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Regularity results to semilinear Parabolic Initial Boundary
Value Problems with Nonlinear Newton Boundary

Conditions in a polygonal space-time cylinder

Anna-Margarete Sändig
IANS, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

Abstract
In this paper some semilinear parabolic problems with nonlinear Newton boundary conditions in
a polygonal space-time cylinder are considered: a simple model problem, see [7], more advanced
problems with nonlinear terms, which satisfy growth conditions and problems with nonlinear
advection terms. We start with the corresponding stationary boundary value problems in a polygon,
discuss the existence of weak solutions in H1(Ω) using a theorem of Brézis about the surjectivity of
pseudomonotone and coercive operators and derive regularity results in W 2,q(Ω). Here, q is given by
a linearized problem in a polygon Ω moving the nonlinear terms to the right hand sides.
We introduce an abstract initial value problem, where the associated operator A maps
D(A) ⊂ Lq(Ω) → Lq(Ω). We discuss the m-accretivity of A and use the semigroup theory in
order to get solvability and regularity results in space and time. If the m-accretivity is not available,
then we investigate the existence of weak solutions in Bochner spaces via pseudomonotonicity and
semicoerciveness.

1 Introduction
Nonlinear parabolic initial boundary value problems describe e.g. the evolution of heat processes,
regularized conservation laws, semiconductor devices or transport processes in porous electrodes,
growing plants or biochemical reactions.
There are different papers, where nonlinear parabolic initial boundary problems are studied. In [13]
there are considered nonlinear heat equations with nonlinear boundary conditions and equations based
on regularized conservation laws with linear boundary conditions. In particular, there is investigated
when weak solutions belong to Bochner spaces with the derivative order one. In [12] there are consi-
dered parabolic quasilinear equations with linear Neumann, Dirichlet or mixed type boundary condi-
tions which simulate the current flow in real semiconductor devices. The focus of the paper [4] lies on
numerical methods. There is assumed that the nonlinear boundary condition has a bounded derivative
with respect to the the solution u. In [1] are studied existence, uniqueness and regularity of semilinear
heat equations with nonlinear boundary conditions. Here growth conditions play an important role.

1



In [5] an Euler forward scheme is used for the numerical solution of nonlinear parabolic problems of
p-Laplacian type.

In this paper we concentrate to semilinear parabolic problems in polygonal space-domains. In secti-
ons 2 we desrcibe our procedure for the simple boundary initial problem with a nonlinear Newton
boundary condition. Since the operator to the weak formulated stationary boundary value problem
A : H1(Ω) → H1(Ω)∗ is strictly monotone, Lipschitz continuous and coercive, see [6], we need
no growth conditions, in order to guarantee existence und uniqueness of a weak solution u. Due to
regularity results for a linearized problem we get that u ∈ W 2,q(Ω) for sufficient smooth right hand
sides, where q is determined by the maximal interior opening angle ω0: q = 1 + π

2ω0−π − ε < 2
for ω0 > π, q = 1 + π

2ω0−π − ε > 2 for π
2
< ω0 < π and q ≥ 1 is abitrary for ω0 ≤ π

2
.

Here, ε > 0 is a small real number. We introduce an abstract initial value problem, where the as-
sociated operator A maps D(A) ⊂ Lq(Ω) → Lq(Ω). The m-accretivity of A can be shown and
due to the semigroup theory we get solvability and regularity results in space and time of the type:
u ∈ C(I,D(A)) ∩W 1,∞,∞(I, Lq(Ω), Lq(Ω)) and u(t, ·) ∈ W 2,q(Ω) ∀t ∈ I.
In section 3 we study a more advanced problem with a nonlinear term c(u) in the partial differential
equation and a nonlinear term b(u) in the boundary condition. At first we consider a weak formu-
lation of the stationary boundary value problem described by an operator A : H1(Ω) → H1(Ω)∗.
We use a theorem of Brézis which says that pseudomonotone coercive operators are surjective. In
order to ensure the pseudomonotonicity and coerciveness of the operator A we need growth condi-
tions and a Carathéodory condition. Starting from a weak solution in H1(Ω) and assuming that a
growth condition is satisfied for the boundary term b′(·) additionally we get the same regularity result
as for the simple model problem. For the application of the semigroup theory we have to guarantee
the m-accretivity of A : Lq(Ω)→ Lq(Ω). This can be done supposing that the functions c(·), b(·) are
monotone. In this way we get regularity results in space and time of the same quality as for the first
model problem.

Section 4 is devoted to a semilinear problem with advection term c(u)∇u.We start with the stationary
problem. The pseudomonotonicity of the operator belonging to the weak formulated problem can be
shown, similar to the first two problems, whereas the coerciveness needs stronger growth conditions.
The existence of weak solutions in H1(Ω) follows again from the theorem of Brézis. A regularity
result is formulated similar to the first two cases. But, the nonstationary problem can not be handled
as before, since the m-accretivity can not be shown. Therefore, we introduce a weak formulated initial
boundary value problem with the the operator A : L2(I, V ) → L2(I, V ∗), where V = H1(Ω). We
discuss the boundedness of the operator A and get finally a result when a weak solution u belongs to
the Bochner space W 1,2,2(I, V, V ∗) ∩ C(I, L2(Ω)).
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2 The initial-boundary-value problem for an model problem
Let Ω ⊂ R2 be a time-independent bounded polygonal domain with the maximal interior opening
angle ω0 and the boundary ∂Ω. We set Q = I × Ω,Σ = I × ∂Ω, where I = [0, T ] is a fixed bounded
time interval. By n = (n1, n2) we denote the unit outward normal to ∂Ω. First, we consider the
following initial-boundary-value problem as an model problem: Find u = u(t, x) such that

∂u

∂t
−4u = f(t, x) for (t, x) ∈ Q,(2.1)

∂u

∂n
+ κ|u|αu = ϕ(t, x) for (t, x) ∈ Σ,(2.2)

u(0, x) = u0(x) for x ∈ Ω,(2.3)

where f and ϕ are given functions and κ > 0, α ≥ 0 are given constants.
In the sections 3 and 4 we prove solvability and regularity results for more general semilinear pro-
blems where the nonlinear terms satisfy growth conditions.

Besides the classsical formulation (2.1), (2.2), (2.3) we consider an abstract initial-value problem. For
this purpose we interpret the function u = u(t, x) as mapping from the time interval I into a Banach
space X , u : I → X . The quality of this mapping will be described by the belonging to Bochner
spaces. Thus we consider the following spaces for 1 ≤ p ≤ ∞:

Lp(I,X) = {u : I → X, ‖u‖Lp(I,X) =

(∫ T

0

‖u‖pXdt
) 1

p

<∞}, if p ∈ [1,∞),(2.4)

L∞(I,X) = {u : I → X, ‖u‖L∞(I,X) = ess supt∈I‖u‖X <∞}, if p =∞,(2.5)
C(I,X) = {u : I → Xcontinuous, ‖u‖C(I,X) = maxt∈I‖u(t)‖X},(2.6)

and for two Banach spaces X1, X2 and 1 ≤ pi ≤ ∞, i = 1, 2,

(2.7) W 1,p1,p2(I,X1, X2) = {u ∈ Lp1(I,X1);
du

dt
∈ Lp2(I,X2)}

equipped with the norm

(2.8) ‖u‖W 1,p1,p2 (I,X1,X2) = ‖u‖Lp1 (I,X1) + ‖du
dt
‖Lp2 (I,X2).

The regularity of solutions to the stationary boundary value problem similar to (2.1), (2.2) was dis-
cussed in [8]. Starting from an uniquely defined weak solution u ∈ W 1,2(Ω) the following theorem
was proved:

Theorem 1 Let u ∈ W 1,2(Ω) a weak solution of the corresponding stationary boundary value pro-
blem in the polygonal domain Ω. If f ∈ Lq(Ω), ϕ ∈ W 1− 1

q
,q(∂Ω), then u ∈ W 2,q(Ω), where

q = 1 +
π

2ω0 − π
− ε < 2 for ω0 > π,(2.9)

q = 1 +
π

2ω0 − π
− ε > 2 for

π

2
< ω0 < π,(2.10)

q ≥ 1 is abitrary for ω0 ≤
π

2
.(2.11)

Here ε > 0 is a small real number.
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This regularity result leads to the choice of the Banach space

(2.12) X = Lq(Ω),

where q is given by Theorem 1. We introduce the operator A = −4, A : domA = D(A) ⊂ X → X
where for given ϕ = ϕ(t, ·)
(2.13)

D(A) = {u(t, ·) ∈ Lq(Ω) : A(u(t, ·) = −4u(t, ·) ∈ Lq(Ω);
∂u

∂n
+κ|u|αu = ϕ(t, ·) ∈ W 1− 1

q
,q(∂Ω) ∀t ∈ I}.

Thus we receive the formal initial boundary value problem: Find a solution u ∈ C(I,D(A)) ∩
W 1,p1,p2(I,X,X) for appropriate p1, p2 and u0 ∈ D(A) ⊂ X such that

du

dt
+ A(u(t)) = f(t) for t ∈ I,(2.14)

u(0) = u0.(2.15)

2.1 The m-accretivity of the operator A
We use the theory of semigroups in order to discuss the solvability and uniqueness of the solution of
problem (2.14), (2.15) in appropriate Bochner spaces. The m-accretivity of the operator A is the key
for getting such results, see [13], [9], [10]:

Definition 1 Let X be a separable Banach space. The duality mapping J : X → X∗ is defined by

J(u) = {u∗ : u∗ ∈ X∗ with 〈u∗, u〉 = ‖u‖2
X = ‖u∗‖2

X∗}.

The operatorA : D(A) ⊂ X → X is accretive, if for u, v ∈ D(A) there exists an (u−v)∗ ∈ J(u−v)
such that

〈(u− v)∗, Au− Av〉 ≥ 0.

If additionally R(Id+ A) = X, then A is called m-accretive.

Theorem 2 The operator A, defined by (2.13), is m-accretive.

Proof. As in [13], proposition 3.13, we choose to every u ∈ X = Lq(Ω) the following
functional from X∗ = L q

q−1
(Ω) defined as

(2.16) u∗ =
u|u|q−2

‖u‖q−2
Lq(Ω)

.

A simple calculation shows that indeed u∗ ∈ J(u). Now, for arbitrary u, v ∈ D(A), u 6= v we
consider the dual pairing

(2.17) 〈(u− v)∗, Au− Av〉 =
1

‖u− v‖q−2
Lq(Ω)

∫
Ω

(u− v)|u− v|q−2(−4(u− v))dx.
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Since∇|u− v| = sgn(u− v)∇(u− v) exists, see e.g. [3], we can apply partial integration by Green’s
theorem and get∫

Ω

(u− v)|u− v|q−2(−4(u− v))dx =

∫
Ω

∇((u− v)|u− v|q−2) · ∇(u− v)dx(2.18)

−
∫
∂Ω

((u− v)|u− v|q−2)
∂(u− v)

∂n
ds = I1 + I2.

We estimate the first integral on the right-hand side of (2.18). We get

I1 =

∫
Ω

|u− v|q−2∇(u− v) · ∇(u− v) + (q − 2)sgn(u− v)(u− v)|u− v|q−3∇(u− v) · ∇(u− v)dx

=

∫
Ω

(q − 1)|u− v|q−2∇(u− v) · ∇(u− v)dx ≥ 0.

In the second boundary integral we insert the nonlinear Newton condition (2.2). It follows that

I2 = κ

∫
∂Ω

((u− v)|u− v|q−2)(|u|αu− |v|αv)ds ≥ 0.

Here, we have used the uniform monotonicity of the mapping ψ : R → R;ψ(u) = |u|αu, (see, e.g.
([8], proof of Lemma 5.8.), which means that (u− v)(|u|αu− |v|αv) ≥ 0. This implies that (2.17) is
nonnegative and the operator A is accretive.

Now, we show that Id + A : D(A) ⊂ Lq(Ω) → Lq(Ω) is a surjective mapping. We show even, that
the boundary value problem

−4u+ u = F in Ω,(2.19)
∂u

∂n
+ κ|u|αu = ϕ on ∂Ω,(2.20)

has for all F ∈ Lq(Ω) an uniquely defined solution inD(A).We can proceed as in [7] and [8]. First we
introduce a weak formulation considering the following relation on H1(Ω) ×H1(Ω) for sufficiently
smooth functions F and ϕ:

A(u, v) =

∫
Ω

∇u · ∇vdx+

∫
Ω

uvdx+ κ

∫
∂Ω

|u|αuvdS(2.21)

=

∫
Ω

Fvdx+

∫
∂Ω

ϕvdS.(2.22)

Using the monotone operator theory it can be shown that exactly one solution in H1(Ω) exists. Since
H1(Ω) ⊂ Lγ(Ω) for all γ ∈ [1,∞), we can shift the term u in (2.19) to the right-hand side and
consider the problem

−4u = F − u = f in Ω,(2.23)
∂u

∂n
+ κ|u|αu = ϕ on ∂Ω,(2.24)
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where f ∈ Lq(Ω), ϕ ∈ W 1− 1
q (∂Ω). Theorem 1 yields the existence of a uniquely defined solution

u ∈ D(A) for every F ∈ Lq(Ω). �

The m-accretivity of A ensures that a Rothe-sequence to the abstract initial problem (2.14), (2.15)
exists. We follow the statements of [13], chapter 8.2., for the definition of a Rothe sequence.
Let us start with a discretization of the time interval I = [0, T ] considering a sequence of time steps:

τ` =
T

2`
, ` = 1, 2, ...

Thus we get for the `-th partition of I = [0, T ] the time instants

t`k = kτ`, k = 0, 1, ..., 2`.

In what follows we omit the index ` for simplicity and write τ instead of τ` and tk = kτ instead of
t`k.
We consider the values of the right-hand side f ∈ C(I, Lq(Ω)) from (2.14), at the nodal points
t = κτ, k = 1, ..., T

τ
and denote them by fkτ = f(kτ). Then we define ukτ ∈ D(A) by the recursive

implicit Euler formula:

ukτ − uk−1
τ

τ
+ A(ukτ ) = fkτ ,(2.25)

u0
τ = u0.(2.26)

The piecewise defined affine interpolant uτ ∈ C(I,D(A)) is given by

(2.27) uτ (t) = (
t

τ
− (k − 1))ukτ + (k − t

τ
)uk−1

τ for (k − 1)τ < t ≤ kτ, k = 1, ...,
T

τ
.

The piecewise constant interpolant ūτ (t) ∈ L∞(I,D(A)) is defined as

(2.28) ūτ (t) = ukτ for (k − 1)τ < t ≤ kτ, k = 1, ...,
T

τ
.

The derivative d
dt
uτ belongs to L∞(I,D(A)) ; the derivative of ūτ (t) exists in the distributional sense

only. In [13], Chapter 9, p.277, Lemma 9.3 and Lemma 9.4, the following results are proved in a
Banach space X:

Lemma 1 Let A : D(A) ⊂ X → X be m-accretive, f ∈ L1(I,X), u0 ∈ D(A) ⊂ X . Then for
arbitrary τ there exists uτ and it holds

(2.29) ‖uτ‖C(I,X) ≤ C, ‖ūτ‖L∞(I,X) ≤ C.

Moreover, if f ∈ W 1,∞,1(I,X,X), u0 ∈ D(A), then

(2.30) ‖duτ
dt
‖L∞(I,X) ≤ ‖f‖W 1,∞,1(I,X,X) + ‖A(u0)‖X .

Remark 1 The interpolant uτ (t) is indeed from D(A) since for k = 1, ..., T
τ

A(ukτ ) = fkτ −
ukτ − uk−1

τ

τ
∈ X.
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2.2 Regularity in space and time
The existence of solutions of the problem (2.14), (2.15) can be shown by results of Kato [9], [10],
looking for the limit of the sequence {uτ} for τ → 0.
We introduce a strong solution by the following conditions, see [13], p.275: Let beX = Lq(Ω), where
q is given by Theorem 1. The function u = u(t, x) is a strong solution of problem (2.14), (2.15), if

1. u ∈ W 1,∞,1(I,X,X).

2. {A(u(t)}t≥0 is bounded.

3. u(t) ∈ D(A) for all t ∈ I .

4. u satisfies the initial problem (2.14), (2.15) for a.e. t ∈ I.

Now, we cite the corresponding theorem 9.5 from [13] p.278:

Theorem 3 Let A : D(A) ⊂ X → X be m-accretive, f ∈ W 1,∞,1(I,X,X), u0 ∈ D(A). Then
there is an u ∈ W 1,∞,∞(I,X,X) such that uτ → u in C(I,X) and this u is a strong solution of the
problem (2.14), (2.15).

Taking the assertion u(t) ∈ D(A) for all t ∈ I into account, then we get the following corollary for
our initial problem (2.14), (2.15):

Corollary 1 Let q ≥ 1 be given by Theorem 1. If f = f(t, x) ∈ W 1,∞,1(I, Lq(Ω), Lq(Ω)), ϕ(t, ·) ∈
W 1− 1

q
,q(∂Ω) ∀t ∈ I andu0 ∈ D(A), then for the solution u of problem (2.14), (2.15) it holds:

u ∈ C(I,D(A)) ∩W 1,∞,∞(I, Lq(Ω), Lq(Ω)) and u(t, ·) ∈ W 2,q(Ω) ∀t ∈ I.

3 Some advanced semilinear problems
The considered initial boundary value problem problem (2.1), (2.2) and (2.3) was quite well to handle,
since the nonlinear boundary condition was explicitely given. The question occurs, whether we can
transfer the used methods to more general nonlinear problems. In this section we study the following
semilinear problems:

∂u

∂t
−4u+ c(u) = f(t, x) for (t, x) ∈ Q,(3.31)

∂u

∂n
+ b(u) = ϕ(t, x) for (t, x) ∈ Σ,(3.32)

u(0, x) = u0(x) for x ∈ Ω.(3.33)

where f and ϕ are given functions and the properties of the expressions c(u) and b(u) are to specify.
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3.1 The stationary boundary value problem
First of all we have to discuss the solvability and regularity of the stationary boundary value problem
in a polygon Ω with the boundary ∂Ω:

−4u+ c(u) = f in Ω,(3.34)
∂u

∂n
+ b(u) = ϕ on ∂Ω.(3.35)

The corresponding weak formulation in V = H1(Ω) reads:
Find an u ∈ V such that

〈A(u), v〉 = a(u, v) =

∫
Ω

∇u · ∇vdx+

∫
Ω

c(u)vdx+

∫
∂Ω

b(u)vdS(3.36)

=

∫
Ω

fvdx+

∫
∂Ω

ϕvdS = 〈L, v〉, ∀v ∈ V,

where A : V → V ∗ and L ∈ V ∗. This formulation makes sense, if we can guarantee that c(u) and
b(u) are from V ∗ for every u ∈ V and if we use the dual pairing 〈c(u), v〉 and 〈b(u), v〉 instead of the
corresponding integrals. But, in order to get regularity results we want to ensure that for u ∈ V the
expressions c(u) ∈ Lq1(Ω) and b(u)|∂Ω ∈ W 1− 1

q2
,q2(∂Ω), where q1 ≥ 1 is arbitrary and 1 < q2 < 2.

Lemma 2 Assume that the nonlinear terms c(s) and b(s) satisfy the following growth conditions for
all s ∈ R :
G1 |c(s)| ≤ kc(1 + |s|γc) with a constant γc ≥ 1 and a positive constant kc.
G2 |b(s)| ≤ kb(1 + |s|γb) with a constant γb ≥ 1 and a positive constant kb.
G3 |db(s)

ds
| ≤ k̃b(1 + |s|γ̃b) with a constant γ̃b ≥ 1 and a positive constant k̃b.

Then for u ∈ H1(Ω)

c(u) ∈ Lq1(Ω) for any q1 ≥ 1,(3.37)

b(u) ∈ W 1− 1
q2
,q2(∂Ω) with 1 < q2 < 2.(3.38)

Later, in Lemma 13, we have to consider the stronger case, that 0 ≤ γc, γb ≤ 1. Since |s|a < 1 + |s|b
for 0 ≤ a ≤ b this case is included too.

Proof. Since u ∈ H1(Ω) the assertion (3.37) follows from the imbedding H1(Ω) ⊂ Lq(Ω)
for any q ≥ 1. The same arguments leads to b(u) ∈ Lq2(Ω). Therefore it remains to show, that
∇b(u) ∈ Lq2(Ω). Then the trace b(u)|∂Ω is from W

1− 1
q2
,q2(∂Ω). Indeed, the assumption G3 and the

well-known inequality (a+ b)α ≤ 2α−1(aα + bα), which is valid for a, b ≥ 0, α ≥ 1, yield∫
Ω

|∇(b(u))|q2dx =

∫
Ω

|db(u)

du
|q2|∇u|q2dx(3.39)

≤ k̃q2b

∫
Ω

(1 + |u|γ̃b)q2|∇u|q2dx

≤ c̃b(‖|∇u|‖q2Lq2 (Ω +

∫
Ω

|u|γ̃bq2|∇u|q2dx)

≤ c̃b(‖|∇u|‖q2Lq2 (Ω + ‖|u|γ̃bq2‖Lβ(Ω)‖|∇u|q2‖Lβ′ (Ω)),
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where 1
β

+ 1
β′

= 1. The first term is finite, since q2 < 2, and both factors in the second term are finite
choosing β′ = 2

q2
. �

In what follows we need a certain continuity of the operator A in the following sense: If uk ⇀ u in
V = H1(Ω) (weak convergence), then for the nonlinear parts of the operatorAwe have c(uk)→ c(u)
in Lα(Ω), 1 ≤ α < ∞ and b(uk) → b(u) in Lγ(∂Ω), 1 ≤ γ < ∞. To this aim we introduce the
following Carathéodory property (C) of the expressions c(u)(x) and b(u)(x):

(C) If the sequence {un}n converges pointwise a.e. in Ω, or ∂Ω respectively, that means un(x)→ u(x)
a.e., then the pointwise convergence of the function values follows: c(un)(x)→ c(u)(x) a.e. in Ω and
b(un)(x)→ b(u)(x) a.e. in ∂Ω.

Later we need for the nonstationary problem a modified Carathéodory property:

(C̃) If the sequence {un}n converges pointwise a.e. in Q = I × Ω, or Σ = I × ∂Ω respectively,
that means un(t, x) → u(t, x) a.e., then the pointwise convergence of the function values follows:
c(un)(t, x)→ c(u)(t, x) a.e. in Q and b(un)(t, x)→ b(u)(t, x) a.e. in Σ.

Lemma 3 Assume (G1), (G2), (C). Let {uk}k be a sequence of elements from V , which converges
weakly to u ∈ V . Then c(uk) → c(u) in Lα(Ω), 1 ≤ α < ∞ and b(uk) → b(u) in Lγ(∂Ω), 1 ≤ γ <
∞.

Proof. In principle the proof is classical with a light modification related to our special function
spaces, see e.g. [14], p.68. Therefore we restrict to the main steps.
step 1: We consider a weak convergent sequence in V = H1(Ω), uk ⇀ u. Since H1(Ω) is compactly
imbedded in Lα(Ω) for any α with 1 ≤ α < ∞, there exists a subsequence unk → u in Lα(Ω) .
It follows [11], p.88, that there is a sub-subsequcence unkl which converges pointwise to u for a.e.
x ∈ Ω. Considering the compact imbedding of H1(Ω) in Lγ(∂Ω) see e.g. [13],p.17, 1.36b, we get the
pointwise convergence of a sub-subsequence a.e. for x ∈ ∂Ω.
step 2: The assumption (C) leads to the pointwise convergence a.e. of the sequences {c(unkl} and
{b(unkl} respectively. Due to the growth conditions (G1) and (G2) and the convergence of ‖unk‖ →
‖u‖ in the norms of Lα(Ω) or in Lγ(∂Ω) respectively, we get majorants∫

Ω

|c(unkl)− c(u)|pdx ≤ kc

∫
Ω

(2 + |uknl|γcp + |u|γcp)dx ≤ const+ const‖u‖αLα(Ω), α = γcp.∫
∂Ω

|b(unkl)− b(u)|pdS ≤ kc

∫
∂Ω

(2 + |uknl|γbp + |u|γbp)dS ≤ const+ const‖u‖γLγ(∂Ω), γ = γbp.

The classical theorem of Lebesgue on the dominated convergence, see [11] p.60, [14] p.68, yields
that ‖c(unkl)− c(u)‖Lp(Ω) → 0 and ‖b(unkl)− b(u)‖Lp(∂Ω) → 0. Since we can start in step 1 with an
arbitrary subsequence of un we get finally that ‖c(un)− c(u)‖Lα(Ω) → 0 and
‖b(un)− b(u)‖Lγ(∂Ω) → 0 for any α, γ ∈ [1,∞).

�
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3.1.1 Existence of weak solutions

We use the theory of pseudomonotone operators in order to discuss under which conditions a weak
solution of problem (3.36) in V = H1(Ω) exists. Let us remind of the definition of the pseudomono-
tonicity: The operator A : V → V ∗ is called pseudomonotone, if
(PM1) A is bounded,
(PM2) From uk ⇀ u and lim supk→∞〈A(uk), uk − u〉 ≤ 0 it follows that
〈A(u), u− v〉 ≤ lim infk→∞〈A(uk), uk − v〉 ∀v ∈ V.
Theorem 4 ( Brézis 1968)
If the operator A : V → V ∗ is pseudomonotone and coercive then A is surjective.

Now, we consider the operator A belonging to our semilinear problem.

Lemma 4 Assume that for the operatorA, given by (3.36), the conditions G1, G2 and C are satisfied.
Then A is pseudomonotone.

Proof. In the proof we use standard arguments, see e.g. [13], p. 48. But, we restrict to our
special operator and make the proof as simple as possible.
We start with the property PM1 and show that the range A{u ∈ V, ‖u‖V ≤ R} is bounded in V ∗:

sup
‖u‖V ≤R

‖A(u)‖V ∗ = sup
‖u‖V ≤R

sup
‖v‖V ≤1

〈A(u), v〉

= sup
‖u‖V ≤R

sup
‖v‖V ≤1

(

∫
Ω

∇u · ∇vdx+

∫
Ω

c(u)vdx+

∫
∂Ω

b(u)vdS)

≤ sup
‖u‖V ≤R

sup
‖v‖V ≤1

(
‖∇u‖L2(Ω)‖∇v‖L2(Ω) + kc

∫
Ω

(1 + |u|γc)|v|dx+ kb

∫
∂Ω

(1 + |u|γb)|v|dS
)

≤ R + const + sup
‖u‖V ≤R

sup
‖v‖V ≤1

(
kc

∫
Ω

(|u|γc)|v|dx+ kb

∫
∂Ω

(|u|γb)|v|dS
)

≤ const + sup
‖u‖V ≤R

sup
‖v‖V ≤1

(
kc‖|u|γc‖Lγ′c (Ω)‖v‖Lγc (Ω) + kb‖|u|γb‖Lγ′

b
(∂Ω)‖v‖Lγb (∂Ω)

)
≤ const + const sup

‖u‖V ≤R
sup
‖v‖V ≤1

‖u‖V ‖‖v‖V ≤ const.

For the estimation of v we have used the imbeddings H1(Ω) ⊂ Lα(Ω), and H1(Ω) ⊂
Lγ(∂Ω) for any 1 ≤ α < ∞, 1 ≤ γ < ∞. In the same way we estimate u, remarking that
‖|u|γc‖Lγ′c (Ω) = ‖u‖γcLγcγ′c (Ω) and ‖|u|γb‖Lγ′

b
(∂Ω) = ‖u‖γbLγbγ′b (∂Ω).

Now, we discuss the property PM2: We start with a sequence uk ⇀ u in V and assume
lim supk→∞〈A(uk), uk−u〉 ≤ 0. We shall show that 〈A(u), u−v〉 ≤ lim infk→∞〈A(uk), uk−v〉 ∀v ∈
V. For any w ∈ V we have:

0 ≤ 〈∇(uk − w),∇(uk − w)〉 = 〈A(uk), uk − w〉 − 〈∇w,∇(uk − w)〉 − 〈c(uk), uk − w〉 − 〈b(uk), uk − w〉.

We take an ε ∈ [0, 1] and set w = (1− ε)u+ εv in the second term of the dual pairs:

〈A(uk), uk − ((1− ε)u+ εv)〉 − 〈∇w,∇(uk − ((1− ε)u+ εv))〉
−〈c(uk), uk − ((1− ε)u+ εv)〉 − 〈b(uk), uk − ((1− ε)u+ εv)〉 ≥ 0.
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Thus we get

ε〈A(uk), u− v〉 ≥ − 〈A(uk), uk − u〉+ 〈∇w,∇(uk − u)〉+ ε〈∇w,∇(u− v)〉
+ 〈c(uk), uk − u〉+ ε〈c(uk), u− v〉+ 〈b(uk), uk − u〉+ ε〈b(uk), u− v〉

and

ε lim inf
k→∞

〈A(uk), u− v〉 ≥ − lim sup
k→∞

〈A(uk), uk − u〉+ lim
k→∞
〈∇w,∇(uk − u)〉+ ε〈∇w,∇(u− v)〉

(3.40)

+ lim
k→∞
〈c(uk), uk − u〉+ ε lim

k→∞
〈c(uk), u− v〉+ lim

k→∞
〈b(uk), uk − u〉

+ ε lim
k→∞
〈b(uk), u− v〉.

For the following terms of the right hand side of (3.40) it holds:

• − lim supk→∞〈A(uk), uk − u〉 ≥ 0 by assumption.

• limk→∞〈∇w,∇(uk − u)〉 = 0, since∇uk ⇀ ∇u.

• limk→∞〈c(uk), uk − u〉 = 0 and limk→∞〈b(uk), uk − u〉 = 0 due to Lemma 3.

• limk→∞〈c(uk), u−v〉 = 〈c(u), u−v〉 and limk→∞〈b(uk), u−v〉 = 〈b(u), u−v〉 due to Lemma
3.

Therefore, the inequality (3.40) reads:

ε lim inf
k→∞

〈A(uk), u− v〉 ≥ ε〈∇w,∇(u− v)〉(3.41)

+ ε〈c(u), u− v〉+ ε〈b(u), u− v〉.

Dividing by ε, inserting w = (1− ε)u+ εv and taking the limit ε→ 0 we get the assertion

lim inf
k→∞

〈A(uk), u− v〉 ≥ 〈A(u), u− v〉 ∀v ∈ V.

�

It remains to investigate the coercivity, that means to discuss, under which conditions for the operator
A : V → V ∗ it holds

(3.42) lim
‖u‖V→∞

〈A(u), u〉
‖u‖V

=∞.

This question was discussed in [13], p. 51, and we cite the result:

Lemma 5 If there are constants c1 > 0, c2 <∞ and functions k1 ∈ L1(Ω), k2 ∈ L1(∂Ω) such that
(Co-c) c(s)s ≥ c1|s|q − k1,
(Co-b) b(s)s ≥ −c2|s|q1 − k2

for all s ∈ R and some 1 < q1 < q ≤ 2, then A is coercive.
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The proof in [13] is related to the application of appropiate Poincaré and Young inequalities. To cover
our special boundary value problem in Section 2 we modify it:

Lemma 6 If there are constants c1 > 0, c2 <∞ and functions k1 ∈ L1(∂Ω), k2 ∈ L1(Ω) such that
(co-b) b(s)s ≥ c1|s|q − k1,
(co-c) c(s)s ≥ −c2|s|q1 − k2

for all s ∈ R and some 1 < q1 < q ≤ 2, then A is coercive.

Proof. We remind to the following Poincaré inequality, [13], p.21:

(3.43) ‖u‖V ≤ C(‖∇u‖L2(Ω) + ‖u‖Lq(∂Ω)),

where V = H1(Ω), 1 ≤ q <∞ and C > 0 is an appropriate constant. It follows for q ≤ 2 that there
is a constant C1 > 0, such that

‖u‖qV ≤ C1(‖∇u‖qL2(Ω) + ‖u‖qLq(∂Ω)) ≤ C1(1 + ‖∇u‖2
L2(Ω) + ‖u‖qLq(∂Ω)).

Thus we get

(3.44) ‖∇u‖2
L2(Ω) + ‖u‖qLq(∂Ω) ≥

‖u‖qV
C1

− 1.

Furthermore, the Young inequality for a, b ∈ R+

ab ≤ εap + Cεb
p′ ∀ε > 0, 1 < p <∞, 1/p+ 1/p′ = 1,

implies that for 1 ≤ q1 < q ≤ 2 and p = q
q1
> 1 we have

|u|q11 ≤ ε|u|q1p + Cε = ε|u|q + Cε.

It follows, there is a constant C2 > 0 with

(3.45) ‖u‖q1Lq1 (Ω) ≤ ε‖u‖qLq(Ω) + Cεmeas(Ω) ≤ εC2‖u‖qL2(Ω) + Cεmeas(Ω).

Due to co-c, co-b and (3.44) we get the following estimates with some constants Ki:

〈Au, u〉 =

∫
Ω

∇u · ∇udx+

∫
Ω

c(u)udx+

∫
∂Ω

b(u)udS(3.46)

≥ ‖∇u‖2
L2(Ω) − c2‖u‖q1Lq1 (Ω) −K2 + c1‖u‖qLq(∂Ω) −K1

≥ min{1, c1}(‖∇u‖2
L2(Ω) + ‖u‖qLq(∂Ω))− c2‖u‖q1Lq1 (Ω) −K3

≥ min{1, c1}(
‖u‖qV
C1

− 1)− c2‖u‖q1Lq1 (Ω) −K3.

= min{1, c1}
‖u‖qV
C1

− c2‖u‖q1Lq1 (Ω) −K4.(3.47)
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Further, from the inequality (3.45) it follows that for a sufficient small ε > 0 there exists a constant
C3 > 0 such that

〈Au, u〉 ≥ min{1, c1}
‖u‖qV
C1

− c2C2ε‖u‖qL2(Ω) −Kε,5(3.48)

≥ C3‖u‖qV −Kε,5.

Note, that Kε,5 is a finite constant for an appropriate small fixed ε.
Finally, dividing by ‖u‖V and taking into account that q > 1, we get the coercivity (3.46). �

Remark 2 We have investigated in Section 2 of this paper the case that c(u) = 0, b(u)u = κ|u|α+2

what is covered by Lemma 6, condition co-b and co-c.

Summarizing the results we get the following theorem on the existence of weak solutions of the
semilinear problem (3.34), (3.35):

Theorem 5 Assume (G1), (G2), (C) and (Co-c), (Co-b) or (co-b,(co-c), then the operator A : V →
V ∗, given by (3.36), is surjective.

3.1.2 Regularity results

We prove a regularity theorem for the semilinear problem (3.36), which is from the same quality as
the regularity Theorem 1.

Theorem 6 Let the assumptions of Theorem 5 and the growth condition (G3) be satisfied. If f ∈
Lq(Ω) and ϕ ∈ W 1− 1

q
,q(∂Ω) for the right-hand sides of (3.34) and (3.35), then a weak solution

u ∈ H1(Ω) of (3.36) belongs to W 2,q(Ω), where q is given by Theorem 1.

Proof. Due to Theorem 5 a weak solution u ∈ H1(Ω) exists. Moreover, Lemma 2 implies that
c(u) ∈ Lq1(Ω) for any q1 ≥ 1 and b(u) ∈ W

1− 1
q2
,q2(∂Ω) with 1 < q2 < 2. We shift the nonlinear

terms to the right-hand side and consider the Neumann problem

−4u = f − c(u) = F in Ω,

∂u

∂n
= ϕ− b(u) = Φ on ∂Ω.

If q < 2, then we set q2 = q. The regularity theory for linear problems in polygons yields the assertion,
see[8].
If q ≥ 2, then it follows at first that u ∈ W 2,q2(Ω), 1 < q2 < 2. Since W 2,q2(Ω) ⊂ W 1,q+1(Ω) we can
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modify the estimate (3.39):∫
Ω

|∇(b(u))|qdx =

∫
Ω

|db(u)

du
|q|∇u|qdx(3.49)

≤ k̃qb

∫
Ω

(1 + |u|γ̃b)q|∇u|qdx

≤ c̃b(‖|∇u|‖qLq(Ω +

∫
Ω

|u|γ̃bq|∇u|qdx)

≤ c̃b(‖|∇u|‖qLq(Ω + ‖|u|γ̃bq‖Lβ(Ω)‖|∇u|q‖Lβ′ (Ω)),

where 1
β

+ 1
β′

= 1. The first term is finite and choosing β′ = q+1
q

both factors in the Hölder inequality

are finite too. Therefore, the trace of b(u) is from W 1− 1
q
,q(∂Ω) and the regularity theory for linear

problems implies that q can be choosen as in Theorem 1. �

3.2 The nonstationary problem
We consider now the initial boundary value problem (3.31), (3.32), (3.33.) Theorem 6 makes it possi-
ble to proceed as in Section 2.
We choose the Banach space X = Lq(Ω), where q is given by theorem 1 and introduce the operator
A = −4+ c(·), A : domA = D(A) ⊂ X → X , where for a given ϕ = ϕ(t, ·)

D(A) = {u(t, ·) ∈ Lq(Ω) : A(u(t, ·)) = −4u(t, ·) + c(u(t, ·)) ∈ Lq(Ω);(3.50)
∂u

∂n
+ b(u(t, ·)) = ϕ(t, ·) ∈ W 1− 1

q
,q(∂Ω) ∀t ∈ I}.

The formal initial problem reads:

Find a solution u ∈ C(I,D(A))∩W 1,p1,p2(I,X,X) for appropriate p1, p2 and u0 ∈ D(A) ⊂ X such
that

du

dt
+ A(u(t)) = f(t) for t ∈ I,(3.51)

u(0) = u0.(3.52)

3.2.1 The m-accretivity

In section 2.1 we have proved the m-accretivity of the operator A defined by (2.13) for the explictly
given nonlinear Newton conditions using the monotonicity of the nonlinear boundary part. In order to
ensure the m-accretivity for our semilinear problem we have to assume additionally the monotonicity
of the nonlinear terms c(u) and b(u).
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Theorem 7 Let the assumptions of Theorem 6 be satisfied. Moreover, suppose
Mon-c: For the mapping c : R→ R it holds (c(s1)− c(s2))(s1 − s2) ≥ 0 for any s1, s2 ∈ R.
Mon-b: For the mapping b : R→ R it holds (b(s1)− b(s2))(s1 − s2) ≥ 0 for any s1, s2 ∈ R.
Then the operator A, defined by (3.50) is m-accretive.

Proof. As in the proof of Theorem 2 we choose to every u ∈ X = Lq(Ω) the following
functional from X∗ = L q

q−1
(Ω)

u∗ =
u|u|q−2

‖u‖q−2
Lq(Ω)

.

Now we consider for arbitrary u, v ∈ D(A), u 6= v, the dual pairing

〈(u− v)∗, Au− Av〉 =
1

‖u− v‖q−2
Lq(Ω)

∫
Ω

(u− v)|u− v|q−2(−4(u− v) + c(u)− c(v))dx.

Due to the regularity results∇|u−v| = sgn(u−v)∇(u−v) exists, and we can apply partial integration
and get ∫

Ω

(u− v)|u− v|q−2 (−4(u− v) + c(u)− c(v)) dx

=

∫
Ω

∇((u− v)|u− v|q−2) · ∇(u− v) + (u− v)|u− v|q−2(c(u)− c(v))dx

−
∫
∂Ω

(u− v)|u− v|q−2∂(u− v)

∂n
ds

= I1 + I2.

We estimate the first integral on Ω. The assumption Mon-c implies

I1 =

∫
Ω

(q − 1)|u− v|q−2∇(u− v) · ∇(u− v) + |u− v|q−2(c(u)− c(v))(u− v)dx ≥ 0.

In the second boundary integral we insert the nonlinear Newton condition and use the monotonicity
property Mon-b . It follows

I2 =

∫
∂Ω

((u− v)(b(u)− b(v))|u− v|q−2)ds ≥ 0.

Thus we get the accretivity of the operator A, defined by (3.50).
Now, we show that Id + A : D(A) ⊂ Lq(Ω) → Lq(Ω) is a surjective mapping that means: For any
ϕ ∈ W 1− 1

q
,q(∂Ω) the boundary value problem

−4u+ c(u) + u = F in Ω,

∂u

∂n
+ b(u) = ϕ on ∂Ω,

has a solution in Lq(Ω) for every F ∈ Lq(Ω). Considering c(u) + u instead of c(u) all assumptions
of theorem 5 are valid and the surjectivity follows. Thus, the operator A, defined by (3.50), is m-
accretive. �
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3.2.2 The regularity in space and time, uniqueness

Now, we are ready to formulate the results analogously to subsection 2.2 for our more general semi-
linear inital boundary value problem:

Theorem 8 Assume, the growth conditions (G1), (G2), (G3), the Carathéodory condition (C̃), the
coercivity conditions (Co-c), (Co-b) or (co-b),(co-c) and the monotonicity conditions (Mon-c),
(Mon-b) are satisfied. Then the operator A : D(A) ⊂ Lq(Ω) → Lq(Ω), where D(A) is defined by
(3.50), is m-accretive. Furthermore, let be the right hand side of (3.31) f ∈ W 1,∞,1(I, Lq(Ω), Lq(Ω)),
and u0 ∈ D(A). Then u is a strong solution of (3.31), (3.32), compare subsection 2.2, that means
u ∈ C(I,D(A)) ∩W 1,∞,∞(I, Lq(Ω), Lq(Ω)). Moreover, u(t, ·) ∈ W 2,q(Ω) for a.e. t ∈ I.

Proof. The main assertion of Theorem 8 follows from theorem 9.5 from [13], p.278, and
theorem 7. Since u is a strong solution we have ∂u

∂t
(t, ·) ∈ Lq(Ω) for a.e. t ∈ I. Thus we get finally

u(t, ·) ∈ W 2,q(Ω) for a.e. t ∈ I. �

The uniqueness of the weak solution of the stationary problem (3.36), is guaranteed if the monoto-
nicity conditions (Mon-c) and (Mon-b) are strenghtened to strongly monotonicity conditions.

For the nonstationary problem we have the following result:

Lemma 7 Assume that all suppositions of theorem 8 are satisfied. Then the strong solution of the
nonstationary problem (3.31), (3.32) is uniquely defined.

Proof. Let us take two strong solutions u1 and u2. Since the strong solutions belong to
W 1,2,2(I, V, V ∗), the terms in the following equation are well defined:

〈∂(u1(t, ·)− u2(t, ·))
∂t

, u1(t, ·)− u2(t, ·)〉V ∗×V +

∫
Ω

∇(u1(t, ·)− u2(t, ·)) · ∇(u1(t, ·)− u2(t, ·))dx+∫
Ω

(c(u1(t, ·))− c(u2(t, ·))(u1(t, ·))− u2(t, ·))dx+

∫
∂Ω

(b(u1(t, ·))− b(u2(t, ·)))(u1(t, ·)− u2(t, ·))dS = 0

Integration over t yields

0 =

∫ t

0

〈∂(u1 − u2)

∂t
, u1 − u2〉V ∗×V dτ +

∫ t

0

∫
Ω

(c(u1)− c(u2))(u1 − u2)dxdτ

+

∫ t

0

∫
∂Ω

(b(u1)− b(u2))(u1 − u2)dSdτ

Due to the monotonicity of c and b the corresponding integral terms are nonnegative and by partial
integration of the first term we get

0 ≥
∫ t

0

〈∂(u1 − u2)

∂t
, u1 − u2〉V ∗×V dτ =

1

2
‖u1(t)− u2(t)‖2

L2(Ω) −
1

2
‖u1(0)− u2(0)‖2

L2(Ω)

=
1

2
‖u1(t)− u2(t)‖2

L2(Ω).

It follows that u1(t) = u2(t) for any t ∈ I . �
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4 Semilinear problems with advection term
The results of section 3 can be transferred partly to semilinear problems with a nonlinear advection
term:

∂u

∂t
−4u+ c(u)~v · ∇u = f(t, x) for (t, x) ∈ Q,(4.53)

∂u

∂n
+ b(u) = ϕ(t, x) for (t, x) ∈ Σ,(4.54)

u(0, x) = u0(x) for x ∈ Ω,(4.55)

where f and ϕ are given functions and ~v is a known sufficient smooth velocity vector. We assume,
that ~v = ~v(t, x) is measurable on Q, ~v(t, ·) is defined for all t ∈ I and ~v(t, ·) ∈ [L∞(Ω)]2 or
~v(t, ·) = ~v ∈ [C(Ω)]2 for all t ∈ I.

4.1 The stationary boundary value problem
We consider the stationary boundary value problem to (4.53), (4.54) in a polygon Ω with the boundary
∂Ω:

−4u+ c(u)~v · ∇u = f in Ω,(4.56)
∂u

∂n
+ b(u) = ϕ on ∂Ω.(4.57)

The corresponding weak formulation in V = H1(Ω) reads: Find an u ∈ V such that ∀v ∈ V

〈A(u), v〉 = a(u, v) =

∫
Ω

∇u · ∇vdx+

∫
Ω

c(u)~v · ∇uvdx+

∫
∂Ω

b(u)vdS(4.58)

=

∫
Ω

fvdx+

∫
∂Ω

ϕvdS = 〈L, v〉,

where A : V → V ∗ and L ∈ V ∗. The weak formulation is reasonable if the same growth conditions
as in Lemma 2 are satisfied.

Lemma 8 Assume that the nonlinear terms c(s) and b(s) satisfy the following growth conditions for
all s ∈ R :
G1 |c(s)| ≤ kc(1 + |s|γc) with γc ≥ 1 and a positive constant kc.
G2 |b(s) ≤ kb(1 + |s|γb) with γb ≥ 1 and a positive constant kb.
G3 |db(s)

ds
| ≤ k̃b(1 + |s|γ̃b) with γ̃b ≥ 1 and a positive constant k̃b.

Then for u ∈ H1(Ω) and ~v = (v1, v2) ∈ [L∞(Ω)]2 it holds

c(u)~v · ∇u ∈ Lq2(Ω),(4.59)

b(u) ∈ W 1− 1
q2
,q2(∂Ω) with 1 < q2 < 2.(4.60)
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Proof. The relation (4.60) was already proved by the estimation (3.39). We show that c(u)~v ∈
Lq1(Ω) for any q1 ≥ 1. We apply the following multiplication theorem in Sobolev spaces, see [17],
p.26:
Let be Ω a bounded domain, which satisfies a cone condition. Let be m,h, k ∈ IN ∪ {0}, p, q, r ≥ 1
real numbers with

m+ h+ k

n
>

1

p
+

1

q
− 1

r
.(4.61)

Furthermore, assume np
n−hp ≥ r, if hp < n and nq

n−kq ≥ r, if kq < n. Then for u ∈ Wm+h,p(Ω) und
v ∈ Wm+k,q(Ω) it holds that uv ∈ Wm,r(Ω). Moreover, there is a constant C independent of u und v
such that

‖uv‖m,r ≤ C‖u‖m+h,p‖v‖m+k,q .

Due to (3.37) it holds that c(u) ∈ Lq1(Ω) for any q1 ≥ 1. We consider a fixed number r = q1

and remark that we have c(u) ∈ L2q1+1(Ω) too and by assumption ~v ∈ [L2q1+1(Ω)]2. We apply the
multiplication theorem for the products uv1 and uv2 setting p = q = 2q1 + 1,m = h = k = 0. The
inequality (4.61) is satisfied and it holds hp < n and np

n−kp ≥ r. Thus we get that c(u)~v ∈ [Lq1(Ω)]2.
Now, we consider the product c(u)~v · ∇u. We apply again the multiplication theorem to the factors
c(u)~v ∈ [Lq1(Ω)]2, where q1 is sufficient large,and∇u ∈ [L2(Ω)]2. It comes out that

‖c(u)~v · ∇u‖Lq2 (Ω) ≤ C̃‖c(u)~v‖Lq1 (Ω)‖∇u‖L2(Ω).(4.62)

�

Remark 3 The inequality (4.62) can be modified for a fixed ~v ∈ [L∞(Ω)]2:

‖c(u)~v · ∇u‖Lq2 (Ω) ≤ C‖c(u)‖Lq1 (Ω)‖∇u‖L2(Ω).(4.63)

Indeed, let us start with q1 > 1 and choose q̃1 = q1 − ε > 1 for a small ε > 0. Analogously to (4.62)
we get

‖c(u)~v · ∇u‖Lq2 (Ω) ≤ Ĉ‖c(u)~v‖Lq̃1 (Ω)‖∇u‖L2(Ω).

Applying the multiplication theorem to the product c(u)~v it follows:

‖c(u)~v‖Lq̃1 (Ω) ≤ C‖c(u)‖Lq1(Ω)‖~v‖L∞(Ω).

and finally the inequality (4.63).
In what follows we assume for simplicity, that ~v ∈ [C(Ω)]2 for all t ∈ I.
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4.1.1 Existence of weak solutions for semilinear problems with advection term

In order to show the existence of weak solutions we proceed as in subsection 3.1.1. We consider the
operator A : V → V ∗ given by (4.58) and start with the pseudomonotonicity:

Lemma 9 Assume that for the operator A given by (4.58) the conditions G1, G2 and C are satisfied.
Then A is pseudomomotone.

Proof. At first we show property PM1, that means, the rangeA{u ∈ V, ‖u‖V ≤ R} is bounded
in V ∗. Indeed, using that V is continuously imbedded in Lα(Ω), 1 ≤ α < ∞ or respectively that the
traces of functions from V belong to Lγ(∂Ω), 1 ≤ γ <∞) we have

sup
‖u‖V ≤R

‖A(u)‖V ∗ = sup
‖u‖V ≤R

sup
‖v‖V ≤1

〈A(u), v〉

= sup
‖u‖V ≤R

sup
‖v‖V ≤1

(

∫
Ω

∇u · ∇vdx+

∫
Ω

c(u)~v · ∇uvdx+

∫
∂Ω

b(u)vdS)

≤ sup
‖u‖V ≤R

sup
‖v‖V ≤1

(
‖∇u‖L2(Ω)‖∇v‖L2(Ω) + kcC1

∫
Ω

(1 + |u|γc)|∇u||v|dx+ kb

∫
∂Ω

(1 + |u|γb)|v|dS
)

≤ R + sup
‖u‖V ≤R

sup
‖v‖V ≤1

(
kcC1‖∇u‖L2(Ω)‖(1 + |u|γc)v‖L2(Ω)

)
+ sup
‖u‖V ≤R

sup
‖v‖V ≤1

kb

∫
∂Ω

(1 + |u|γb)|v|dS

≤ R + kcC1R sup
‖u‖V ≤R

sup
‖v‖V ≤1

‖(1 + |u|γc)v‖L2(Ω) + sup
‖u‖V ≤R

sup
‖v‖V ≤1

kb

∫
∂Ω

(1 + |u|γb)|v|dS ≤ C∗,

where C∗ is a constant depending on R,C1, kb, kc, γb, γc.
Here we have used the multiplication theorem for p > 2

‖(|u|γc)v‖L2(Ω) ≤ ‖|u|γc‖Lp(Ω)‖v‖V

and the ideas of the proof of Lemma 4.
Now, we come to the property PM2. We consider a sequence uk ⇀ u in V and assume
lim supk→∞〈A(uk), uk − u〉 ≤ 0. In the proof of Lemma 4 we replace the nonlinear term c(u) by
c(u)~v · ∇u. Nearly all considerations are the same and it remains to show

1. limk→∞〈c(uk)~v · ∇uk, uk − u〉 = 0,

2. limk→∞〈c(uk)~v · ∇uk, u− v〉 = 〈c(u)~v · ∇u, u− v〉.

We start with the first item and use the inequality (4.63), Lemma 3 and the boundedness of
(‖∇uk‖L2(Ω))k due to the weak convergence∇uk ⇀ ∇u:

|〈c(uk)~v · ∇uk, uk − u〉| ≤ ‖c(uk)~v · ∇uk‖Lq2 (Ω)‖uk − u‖Lq′2 (Ω)

≤ C6‖c(uk)‖Lq1 (Ω)‖∇uk‖L2(Ω)‖uk − u‖Lq′2 (Ω)

≤ C7‖uk − u‖Lq′2 (Ω).
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The compact imbedding of H1(Ω) into Lq′2(Ω) yields

|〈c(uk)~v · ∇uk, uk − u〉| → 0 for k →∞.

Now, we come to the second item. Using again the estimate (4.63) we get similar to the first item

|〈c(u)~v · ∇u− c(uk)~v · ∇uk, u− v〉| = |〈(c(u)− c(uk))~v · ∇u+ c(uk)~v · (∇u−∇uk), u− v〉|
≤ C8‖c(u)− c(uk)‖Lq1 (Ω)‖∇u‖L2(Ω)‖u− v‖Lq′2 (Ω)

+ |〈(c(uk)− c(u))~v · (∇u−∇uk) + c(u)~v · (∇u−∇uk), u− v〉|
≤ C9‖c(u)− c(uk)‖Lq1 (Ω)(‖∇u‖L2(Ω) + ‖∇u−∇uk‖L2(Ω))‖u− v‖Lq′2 (Ω)

+ |〈c(u)~v · (∇u−∇uk), u− v〉| = Ik + Jk.

The term Ik = C9‖c(u) − c(uk)‖Lq1 (Ω)(‖∇u‖L2(Ω) + ‖∇u − ∇uk‖L2(Ω)‖u − v‖Lq′2 (Ω)) → 0, since
‖∇u−∇uk‖L2(Ω) is bounded due to the weak convergence∇uk ⇀ ∇u.
The term Jk = |〈c(u)~v · (∇u−∇uk), u− v〉| can be written as
Jk = |〈c(u)(u − v)~v, (∇u − ∇uk)〉| = |〈~w, (∇u − ∇uk)〉|, where ~w ∈ [L2(Ω)]2. Again the weak
convergence∇uk ⇀ ∇u implies that Jk → 0. �

The crucial point is to show the coercivity. We discuss this problem. First we modify the growth
condition (co-c) in Lemma 6:

Lemma 10 If there are constants c1 > 0, c2 < ∞, ε2 > 0 and functions k1 ∈ L1(∂Ω), k2 ∈ L1(Ω)
such that
(co-b) b(s)s ≥ c1|s|q − k1 for s ∈ R,
(ko-c) ~t · ~t+ c(s)s~v · ~t ≥ ε2|~t|2 − c2|s|q1 − k2 for all s ∈ R, ~t = (t1, t2) ∈ R2

and for some 1 < q1 < q ≤ 2, then A is coercive.

The proof is very similar to the proof of Lemma 6, inserting in (3.46) instead of c(u)u the expression
c(u)u~v · ∇u and using the Poincaré (3.44) and the Young inequality (3.45).

The condition (ko-c) is not satisfied generally. Therefore, we formulate another coercivity lemma:

Lemma 11 Let be C the constant in the Poincaré inequality (3.43). Assume, there are constants
c1 > 0, c2 <∞, ε2 > 0 with

(4.64) c2 <
min{ε2 + c2, c1}

2C2
.

and there are functions k1 ∈ L1(∂Ω), k2 ∈ L1(Ω) such that
(Ko-b) b(s)s ≥ c1|s|2 − k1 for s ∈ R,
(Ko-c) ~t · ~t+ c(s)s~v · ~t ≥ ε2|~t|2 − c2|s|2 − k2 for all s ∈ R, ~t = (t1, t2) ∈ R2,
then A is coercive.
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Proof. It is

〈Au, u〉 =

∫
Ω

∇u · ∇udx+

∫
Ω

c(u)~v · ∇udx+

∫
∂Ω

b(u)udS

≥
∫

Ω

(ε2|∇u|2 − c2|u|2 −K2)dx+

∫
∂Ω

(c1|u|2 −K1)dS.

Using the identity
‖u‖2

L2(Ω) = ‖u‖2
V − ‖|∇u|‖2

L2(Ω)

we get

〈Au, u〉 ≥ (ε2 + c2)

∫
Ω

(|∇u|2 −K2)dx− c2‖u‖2
V +

∫
∂Ω

(c1|u|2 −K1)dS.

The Poincaré inequality (3.43) implies

〈Au, u〉 ≥ min{ε2 + c2, c1}
2C2

‖u‖2
V −

∫
Ω

K2dx− c2‖u‖2
V −

∫
∂Ω

K1dS.

= (
min{ε2 + c2, c1}

2C2
− c2)‖u‖2

V − const.

Since the factor before ‖u‖2
V is positive by assumption, the coerciveness follows. �

We discuss whether lemma 11 is reasonable.

Lemma 12 If |c(s)| < K then the condition (Ko-c) is satisfied. If additionally (Ko-b) holds and if
K|~v| is sufficiently small, see (4.65) and (4.66), then A is coercive.

Proof. It is
~t · ~t+ c(s)s~v · ~t ≥ ~t · ~t−K|s||~v||~t|.

We apply Young’s inequality for a, b ∈ R+ and 0 < ε < 1

ab ≤ εa2 +
1

4ε
b2.

Thus we get:
~t · ~t+ c(s)s~v · ~t ≥ (1− ε)~t · ~t− 1

4ε
K2|~v|2|s|2|.

Setting ε2 = 1− ε and c2 = 1
4ε
K2|~v|2 it follows condition (Ko-c).

Now we discuss the coerciveness estimate c2 <
min{ε2+c2,c1}

2C2 :
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1. Let be min{ε2 +c2, c1} = ε2 +c2. Then the estimate c2 <
1−ε+c2

2C2 holds, if c2(2C2−1) < 1−ε.
If 2C2 − 1 ≤ 0 then c2 can be choosen arbitrary. If 2C2 − 1 > 0 then we demand

(4.65) K2|~v|2 < (1− ε)4ε
2C2 − 1

.

For example setting ε = 1
2

in the estimate (4.65) we get

K2|~v|2 < 1

2C2 − 1
.

2. Let be min{ε2 + c2, c1} = c1. Then the coerciveness condition reads: c2 <
c1

2C2 what leads to

(4.66) K2|~v|2 < 4εc1

2C2
.

Taking again ε = 1
2

the estimate (4.66) implies

K2|~v|2 < c1

C2
.

�

Thus we get the following result on the existence of weak solutions of the semilinear problem with
advection term (4.56),(4.57):

Theorem 9 Assume (G1), (G2), (C) and (co-b),(ko-c) or (G1), (G2), (C) and (Ko-b),(Ko-c), (4.64).
Then the operator A : V → V ∗ given by (4.58) is surjective.

The coercivity conditions in theorem 9, in particular (4.64), are unimpressive. If we consider the
nonstationary problem, then they can be relaxed by a so-called semi-coerciveness condition, compare
[13], p.202. We formulate this condition for our special case.

Remark 4 The operator A is called semi-coercive if there are constants m0 > 0, m1 and m2, such
that

(4.67) 〈Au, u〉 ≥ m0‖|∇u|‖2
L2(Ω) −m1‖|∇u|‖L2(Ω) −m2‖u‖2

L2(Ω).

We underline, that the estimate (4.67) holds if we cancel in Lemma 11 the condition (4.64).
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4.1.2 Regularity results for the stationary semilinear problem with advection term

We prove a regularity theorem for the semilinear problem with advection term (4.56),(4.57) based on
the regularity theorem 1.

Theorem 10 Let the assumptions of Theorem 9 and the growth condition (G3) be satisfied. If f ∈
Lq(Ω) and ϕ ∈ W 1− 1

q
,q(∂Ω) from the right-hand sides of (4.56) and (4.57), then a weak solution

u ∈ H1(Ω) of (4.58) belongs to W 2,q(Ω), where q is given by theorem 1.

Proof. We proceed as in the proof of Theorem 6. Due to Theorem 9 a weak solution u ∈ H1(Ω)
exists. Moreover, Lemma 8 yields, that

c(u)~v · ∇u ∈ Lq2(Ω),

b(u) ∈ W 1− 1
q2
,q2(∂Ω) with 1 < q2 < 2.

We shift the nonlinear terms to the right-hand side and consider the Neumann problem

−4u = f − c(u)~v · ∇u = F in Ω,

∂u

∂n
= ϕ− b(u) = Φ on ∂Ω.

If q < 2, we can set q2 = q and the regularity theory for linear problems in polygons yields the
assertion, see [8].
If q ≥ 2, then it follows that u ∈ W 2,q2(Ω) (where 1 < q2 < 2). Since W 2,q2(Ω) ⊂ W 1,q+1(Ω) we
can modify the estimate (4.61) taking q1 sufficiently large:

‖c(u)~v · ∇u‖Lq(Ω) ≤ C‖c(u)‖Lq1 (Ω)‖∇u‖Lq+1(Ω).(4.68)

Together with the estimate (3.39) we get that the right hand sides F and Φ of the above linearized
Neumann problem belong to Lq(Ω) and W 1− 1

q
,q(∂Ω) respectively, where q is given by theorem 1.

The regularity theory for linear problems implies the assertion. �

4.2 The nonstationary semilinear problem with advection term
We consider now the initial boundary value problem (4.53), (4.54), (4.55.) Since the m-accretivity
can not be shown, we can not proceed as before. Therefore, we use the pseudomonotonicity directly
to derive results about the time-space behaviour of solutions.
We start with the weak formulation of the initial-value problem on V ∗ × V , where V = H1(Ω). Find
a solution u ∈ W 1,2,2(I, V, V ∗) such that ∀v ∈ V

〈∂u
∂t
, v〉V ∗×V + 〈A(t, u), v〉 =

∫
Ω

f(t, ·)vdx+

∫
∂Ω

ϕ(t, ·)vdS = 〈L, v〉(4.69)

u(0, ·) = u0(·) in Ω.(4.70)
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where A : I × V → V ∗ is given by

〈A(t, u), v〉 =

∫
Ω

∇u · ∇vdx+

∫
Ω

c(u)~v(t, ·) · ∇u vdx+

∫
∂Ω

b(u)vdS(4.71)

If we assume, that ~v ∈ C(I, [C(Ω)]2) and the assumptions of Lemma 9 are satisfied for every t ∈ I
then follows A : I × V → V ∗ is well defined and pseudomonotone.

In order to study the behaviour of the solution also in time we introduce the operator

[A(u)](t) := A(u(t)).(4.72)

We discuss under which conditions A : L2(I, V ) ∩ L∞(I, L2(Ω)) → L2(I, V ∗) is bounded. To this
end we denote L2(Ω) = H , having in mind the evolution triple V ⊂ H ⊂ V ∗.

Lemma 13 Assume that the nonlinear terms satisfy the growth conditions G1 and G2 with 0 ≤ γc <
1, 0 ≤ γb ≤ 1 and ~v ∈ C(I, [C(Ω)]2).
Then A : L2(I, V ) ∩ L∞(I,H)→ L2(I, V ∗) is bounded.

Proof. We have to show: for every bounded set described by

‖u‖L2(I,V ) < RV , ‖u‖L∞(I,H) < RH ,

the range ‖Au‖L2(I,V ∗) is bounded too.
Since ‖Au‖L2(I,V ∗) = (

∫ T
0
‖Au‖2

V ∗dt)
1
2 we start with the estimate of ‖Au‖V ∗:

‖Au‖V ∗ = sup
‖v‖V ≤1

(∫
Ω

∇u(t) · ∇vdx+

∫
Ω

c(u(t))~v(t) · ∇u(t)vdx+

∫
∂Ω

b(u(t))vdS)

)
≤ ‖∇u(t)‖L2(Ω) + I1 + I2.

Using the boundedness of ~v and the multiplication theorem fom the proof of Lemma 8 we estimate
I1 = sup‖v‖V ≤1

∫
Ω
c(u(t))~v(t) · ∇u(t)vdx:

I1 ≤ C1 sup
‖v‖V ≤1

‖c(u(t))v‖L2(Ω)‖∇u(t)‖L2(Ω)

≤ C2‖1 + |u(t)|γc‖Lp(Ω)‖∇u(t)‖L2(Ω)

≤ C2‖∇u(t)‖L2(Ω) + C2‖u(t)‖
2
p

L2(Ω)‖∇u(t)‖L2(Ω).

Here is p > 2 and γc = 2
p
< 1.

For the second term I2 = sup‖v‖V ≤1

∫
∂Ω
b(u(t))vdS it holds for q > 1 and γb ≤ 1

I2 ≤ C3 sup
‖v‖V ≤1

‖b(u(t)‖Lq(∂Ω)‖v‖V

≤ C4‖1 + |u(t)|γb‖Lq(∂Ω)

≤ C5 + C4‖u(t)‖Lγbγbq(∂Ω)

≤ C6 + C7‖u(t)|‖V .
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Here we have used the imbedding V ⊂ Lγbq(∂Ω).
Thus we get finally

‖Au‖V ∗ ≤ C6 + C8‖u(t)|‖V + C2‖u(t)‖
2
p

H‖u(t)‖V .

It follows the estimate

‖Au‖L2(I,V ∗) ≤
(∫ T

0

C9 + C10‖u(t)|‖2
V + C11‖u(t)‖

4
p

H‖u(t)‖2
V dt

) 1
2

≤ C12 + C10RV + C11R
2
p

HRV ≤ C13.

�

Now, we consider the weak formulated boundary value problem (4.69), (4.70). If we assume
that the right hand side L belongs to L2(I, V ∗) and that we can guarantee that a weak solution
u ∈ L2(I, V ) exists, then u ∈ W 1,2,2(I, V, V ∗). It follows from proposition23.23, p. 422, in [16], that
u ∈ L∞(I,H). Therefore the suppposition in Lemma 13 makes sense.

The existence of a weak solution follows from Theorem 8.9, p.209 in [13] based on a result of Pa-
pageorgiou [15].

Theorem 11 Let A : V → V ∗ be pseudomonotone and semi-coercive and A : L2(I, V ) ∩
L∞(I,H)→ L2(I, V ∗) be bounded. Assume, that the right hand side L of (4.69) belongs to L2(I, V ∗)
and the initial datum of (4.70) u0 ∈ H . Then the weak formulated initial boundary value problem
(4.69), (4.70) possesses a solution from W 1,2,2(I, V, V ∗).

Lemma 9, Lemma 10, Lemma 11, Lemma 12 and Remark 4 guarantee the pseudomonotoni-
city and semi-coerciveness of the operator A : V → V ∗ and Lemma13 the boundedness of
A : L2(I, V ) ∩ L∞(I,H)→ L2(I, V ∗).

Let us remark that the regularity with respect to the space variables in Theorem 11 is not optimally
and that further investigations are necessary.
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Fourier 18 (1968), 115-176.

[3] Dobrowolski, M.: Angewandte Funktionalanalysis (8. Auflage), Springer, Berlin, Heidelberg,
2010.

25



[4] Douglas J., Dupont T. Galerkin Methods for Parabolic Equations with Nonlinear boundary
Conditions, Numer. Math. 20, 213-237 (1973).

[5] El Hachimi A, Jamea A. Nonlinear Parabolic Problems with Neumann-type Boundary Con-
ditions and L1-data, Electronic Journal of Qualitative Theory of Differential Equations, 2007,
No.27, 1-22.

[6] Feistauer M., Najzar K.: Finite element approximation of a problem with a nonlinear Newton
boundary condition. Numer. Math. 78 (1998), 403–425.
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2017-004 Apprich, C.; Dieterich, A.; Höllig, K.; Nava-Yazdani, E.: Cubic Spline Approximation
of a Circle with Maximal Smoothness and Accuracy

2017-003 Fischer, S.; Steinwart, I.: Sobolev Norm Learning Rates for Regularized
Least-Squares Algorithm

2017-002 Farooq, M.; Steinwart, I.: Learning Rates for Kernel-Based Expectile Regression

2017-001 Bauer, B.; Devroye, L; Kohler, M.; Krzyzak, A.; Walk, H.: Nonparametric Estimation
of a Function From Noiseless Observations at Random Points

2016-006 Devroye, L.; Györfi, L.; Lugosi, G.; Walk, H.: On the measure of Voronoi cells

2016-005 Kohls, C.; Kreuzer, C.; Rösch, A.; Siebert, K.G.: Convergence of Adaptive Finite
Elements for Optimal Control Problems with Control Constraints

2016-004 Blaschzyk, I.; Steinwart, I.: Improved Classification Rates under Refined Margin
Conditions

www.f08.uni-stuttgart.de/mathematik/forschung/publikationen/mathematische_berichte
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2020/2020-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2019/2019-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2019/2019-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2019/2019-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2019/2019-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2019/2019-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2018/2018-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2018/2018-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2018/2018-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-011.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-010.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-009.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-008.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-007.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-004.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-003.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-002.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2017/2017-001.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2016/2016-006.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2016/2016-005.pdf
http://www.mathematik.uni-stuttgart.de/preprints/downloads/2016/2016-004.pdf
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2015-004 Kutter, M.; Rohde, C.; Sändig, A.-M.: Well-Posedness of a Two Scale Model for
Liquid Phase Epitaxy with Elasticity

2015-003 Rossi, E.; Schleper, V.: Convergence of a numerical scheme for a mixed
hyperbolic-parabolic system in two space dimensions
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2013-005 Eck, C.; Kutter, M.; Sändig, A.-M.; Rohde, C.: A Two Scale Model for Liquid Phase

Epitaxy with Elasticity: An Iterative Procedure
2013-004 Griesemer, M.; Wellig, D.: The Strong-Coupling Polaron in Electromagnetic Fields
2013-003 Kabil, B.; Rohde, C.: The Influence of Surface Tension and Configurational Forces

on the Stability of Liquid-Vapor Interfaces
2013-002 Devroye, L.; Ferrario, P.G.; Györfi, L.; Walk, H.: Strong universal consistent estimate

of the minimum mean squared error
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