

Design and construction of a new nickelate superconductor

Julia Mundy

Harvard University

Abstract

Since the discovery of high-temperature superconductivity in copper oxide materials, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials. One prime materials platform has been the rare-earth nickelates; indeed, superconductivity was recently discovered in the doped compound Nd_{0.8}Sr_{0.2}NiO₂. Undoped NdNiO₂ belongs to a series of layered square-planar nickelates with chemical formula Nd_{n+1}NinO_{2n+2} and is known as the 'infinite-layer' (n = ∞) nickelate. Here, we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd₆Ni₅O₁₂, in which optimal cuprate-like electron filling (d^{8.8}) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd₆Ni₅O₁₂ interpolates between cuprate-like and infinite-layer nickelate-like behavior. By engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.