

Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart-Büsnau

Conductance Anomalies in Transport through Quantum Dots and Quantum Point contacts

Jan von Delft LMU München

Abstract

Quantum dots and quantum point contacts, two elementary building blocks of semiconducting nanodevices, both exhibit famously anomalous conductance features: the Kondo effect in the former case, and the 0.7 anomaly in the latter. The microscopic origin of the Kondo effect is well established - it results from a localized spin degree of freedom that hybridizes with the delocalized conduction electrons of a metallic bath. The microscopic origin of the 0.7-anomaly, however, has been controversially debated for many years - is it, too, caused by localized spin states? And if not, what else is at its root? In my talk, I will present an overview of both the Kondo effect and the 0.7-anomaly and explain to what extent they are related. I will argue that the 0.7-anomaly has a simpler origin than the Kondo effect – it arises from a smeared van Hove peak in the local density of states at the bottom of the lowest one-dimensional subband of the point contact. Nevertheless, the low-energy phenomenology of both effects is similar, because both show Fermi-liquid behavior.