

From high-dimensional quantum Hall systems to high-order topology and back

Oded Zilberberg

Universität Konstanz

Abstract

Topological insulators (Tis) are materials with spectral bands associated with an integervalued index, manifesting through quantized bulk phenomena and robust boundary effects. In my talk, I will show how TIs can be understood to be descendants from a highdimensional chiral semimetal. Specifically, we apply dimensional reduction to an ancestor four-dimensional Chern insulator, and obtain two-dimensional (2D) second-order topological insulators when the former becomes chiral. Correspondingly, we derive the quantized charge accumulation at the corners of the 2D descendants and relate it to the topological index – the second Chern number – of the ancestor model. Our results provide a clear connection between the boundary states of higher-order topological insulators and topological pumps – the latter being dynamical realizations of the quantum Hall effect in high dimensions. Our results are readily understood using a semiclassical construction and are directly extendable to spinor topological indices.