fq à {0,1}, and r counts the roots of X 2 − X + 1
in Fq , i.e., the number of fixed points of an element of order 3 in M .

Every element of Γ/Z is represented5 by a conjugate of an element occurring in the following
table. That table also gives the number of fixed points of the representative ψ (in the action on the
parameter space (Fq à {0,1})2) and the length cψ of the conjugacy class of ψZ in Γ/Z.

ψ id σ µ µ∗ ζ0 α2 α2ζ0 α2µ

(x, y)ψ (x, y) (x, 1
1−y ) ( x−1

x , y−1
y ) ( 1

1−x , y−1
y ) ( 1

y , 1
x ) (y, x) ( 1

x , 1
y ) ( y−1

y , x−1
x )

|Fix(ψ)| (q −2)2 r (q −2) r 2 r 2 q −2 q −2 t r
cψ 1 4 2 2 3 3 9 12

5 The action of Γ/Z onA2(F3) may be helpful here, see 4.7.
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A general lemma (that is not Burnside’s but due to Cauchy and Frobenius [8, p. 287], see [19]) now
gives the formula for the number of orbits as

Nq = 1

36

∑
ψ

cψ |Fix(ψ)| = 1

36

(
q2 + (2+4r )q +4r (r +1)+9t −8

)
.

Now we turn to equivalence of figures up to projective dualities and projective collineations; viz.,
to the orbits under Γ×PGL3(F), and thus to the orbits of Γ/Z on the parameter space (Fà {0,1})2.
We use the following table (where dδ denotes the length of the conjugacy class of δZ in Γ) together
with the previous one (note that the Γ-conjugacy classes of µ and µ∗, and those of ζ0 and α2,
respectively, are fused in the larger groupΓ, but this does not affect the outcome of the calculation):

δ π (α0π)3 σπ α0π (α0π)5

(x, y)δ ( 1
x , y) ( y−1

y , x
x−1 ) ( 1

x , 1
1−y ) ( y

y−1 , 1
1−x ) ( y

y−1 , 1
1−x )

|Fix(δ)| (q −2)t t r t t t
dδ 6 6 12 6 6

This gives the number of orbits under Γ/Z as DNq = 1
72

(∑
ψ cψ |Fix(ψ)|+∑

δdδ |Fix(δ)|) = 1
2 Nq +

t
12 (q +2r +1) = 1

72

(
q2 + (2+4r +6t )q +4r (r +1)+12r t +15t −8

)
, as claimed.

6.2 Remark. In [2], the total number of “PAPPOS-Konfigurationen” in the projective plane over a
given finite field of order n is determined as

2n2(n −1)(n −2)(n2 +n +1)
(n+1

4

)= 1
12 (n +1)n3(n −1)2(n −2)2(n2 +n +1) .

The formula given in [2, Satz 2] does not give the number of Pappus figures as defined in the present
paper (see 1.9); for instance, it claims that there are 468 “PAPPOS-Konfigurationen” in the projec-
tive plane P2(F3) over the field of order 3, but it is clear from 2.1 that the number of Pappus figures
in P2(F3) equals the number 13 ·4 = 52 of incident point–line pairs.

However, a “PAPPOS-Konfiguration” as considered in [2] is, in our present terminology, a Pappus
figure with a specified line p (which defines a set of two other lines of the figure, namely the two
that together with {p} form the parallel class of the latter in the abstract configuration). Thus the
formula in [2, Satz 2] gives nine times the number of Pappus figures in P2(F).

7 Subgroups

We study (the subgroups of) Γ= Aut(Π) in more detail. This group is isomorphic to the group
1 a12 a13

0 a22 a23

0 0 a33

∣∣∣∣∣∣ a j k ∈ F3, a22a33 6= 0

 ,

cf. 2.1. From this representation it is obvious that the Sylow 3-subgroup (given by a22 = a33 = 1) is
normal, and thus characteristic in Γ; in fact, it is the commutator group of Γ. The center Z of the
Sylow 3-subgroup is thus also a characteristic subgroup of Γ. We note that the non-trivial elements
of Z are just the automorphisms of order three leaving invariant each triad, viz. the permutation
τ= (0,03,3)(1,4,14)(2,25,5) of the point set ofΠ, and the inverse of that permutation (cf. 3.5 (a)).

We have seen in 3.5 (a) that these automorphisms are ambient under any embedding. It remains
to discuss the subgroups containing Z = 〈τ〉; i.e., the subgroups of the quotient Γ/Z. That quotient
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is isomorphic to a semidirect product C2
2nC2

3. The normal subgroup can be identified with the
vector space F2

3, and the complement acts by the matrices I = (
1 0
0 1

)
, J = (

1 0
0 −1

)
, −J , and −I = J (−J ).

There are four subgroups of order 3 in F2
3. Of these, the groups T := F3(1,0) and T ∗ := F3(0,1) are

normalized by the operators in the complement, but U := F3(1,1) and U∗ := U J = F3(1,−1) are
interchanged by J (and also by −J ), and are invariant only under ±I .

Z

〈ζ0Z〉 〈α0Z〉
〈ζ0Z,α0Z〉

U U∗T T ∗

H

〈ζ0, H〉/Z 〈α0, H〉/Z

Γ/Z

Figure 6: The subgroup lattice of Γ/Z ∼= C2
2nC2

3, where Z is the center of the normal Sylow 3-
subgroup H . Not all conjugates of 2-subgroups are shown in the picture. Dotted edges
indicate subgroups of index 2.

generic

y ∈ { 1
x ,1−x, x

x−1

}
y ∈ { 1

x−1 , x−1
x , x

}x, y ∈ {
2, 1

2 ,−1
}y ∈W x ∈W

x = 1/y ∈W x = y ∈W

x = y = 2 =−1

Figure 7: The conditions on the parameters singling out subgroups of Γ/Z (cp. Figure 6) that do
occur as full ambient groups. Conjugates of 2-subgroups are shown in the same place.

Any subgroup of Γ/Z is a conjugate of a subgroup of the complement (i.e., subgroups of Sylow
2-subgroups), or contains a non-trivial subgroup of F2

3 and is contained in the normalizer of that
subgroup of F2

3. The subgroup lattice of Γ/Z is indicated in Figure 6. That picture does not contain
all the Sylow 2-subgroups. However, the non-trivial elements of those groups are involutions, and
we understand those from 3.5 (cp. 5.1).
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In Figure 6, labels in rectangles indicate those subgroups of Γ/Z that correspond to full groups of
ambient automorphisms with respect to suitable embeddings. In Figure 7, the relevant conditions
on the parameters replace the labels in rectangles. (Note that some of these imply conditions of
the field F.)

7.1 Theorem. Let an embedding ε : Π→P2(F) be given, with parameter pair (x, y) := ε̂ ∈ (Fà {0,1})2.

(a) If F does not contain any root of X 2 − X +1 then the Sylow 3-subgroup of the ambient group
Γεamb is just Z , for any embedding of the Pappus configuration into P2(F).
Depending on the value of (x, y), the ambient group Γεamb will be a conjugate of Z, 〈ζ0〉Z,
〈α0〉Z, or 〈ζ0,α0〉Z, having order 3, 6, 6, or 12, respectively.

(b) If the order of the ambient group is divisible by 9 then the set {x, y} contains a root of X 2−X +1.
The automorphism σ is ambient if y is a root of X 2 − X +1, and σ∗ is ambient if x is such a
root. The automorphisms µ or µ∗ are ambient if both x and y are such roots.
Depending on charF and the choice of (x, y), the ambient group will be one of 〈σ,τ〉, 〈σ∗,τ〉,
〈ζ0,σ,σ∗〉, 〈α0,σ,σ∗〉, or Γ, having order 9, 9, 54, 54, or 108, respectively.

See Figure 8 for embeddings into P2(R) realizing the three possibilities6 in 7.1 (a).

00

3

03

4

1

14
5

25

2

00

3

03

4

1

14
5

25

2

0

4

25

03

1

5 14

2

3

0

03

3

0

4

25

03

1

5 14

2

3

0

03

3

Figure 8: Four different embeddings ofΠ intoP2(R), with ambient group C3 (left: no collinear triad,
no confluent parallel class), ambient group D3 (center top: no collinear triad, one con-
fluent parallel class; center bottom: one collinear triad, no confluent parallel class), and
ambient group D6 (right: one confluent parallel class and one collinear triad {0,3,03} at
infinity), respectively.

6 Some of these embeddings into P2(R) have already been noted by Coxeter in [4, p. 267–269] and [5, p. 270–273].
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8 Cross Ratios

Let a,b,c,d be four points on a projective line over F. In order to determine the cross ratio
[

a b
c d

]
of (a,b,c,d),we introduce homogeneous coordinates on the projective line in such a way that a =
F(1,0), b = F(0,1), c = F(1,u), and d = F(1,1). Then

[
a b
c d

] = u, see [1, p. 72], or [22, 18, S. 118].
Note that the concept of cross ratios was already introduced by Pappus ([21, Book VII, Prop. 129],
see https://archive.org/details/pappialexandrin01hultgoog/page/n409), who noted its invariance
under projection and used it for his proof of the theorem named after him.

8.1 Proposition. If we know the embedding ε, we can find the corresponding parameter pair ε̂ as

ε̂=
([

0ε ∞ε

4ε 2ε

]
,

[
3ε ∞ε

1ε 5ε

])
,

where ∞ε is the intersection point of the lines 0ε+2ε and 3ε+5ε.

Proof. As cross ratios are invariant under projective transformations, we may assume ε = η(x,y),
where (x, y) = ε̂. Then the definition of that embedding in 3.1 immediately gives ∞ε = F(0,0,1);
moreover, we find[

0ε ∞ε

4ε 2ε

]
=

[
F(1,0,0) F(0,0,1)
F(1,0, x) F(1,0,1)

]
= x , and

[
3ε ∞ε

1ε 5ε

]
=

[
F(0,1,0) F(0,0,1)
F(0,1, y) F(0,1,1)

]
= y .

8.2 Definition. If F =Πε is an arbitrary Pappus figure in P2(F), we pick any two lines K ,L of F such
that their intersection point ∞ does not belong to F . Taking the points a,c,d of F on K in arbitrary
(but fixed) order, we note that for each u ∈ {a,c,d} there is a unique point u′ of F on L such that u
and u′ are not joined by a line of F . The pair

([
a ∞
c d

]
,
[

a′ ∞
c ′ d ′

])
is called a cross ratio pair associated to

the figure F with respect to (a,d , a′,d ′).

Recall (cp. [23, 2.3]) that four points a, b, c, d on a projective line over a commutative field F form
an equianharmonic tetrad if

[
a b
c d

]
is a root of X 2 − X +1. If charF 6= 2 then the four points form a

harmonic tetrad if
[

a b
c d

]
lies in the orbit

{
2, 1

2 ,−1
}
. In our present context, we obtain:

8.3 Theorem. (a) The ambient group Γamb has a Sylow 3-subgroup of order greater than 3 if, and
only if, the points a, ∞, c, d form an equianharmonic tetrad for at least one choice of K , L as
in 8.2.

(b) There exists an ambient duality if, and only if, the points a, ∞, c, d form a harmonic tetrad
for at least one choice of K , L.

8.4 Theorem. The set of cross ratio pairs associated to a given Pappus figure F in P2(F) is just one
Γ-orbit in (Fà {0,1})2.

Proof. Consider any embedding ε : Π → P2(F) such that Πε = F . Then ε̂ is the cross ratio pair
associated to F with respect to (0ε,2ε,3ε,5ε); see 8.1.

For each cross ratio pair associated to F with respect to (a,d , a′,d ′), we let z denote the inter-
section point of a +d ′ and d + a′, and then note that the pre-image of (a,d , z, a′,d ′) under ε is a
bow tie in Π. From 2.4 we know that there exists γ ∈ Γ mapping (0,2,14,3,5) to that bow tie. Thus

(a,d , a′,d ′) = (0γε,2γε,3γε,5γε), and
([

a ∞ε

c d

]
,
[

a′ ∞ε

c ′ d ′

])
= γ(ε̂), as required.
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8.5 Theorem. Two Pappus figures in P2(F) are projectively equivalent if, and only if, the sets of cross
ratio pairs associated to them are equal, i.e., if any cross ratio pair associated to the second figure lies
in the Γ-orbit of any cross ratio pair associated to the first one.

There exists a projective duality mapping the first figure to the second if, and only if, any cross ratio
pair of the second figure is the image of a pair for the first under an element of the coset ΓàΓ.

A Pappus figure admits an ambient duality if, and only if, the set of cross ratio pairs is invariant
under Γ (and not just under Γ).

8.6 Remark. One can compute a cross ratio pair associated to the dual figure with the help of
coordinates for lines in the original figure F , as follows: Pick two points of F not joined by a line
of the figure, let their joining line in P2(F) play the role of ∞, and pair each line L through the first
point with the unique line L′ through the second point that does not meet L in a point of F .

Explicitly, for F = Πε with ε = η(x,y) we could use the points 3ε = F(0,1,0) and 0ε = F(1,0,0),
then ∞= ker(0,0,1)ᵀ, and the pairing of lines is given by A := 3ε+5ε = ker(−1,0,0)ᵀ, A′ = 0ε+2ε =
ker(0,−1,0), C := 3ε+4ε = ker(−1,0, 1

x )ᵀ, C ′ = 0ε+5ε = ker(0,−1,1), D := 3ε+2ε = ker(−1,0,1)ᵀ,

D ′ = 0ε+1ε = ker
(
0,−1, 1

y

)ᵀ. Then
([

A ∞
C D

]
,
[

A′ ∞
C ′ D ′

])= ( 1
x , y

)=π′(x, y).

8.7 Corollary. Let L0, L1 be two lines in P2(F), intersecting in a point s. Consider three points
a0, a2, a4 ∈ L0 à {s} and three points a1, a3, a5 ∈ L1 à {s}. Construct a Pappus figure F by joining a j

to a j+1, intersecting a j +a j+1 with a j+3+a j+4, and joining the three resulting points by a line, where
the indices are taken modulo 6.

For permutations β0 and β1 of {0,2,4} and {1,3,5} respectively, consider the Pappus figure F (β0,β1)

obtained by replacing a j on Lk by a jβk . Then the following hold.

(a) The figures F and F (β0,β1) are projectively equivalent if β0 and β1 have the same sign.

(b) If β0 and β1 have different sign then there exists a projective duality mapping F to F (β0,β1).

(c) If F and F (β0,β1) are projectively equivalent but do not admit an ambient duality then β0

and β1 have the same sign.

(d) If F and F (β0,β1) are projectively equivalent and admit an ambient duality then the signs of β0

and β1 are arbitrary.

9 The Möbius-Kantor configuration

Starting with the affine plane A2(F3) of order 3, we obtain a configuration MK with 8 points and 3
points per line, and dually 8 lines and 3 lines per point, see Figure 9 (left). One can show (see [16,
Kap. 3, § 3]) that these parameters (together with the assumption that no more than one line joins
any two given points) uniquely determine the configuration, up to isomorphism. This configura-
tion is called the Möbius-Kantor configuration, see [18] and [12], cp. [3, § 5]. The obvious action of
GL2(F3) on our model inA2(F3) already gives the full group Aut(MK), see [16, Kap. 3, § 3].

In the configuration MK, each point p is joined to 6 points different from p, so there remains
exactly one point p# opposite p (i.e., not joined to p). The complement of a pair of opposite points
in the point set of the configuration is the union of two disjoint lines. In the picture on the left
in Figure 9, the numbering of the points by elements of Z/(8Z) is such that points p j and p j+4

are opposite, and p j 7→ p j+1 gives an automorphism ρ of order 8. That automorphism corre-
sponds to an element of GL2(F3) of order 8, with determinant −1 and trace in {1,−1}. (Note that
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trace(ρ−1) = − trace(ρ) here; so a change of orientation of the 8-cycle used for the numbering of
points interchanges the two possible values of the trace.) Another automorphism that will be rele-
vant to our discussion is β= (p1, p7)(p0, p4)(p3, p5), this involution also corresponds to an element
of determinant −1 (and trace 0) in GL2(F3).

Using Pappus’ theorem, we see that every embedding of MK into a pappian plane extends to
an embedding of A2(F3), see Figure 9 (center). That extension then restricts to an embedding of Π
such that at least two triads are collinear, see Figure 9 (right). More explicitly, we have the following:

9.1 Theorem. An embedding of MK into P2(F) exists if, and only if, the field F contains a root w of
X 2 −X +1. If this is the case then 1

w is also a root of that polynomial, and we have the following.

(a) The embedding extends to an embedding of A2(F3).

(b) The embedding is projectively equivalent to ι or to ι′, where

p ι
0 = F(1,0, w), p ι

2 = F( 1
w , w,1), p ι

4 = F(0, w,1), p ι
6 = F(w, 1

w ,0),

p ι
1 = F(1,0,0), p ι

3 = F(1,0,1), p ι
5 = F(0,1,1), p ι

7 = F(0,1,0),

and

p ι′
0 = F(1,0, 1

w ), p ι′
2 = F(w, 1

w ,1), p ι′
4 = F(0,1, w), p ι′

6 = F( 1
w , w,0),

p ι′
1 = F(1,0,0), p ι′

3 = F(1,0,1), p ι′
5 = F(0,1,1), p ι′

7 = F(0,1,0),

respectively.

(c) If charF = 3 then w = 2 = 1
w , every automorphism of MK is ambient, and the embedding is

unique (up to projective equivalence).

(d) If charF 6= 3 then the ambient automorphisms of MK form the subgroup SL2(F3) of index 2 in
Aut(MK) = GL2(F3). There are two classes of projectively equivalent embeddings, represented
by ι and ι′, respectively.
For example, the automorphisms β and ρ are not ambient if charF 6= 3.

(e) If there exists an automorphism κ of the field F such that wκ = 1
w then the semilinear trans-

formation κ̂ : F(x, y, z) 7→ F(yκ, xκ, zκ) interchanges the two classes of projectively inequivalent
embeddings.

Proof. Let ε : MK → P2(F) be an embedding. The extension is obtained in the following way (see
Figure 9). We choose two sets of opposite points, say {p0, p4} and {p2, p6}. Let z denote the in-
tersection point of the lines p1 + p5 and p3 + p7 joining the remaining opposite pairs. A Pappus
configuration is now constructed by deleting the two disjoint lines in the complement of {p0, p4}
(but keep the points on them, those lines become two of the triads, the third one is {p0, p4, z}): the
points pε

6, z, and pε
2 are collinear by Pappus’ theorem. Putting 0η := pε

1, 1η := pε
4, 2η := pε

3, 3η := pε
7,

4η := pε
0, 5η := pε

5, 03η := pε
6, 14η := z, and 25η := pε

2 we obtain an embedding η : Π→ P2(F). The
triads {0η,03η,3η} = {pε

1, pε
6, pε

7} and {2η,25η,5η} = {pε
3, pε

2, pε
5} are collinear by construction. There-

fore, the third triad {1η,14η,4η} = {pε
4, z, pε

0} is collinear, as well (see [26, 3.5]), and we obtain the
extension as claimed in assertion (a).

Up to a projective transformation, we may and will assume that η = η(x,y) for some parameter

pair (x, y) := η̂ ∈ (Fà{0,1})2. From 5.2 we now infer that ζτ
2

1 is an ambient automorphism, so (x, y) =
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Figure 9: The configuration MK (left), its extension (center), and the embedding ι (right)

(x, y)ζ
τ2
1 = (

1− y,1− x
)

by 3.5. As ζ0 is also ambient, we have (x, y) = (x, y)ζ0 = ( 1
y , 1

x

)
. This leads to

x2 − x + 1 = 0 and y = 1
x . The set of roots of X 2 − X + 1 in F is {w, 1

w }, and we obtain that ε is
projectively equivalent either to the restriction ι of η(w, 1

w ) or to the restriction ι′ of η( 1
w ,w); the two

roots (and thus the embeddings) coincide if charF = 3. This completes the proof of assertion (b),
and of assertion (c).

From (w, 1
w )µ

∗ = ( 1
1−w ,

1
w −1

1
w

)= (
w, 1

w

)
we obtain that µ∗ is an ambient automorphism. The auto-

morphism ϕ := (p0, p2, p4, p6)(p1, p3, p5, p7) of MK has order 4, under the given embedding ι it is
induced by F(u, v, w) 7→ F(u +w,u,−u + v). Thus ϕ is ambient for the given embedding of MK but
does not leave the Pappus configuration invariant (in fact, it permutes the possible choices of a
pair of sets of opposite points in orbits of length two). We note that ζτ

2

1 =ϕ2.
Now 〈ϕ,µ∗〉 is a subgroup of index 2 in Aut(MK) = GL2(F3), and coincides with the commutator

subgroup SL2(F3).
The automorphism β = (p1, p7)(p0, p4)(p3, p5) of MK is induced by ατ2 = (0,3)(1,4)(2,5) ∈ Γ; it is

ambient if, and only if, we have
(
w, 1

w

)= (
w, 1

w

)ατ2 = ( 1
w , w

)
. Thus it is ambient precisely if charF= 3

(and w = 2 = 1
w ). In that case, every automorphism of MK is ambient. In all other cases, the am-

bient group is the commutator group of Aut(MK). The automorphism ρ is not in that commutator
group because it is induced by an element of GL2(F3) with determinant −1.

The last assertion is checked by straightforward computations.

9.2 Remark. Assume that there exists an automorphism κ of the field F such that wκ = 1
w . The

involutory automorphism βι = (p ι
0, p ι

4)(p ι
1, p ι

7)(p ι
3, p ι

5) of MKι is then induced by the semilinear
collineation F(x, y, z) 7→ F(yκ, xκ, zκ), and the automorphism ρι = (p ι

0, p ι
1, p ι

2, p ι
3, p ι

4, p ι
5, p ι

6, p ι
7) of

order 8 is induced by the semilinear collineation F(x, y, z) 7→ F(xκ, yκ, zκ)
(wκ w 1

1 0 w
w 2 wκ −w

)
. These auto-

morphisms fix F(1,1,1) and so extend to automorphisms ofA2(F3)ι.

9.3 Remark. In any case, the projective transformation ξ : F(x, y, z) 7→ F(y, x, z) givesβιξ= ι′. There-
fore, the embeddings ι and ι′ are projectively quasi-equivalent, and the images of MK under ι and ι′

are projectively equivalent. Recall, however, that the embeddings ι and ι′ are not projectively equiv-
alent if charF 6= 3.

9.4 Remark. For the case where F ∈ {R,C}, our assertions (a) and (b) in 9.1 have been proved already
in [16, Kap. 3, § 3], and later again in [3, § 5].
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Figure 10: Two representations of the incidence graph of the Möbius-Kantor configuration

9.5 Examples. The representation of the incidence graph of MK on the left in Figure 10 exhibits the
automorphism ρ = (p0, p1, p2, p3, p4, p5, p6, p7) of order 8, and representatives from two conjugacy
classes of polarities of MK:

ψ =
(
p0,

{p0
p1
p3

})(
p1,

{p7
p0
p2

})(
p2,

{p6
p7
p1

})(
p3,

{p5
p6
p0

})(
p4,

{p4
p5
p7

})(
p5,

{p3
p4
p6

})(
p6,

{p2
p3
p5

})(
p7,

{p1
p2
p4

})
,

ψρ =
(
p0,

{p1
p2
p4

})(
p1,

{p0
p1
p3

})(
p2,

{p7
p0
p2

})(
p3,

{p6
p7
p1

})(
p4,

{p5
p6
p0

})(
p5,

{p4
p5
p7

})(
p6,

{p3
p4
p6

})(
p7,

{p2
p3
p5

})
.

We note that ψ fixes two flags of MK, while ψρ fixes four flags. So these two polarities are not
conjugates under Aut(MK).

The polarity ψ is ambient in any case, in fact we have ψι = ιψ̃, where ψ̃ : Fv 7→
(

v

(
w 0 −1
0 −1 w
−1 w 1

w

))ᵀ
.

From 9.1 we know that ρ is not ambient unless w = 2 (and charF= 3). So the polarityψρ is ambient
precisely if charF= 3 and w = 2.

There are 12 conjugates of ψ (cp. [3, § 5]). The remaining elements in the coset Aut(MK)′ψ of
ψ modulo the commutator group Aut(MK)′ of Aut(MK) form two conjugacy classes of dualities of
order 8. Representatives of those can be seen as rotations by 45 or 135 degrees, respectively, in the
representation on the right in Figure 10:

δ =
(
p0,

{p7
p0
p2

}
, p2,

{p1
p2
p4

}
, p4,

{p3
p4
p6

}
, p6,

{p5
p6
p0

}) (
p1,

{p4
p5
p7

}
, p3,

{p6
p7
p1

}
, p5,

{p0
p1
p3

}
, p7,

{p2
p3
p5

})
δ3 =

(
p0,

{p1
p2
p4

}
, p6,

{p7
p0
p2

}
, p4,

{p5
p6
p0

}
, p2,

{p3
p4
p6

}) (
p1,

{p6
p7
p1

}
, p7,

{p4
p5
p7

}
, p5,

{p2
p3
p5

}
, p3,

{p0
p1
p3

})

In any case, the duality δ is ambient; we have δι= ιδ̃, where δ̃ : Fv 7→
(
v

(
1 0 0
1 1 −1−1 0 1

))ᵀ
. Consequently,

the duality δ3 is also ambient, over any field. The two are not conjugates because any conjugating
element would normalize 〈δ〉 = 〈δ3〉 and then also 〈δ2〉, but the latter’s normalizer in GL2(F3) is the
extension of the centralizer CAut(MK)(δ2) = 〈ρ〉 by an involution inducing inversion on 〈ρ〉, and does
not map δ to δ3.

9.6 Remark. The group of ambient automorphisms of dualities generated by the commutator
group Aut(MK)′ of Aut(MK) and the polarity ψ is isomorphic to GL2(F3).
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2015-012 Kimmerle, W.; Köster, I.: Sylow Numbers from Character Tables and Group Rings

2015-011 Györfi, L.; Walk, H.: On the asymptotic normality of an estimate of a regression
functional

2015-010 Gorodski, C, Kollross, A.: Some remarks on polar actions
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2013-011 Kohls, K; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite Elements for Control
Constrained Optimal Control Problems

2013-010 Corli, A.; Rohde, C.; Schleper, V.: Parabolic Approximations of Diffusive-Dispersive
Equations

2013-009 Nava-Yazdani, E.; Polthier, K.: De Casteljau’s Algorithm on Manifolds
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