Directly to:
The following overview gives a first impression of the diverse publications of the researchers of the department exemplarily for the period from 2017, not only in peer-reviewed journals. A more detailed, complete and topic-specific impression is given by the pages of the individual institutes, research groups and coordinated programs.
2023
- Burbulla, S., Formaggia, L., Rohde, C., & Scotti, A. (2023). Modeling fracture propagation in poro-elastic media combining phase-field and discrete fracture models. Comput. Methods Appl. Mech. Engrg., 403. https://doi.org/10.1016/j.cma.2022.115699
- Burbulla, S., Hörl, M., & Rohde, C. (2023). Flow in Porous Media with Fractures of Varying Aperture. Accepted by SIAM J. Sci. Comput. https://doi.org/10.48550/arXiv.2207.09301
- Cancès, E., Herbst, M. F., Kemlin, G., Levitt, A., & Stamm, B. (2023). Numerical stability and efficiency of response property calculations in density functional theory. Letters in Mathematical Physics. https://doi.org/10.1007/s11005-023-01645-3
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Consistent and Asymptotic-Preserving Finite-Volume Robin Transmission Conditions for Singularly Perturbed Elliptic Equations. In S. C. Brenner, E. Chung, A. Klawonn, F. Kwok, J. Xu, & J. Zou (Eds.), Domain Decomposition Methods in Science and Engineering XXVI (pp. 443--450). Springer International Publishing.
- Gander, M. J., Lunowa, S. B., & Rohde, C. (2023). Non-Overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. SIAM J. Sci. Comput., 45(1), Article 1. https://doi.org/10.1137/21M1415005
- Gladbach, P., Jansen, J., & Lienstromberg, C. (2023). Non-Newtonian thin-film equations: global existence of solutions, gradient-flow structure and guaranteed lift-off. https://doi.org/10.48550/ARXIV.2301.10300
- Griesemer, M., & Hofacker, M. (2023). On the weakness of short-range interactions in Fermi gases. Lett. Math. Phys., 113(1), Article 1. https://doi.org/10.1007/s11005-022-01624-0
- Hahn, B. N., Rigaud, G., & Schmähl, R. (2023). A class of regularizations based on nonlinear isotropic diffusion for inverse problems. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drad002
- Holzmüller, D., Zaverkin, V., Kästner, J., & Steinwart, I. (2023). A Framework and Benchmark for Deep Batch Active Learning for Regression. Journal of Machine Learning Research, 24(164), Article 164. http://jmlr.org/papers/v24/22-0937.html
- Hornischer, N. (2023). Model Order Reduction with Dynamically Transformed Modes for Electrophysiological Simulations. GAMM Archive for Students.
- Jha, A., Nottoli, M., Mikhalev, A., Quan, C., & Stamm, B. (2023). Linear Scaling Computation of Forces for the Domain-Decomposition Linear Poisson--Boltzmann Method. The Journal of Chemical Physics, 158, 104105. https://doi.org/10.1063/5.0141025
- Keim, J., Munz, C.-D., & Rohde, C. (2023). A Relaxation Model for the Non-Isothermal Navier-Stokes-Korteweg Equations in Confined Domains. J. Comput. Phys., 474, 111830. https://doi.org/10.1016/j.jcp.2022.111830
- Kharitenko, A., & Scherer, C. (2023). Time-varying Zames–Falb multipliers for LTI Systems are superfluous. Automatica, 147, 110577. https://doi.org/10.1016/j.automatica.2022.110577
- Magiera, J., & Rohde, C. (2023). A Multiscale Method for Two-Component, Two-Phase Flow with a Neural Network Surrogate. Submitted.
- Mel’nyk, T., & Rohde, C. (2023). Asymptotic approximations for semilinear parabolic convection-dominated transport problems in thin graph-like networks. In arXiv e-prints. https://doi.org/10.48550/arXiv.2302.10105
- Miao, Y., Rohde, C., & Tang, H. (2023). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities. Accepted by Stoch. Partial Differ. Equ. Anal. Comput. https://arxiv.org/abs/2105.08607
- Morato, M. M., Holicki, T., & Scherer, C. W. (2023). Stabilizing Model Predictive Control Synthesis using Integral Quadratic Constraints and Full-Block Multipliers. https://doi.org/10.48550/ARXIV.2210.03712
- Seus, D., Radu, F. A., & Rohde, C. (2023). Towards hybrid two-phase modelling using linear domain decomposition. Numer. Methods Partial Differential Equations, 39(1), Article 1. https://doi.org/10.1002/num.22906
2022
- Agullo, E., Altenbernd, M., Anzt, H., Bautista-Gomez, L., Benacchio, T., Bonaventura, L., Bungartz, H.-J., Chatterjee, S., Ciorba, F. M., DeBardeleben, N., Drzisga, D., Eibl, S., Engelmann, C., Gansterer, W. N., Giraud, L., Göddeke, D., Heisig, M., Jézéquel, F., Kohl, N., … Wohlmuth, B. (2022). Resiliency in numerical algorithm design for extreme scale simulations. The International Journal of High Performance ComputingApplications, 36(2), Article 2. https://doi.org/10.1177/10943420211055188
- Assenmacher, O., Bruell, G., & Lienstromberg, C. (2022). Non-Newtonian two-phase thin-film problem: local existence, uniqueness, and stability. Comm. Partial Differential Equations, 47(1), Article 1. https://doi.org/10.1080/03605302.2021.1957929
- Benda, R. V., Cancès, E., Ehrlacher, V., & Stamm, B. (2022). Multi-center decomposition of molecular densities: a mathematical perspective. The Journal of Chemical Physics. https://doi.org/10.1063/5.0076630
- Benner, P., Burger, M., Göddeke, D., Görgen, C., Himpe, C., Heiland, J., Koprucki, T., Ohlberger, M., Rave, S., Reiselbach, M., Saak, J., Schöbel, A., Tabelow, K., & Weber, M. (2022). Die mathematische Forschungsdateninitiative in der NFDI: MaRDI (Mathematical Research Data Initiative). GAMM Rundbrief, 2022(1), Article 1.
- Berberich, J., Scherer, C. W., & Allgower, F. (2022). Combining Prior Knowledge and Data for Robust Controller Design. IEEE Transactions on Automatic Control, 1--16. https://doi.org/10.1109/tac.2022.3209342
- Beschle, C. (2022). Uncertainty visualization: Fundamentals and recent developments, code to produce data and visuals used in Section 5. https://doi.org/10.18419/darus-3154
- Beschle, C., & Kovács, B. (2022). Stability and error estimates for non-linear Cahn–Hilliard-type equations on evolving surfaces. Numerische Mathematik, 1--48. https://doi.org/10.1007/s00211-022-01280-5
- Boege, T., Fritze, R., Görgen, C., Hanselman, J., Iglezakis, D., Kastner, L., Koprucki, T., Krause, T., Lehrenfeld, C., Polla, S., Reidelbach, M., Riedel, C., Saak, J., Schembera, B., Tabelow, K., & Weber, M. (2022). Research-Data Management Planning in the German Mathematical Community. arXiv. https://doi.org/10.48550/ARXIV.2211.12071
- Buchfinck, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems.
- Buchfink, P., Glas, S., & Haasdonk, B. (2022). Optimal Bases for Symplectic Model Order Reduction of Canonizable Linear Hamiltonian Systems. IFAC-PapersOnLine, 55(20), Article 20. https://doi.org/10.1016/j.ifacol.2022.09.138
- Burbulla, S., Dedner, A., Hörl, M., & Rohde, C. (2022). Dune-MMesh: The Dune Grid Module for Moving Interfaces. J. Open Source Softw., 7(74), Article 74. https://doi.org/10.21105/joss.03959
- Burbulla, S., & Rohde, C. (2022). A finite-volume moving-mesh method for two-phase flow in fracturing porous media. J. Comput. Phys., 111031. https://doi.org/10.1016/j.jcp.2022.111031
- Dusson, G., Sigal, I., & Stamm, B. (2022). Analysis of the Feshbach–Schur method for the Fourier spectral discretizations of Schrödinger operators. Mathematics of Computation, 92(339), Article 339. https://doi.org/10.1090/mcom/3774
- Eggenweiler, E., Discacciati, M., & Rybak, I. (2022). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal., 56, 727–742. https://doi.org/10.1051/m2an/2022025
- Eggenweiler, E. (2022). Interface conditions for arbitrary flows in Stokes-Darcy systems : derivation, analysis and validation. Universität Stuttgart. https://doi.org/10.18419/OPUS-12573
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2022, December). Learning Functions and Uncertainty Sets Using Geometrically Constrained Kernel Regression. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9993144
- Focks, T., Bamer, F., Markert, B., Wu, Z., & Stamm, B. (2022). Displacement field splitting of defective hexagonal lattices. Physical Review B. https://doi.org/10.1103/PhysRevB.106.014105
- Frank, R. L., Laptev, A., & Weidl, T. (2022). An improved one-dimensional Hardy inequality. J. Math. Sci. (N.Y.), 268(3, Problems in mathematical analysis. No. 118), Article 3, Problems in mathematical analysis. No. 118. https://doi.org/10.1007/s10958-022-06199-8
- Frank, R., Laptev, A., & Weidl, T. (2022). Schrödinger Operators: Eigenvalues and Lieb–Thirring Inequalities (p. 512). Cambridge University Press.
- Gavrilenko, P., Haasdonk, B., Iliev, O., Ohlberger, M., Schindler, F., Toktaliev, P., Wenzel, T., & Youssef, M. (2022). A Full Order, Reduced Order and Machine Learning Model Pipeline for Efficient Prediction of Reactive Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 378--386). Springer International Publishing.
- Gramlich, D., Ebenbauer, C., & Scherer, C. W. (2022). Synthesis of Accelerated Gradient Algorithms for Optimization and Saddle Point Problems using Lyapunov functions. Syst. Control Lett., 165. https://arxiv.org/abs/2006.09946
- Gramlich, D., Scherer, C. W., & Ebenbauer, C. (2022). Robust Differential Dynamic Programming. 61st IEEE Conf. Decision and Control. https://doi.org/10.1109/cdc51059.2022.9992569
- Griesemer, M. (2022). Ground states of atoms and molecules in non-relativistic QED. In The Physics and Mathematics of Elliott Lieb (pp. 437--450). EMS Press. https://doi.org/10.4171/90-1/18
- Griesemer, M., & Hofacker, M. (2022). From Short-Range to Contact Interactions in Two-dimensional Many-Body Quantum Systems. Annales Henri Poincaré, 23(8), Article 8. https://doi.org/10.1007/s00023-021-01149-7
- Haasdonk, B., Kleikamp, H., Ohlberger, M., Schindler, F., & Wenzel, T. (2022). A new certified hierarchical and adaptive RB-ML-ROM surrogate model for parametrized PDEs. arXiv. https://doi.org/10.48550/ARXIV.2204.13454
- Hahn, B. N., Garrido, M.-L. K., Klingenberg, C., & Warnecke, S. (2022). Using the Navier-Cauchy equation for motion estimation in dynamic imaging. Inverse Problems and Imaging, 0(0), Article 0. https://doi.org/10.3934/ipi.2022018
- Herbst, M. F., Stamm, B., Wessel, S., & Rizzi, M. (2022). Surrogate models for quantum spin systems based on reduced-order modeling. Physical Review E. https://doi.org/10.1103/PhysRevE.105.045303
- Hilder, B. (2022). Modulating traveling fronts in a dispersive Swift-Hohenberg equation coupled to an additional conservation law. J. Math. Anal. Appl., 513(2), Article 2. https://doi.org/10.1016/j.jmaa.2022.126224
- Hilder, B., & Sharma, U. (2022). Quantitative coarse-graining of Markov chains.
- Holicki, T. (2022). A Complete Analysis and Design Framework for Linear Impulsive and Related Hybrid Systems [University of Stuttgart]. https://doi.org/10.18419/opus-12158
- Holicki, T., & Scherer, C. W. (2022). A Dynamic S-Procedure for Dynamic Uncertainties. IFAC-PapersOnline, 55(25), Article 25. https://doi.org/10.1016/j.ifacol.2022.09.331
- Holicki, T., & Scherer, C. W. (2022). Input-Output-Data-Enhanced Robust Analysis via Lifting.
- Holicki, T., & Scherer, C. W. (2022). IQC Based Analysis and Estimator Design for Discrete-Time Systems Affected by Impulsive Uncertainties.
- Hornischer, N. (2022). Model Order Reduction with Transformed Modes for Electrophysiological Simulations [Bathesis].
- Horsch, M. T., & Schembera, B. (2022). Documentation of epistemic metadata by a mid-level ontology of cognitive processes. Proc. JOWO 2022.
- Hsiao, G. C., Sánchez-Vizuet, T., & Wendland, W. L. (2022). A Boundary-Field Formulation for Elastodynamic Scattering. Journal of Elasticity. https://doi.org/10.1007/s10659-022-09964-7
- Hägele, D., Schulz, C., Beschle, C., Booth, H., Butt, M., Barth, A., Deussen, O., & Weiskopf, D. (2022). Uncertainty Visualization: Fundamentals and Recent Developments. It - Information Technology, 64(4–5), Article 4–5. https://doi.org/10.1515/itit-2022-0033
- Jansen, J., Lienstromberg, C., & Nik, K. (2022). Long-time behaviour and stability for quasilinear doubly degenerate parabolic equations of higher order. arXiv. https://doi.org/10.48550/ARXIV.2204.08231
- Jung, K., Schembera, B., & Gärtner, M. (2022). Best of Both Worlds? Mapping Process Metadata in Digital Humanities and Computational Engineering. Metadata and Semantic Research, 199--205. https://doi.org/10.1007/978-3-030-98876-0_17
- Kharitenko, A., & Scherer, C. W. (2022). On the exactness of a stability test for Lur’e systems with slope-restricted nonlinearities.
- Klink, M. (2022). Time Error Estimators and Adaptive Time-stepping Schemes [Bathesis].
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. JMAA, 516(1, 126464), Article 1, 126464. https://doi.org/10.1016/j.jmaa.2022.126464
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2022). Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces. Calc. Var. Partial Differential Equations, 61, Paper No. 198, 47.
- Kröker, I., Oladyshkin, S., & Rybak, I. (2022). Global sensitivity analysis using multi-resolution polynomial chaos expansion for coupled Stokes-Darcy flow problems. Comput. Geosci. (Submitted).
- Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2022). Surrogate-data-enriched Physics-Aware Neural Networks. Proceedings of the Northern Lights Deep Learning Workshop 2022, 3. https://doi.org/10.7557/18.6268
- Lienstromberg, C., Pernas-Casta\ no, T., & Velázquez, J. J. L. (2022). Analysis of a two-fluid Taylor-Couette flow with one non-Newtonian fluid. J. Nonlinear Sci., 32(2), Article 2. https://doi.org/10.1007/s00332-021-09750-0
- Lienstromberg, C., Schiffer, S., & Schubert, R. (2022). A data-driven approach to viscous fluid mechanics - the stationary case. https://doi.org/10.48550/ARXIV.2207.00324
- Lienstromberg, C., & Velázquez, J. J. L. (2022). Long-time asymptotics and regularity estimates for weak solutions to a doubly degenerate thin-film equation in the Taylor-Couette setting. arXiv. https://doi.org/10.48550/ARXIV.2203.00075
- Magiera, J., & Rohde, C. (2022). A molecular–continuum multiscale model for inviscid liquid–vapor flow with sharp interfaces. J. Comput. Phys., 111551. https://doi.org/10.1016/j.jcp.2022.111551
- Magiera, J., & Rohde, C. (2022). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics (K. Schulte, C. Tropea, & B. Weigand, Eds.; pp. 67–86). Springer International Publishing. https://doi.org/10.1007/978-3-031-09008-0_4
- Maier, B., Göddeke, D., Huber, F., Klotz, T., Röhrle, O., & Schulte, M. (2022). OpenDiHu: An Efficient and Scalable Framework for Biophysical Simulations of the Neuromuscular System.
- Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2022). Replication Data for: An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. https://doi.org/10.18419/darus-2890
- Melnyk, T., & Rohde, C. (2022). Asymptotic expansion for convection-dominated transport in a thin graph-like junction. In arXiv e-prints. https://doi.org/10.48550/ARXIV.2208.05812
- Merkle, R., & Barth, A. (2022). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. Stoch PDE: Anal Comp. https://doi.org/10.1007/s40072-022-00246-w
- Merkle, R., & Barth, A. (2022). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. BIT Numer Math. https://doi.org/10.1007/s10543-022-00912-4
- Merkle, R., & Barth, A. (2022). On some distributional properties of subordinated Gaussian random fields. Methodol Comput Appl Probab.
- Persson, P.-O., & Stamm, B. (2022). A discontinuous Galerkin method for shock capturing using a mixed high-order and sub-grid low-order approximation space. Journal of Computational Physics. https://doi.org/10.1016/j.jcp.2021.110765
- Rettberg, J., Wittwar, D., Buchfink, P., Brauchler, A., Ziegler, P., Fehr, J., & Haasdonk, B. (2022). Port-Hamiltonian Fluid-Structure Interaction Modeling and Structure-Preserving Model Order Reduction of a Classical Guitar. https://doi.org/10.48550/arXiv.2203.10061
- Rösinger, C. A., & Scherer, C. W. (2022). Gain-Scheduling Controller Synthesis for Networked Systems with Full Block Scalings.
- Santin, G., Karvonen, T., & Haasdonk, B. (2022). Sampling based approximation of linear functionals in reproducing kernel Hilbert spaces. BIT - Numerical Mathematics, 62(1), Article 1. https://doi.org/10.1007/s10543-021-00870-3
- Scherer, C. (2022). Dissipativity and Integral Quadratic Constraints, Tailored computational robustness tests for complex interconnections. IEEE Control Systems Magazine, 42(3), Article 3. https://arxiv.org/abs/2105.07401
- Scherer, C. W. (2022). Dissipativity, Convexity and Tight O\textquotesingleShea-Zames-Falb Multipliers for Safety Guarantees. IFAC-PapersOnLine, 55(30), Article 30. https://doi.org/10.1016/j.ifacol.2022.11.044
- Schneider, G., & Winter, M. (2022). The amplitude system for a simultaneous short-wave Turing and long-wave Hopf instability. Discrete Contin. Dyn. Syst. Ser. S, 15(9), Article 9. https://doi.org/10.3934/dcdss.2021119
- Shuva, S., Buchfink, P., Röhrle, O., & Haasdonk, B. (2022). Reduced Basis Methods for Efficient Simulation of a Rigid Robot Hand Interacting with Soft Tissue. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 402--409). Springer International Publishing.
- Stamm, B., & Theisen, L. (2022). A Quasi-Optimal Factorization Preconditioner for Periodic Schrödinger Eigenstates in Anisotropically Expanding Domains. SIAM Journal on Numerical Analysis, 60(5), Article 5. https://doi.org/10.1137/21m1456005
- Stamm, B., & Xiang, S. (2022). Boundary Integral Equations for Isotropic Linear Elasticity. Journal of Computational Mathematics, 40(6), Article 6. https://doi.org/10.4208/jcm.2103-m2019-0031
- von Wolff, L., & Pop, I. S. (2022). Upscaling of a Cahn–Hilliard Navier–Stokes model with precipitation and dissolution in a thin strip. Journal of Fluid Mechanics, 941, A49--. https://doi.org/DOI: 10.1017/jfm.2022.308
- Wenzel, T., Kurz, M., Beck, A., Santin, G., & Haasdonk, B. (2022). Structured Deep Kernel Networks for Data-Driven Closure Terms of Turbulent Flows. In I. Lirkov & S. Margenov (Eds.), Large-Scale Scientific Computing (pp. 410--418). Springer International Publishing.
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Stability of convergence rates: Kernel interpolation on non-Lipschitz domains. arXiv. https://doi.org/10.48550/ARXIV.2203.12532
- Wenzel, T., Santin, G., & Haasdonk, B. (2022). Analysis of Target Data-Dependent Greedy Kernel Algorithms: Convergence Rates for f-, \$\$f \backslashcdot P\$\$- and f/P-Greedy. Constructive Approximation. https://doi.org/10.1007/s00365-022-09592-3
- Zaverkin, V., Holzmüller, D., Schuldt, R., & Kästner, J. (2022). Predicting properties of periodic systems from cluster data: A case study of liquid water. The Journal of Chemical Physics, 156(11), Article 11. https://doi.org/10.1063/5.0078983
- Zaverkin, V., Holzmüller, D., Steinwart, I., & Kästner, J. (2022). Exploring chemical and conformational spaces by batch mode deep active learning. Digital Discovery, 1, 605–620. https://doi.org/10.1039/D₂DD00034B
- Zinßer, M., Braun, B., Helder, T., Magorian Friedlmeier, T., Pieters, B., Heinlein, A., Denk, M., Göddeke, D., & Powalla, M. (2022). Irradiation-dependent topology optimization of metallization grid patterns and variation of contact layer thickness used for latitude-based yield gain of thin-film solar modules. MRS Advances, 7(3), Article 3. https://doi.org/10.1557/s43580-022-00321-3
2021
- Alkämper, M., Magiera, J., & Rohde, C. (2021). An Interface Preserving Moving Mesh in Multiple SpaceDimensions. Computing Research Repository, abs/2112.11956. https://arxiv.org/abs/2112.11956
- Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Eds.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Vol. 12456, pp. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
- Altmann, K., & Witt, F. (2021). Toric co-Higgs sheaves. Journal of Pure and Applied Algebra, 225(8), Article 8. https://doi.org/10.1016/j.jpaa.2020.106634
- Bamer, F., Alshabab, S. S., Paul, A., Ebrahem, F., Markert, B., & Stamm, B. (2021). Data-driven classification of elementary rearrangement events in silica glass. Scripta Materialia. https://doi.org/10.1016/j.scriptamat.2021.114179
- Baptiste, J., Williamson, C., Fox, J., Stace, A. J., Hassan, M., Braun, S., Stamm, B., Mann, I., & Besley, E. (2021). The influence of surface charge on the coalescence of ice and dust particles in the mesosphere and lower thermosphere. Atmospheric Chemistry and Physics, 21(11), Article 11. https://doi.org/10.5194/acp-21-8735-2021
- Barth, A., & Merkle, R. (2021). Multilevel Monte Carlo estimators for elliptic PDEs with Lévy-type diffusion coefficient. ArXiv E-Prints, ArXiv:2108.05604 Math.NA.
- Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 355--371). Springer International Publishing.
- Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications (Online First). https://doi.org/10.1177/1094342021990433
- Benguria, R. D., Cianchi, A., Maz’ya, V. G., Davies, E. B., Takhtajan, L. A., Tretter, C., Yafaev, D., & und weitere. (2021). Partial differential equations, spectral theory, and mathematical physics—the Ari Laptev anniversary volume. In P. Exner, R. L. Frank, F. Gesztesy, H. Holden, & T. Weidl (Eds.), EMS Series of Congress Reports. EMS Press, Berlin. https://doi.org/10.4171/ECR/18
- Berrett, T. B., Gyorfi, L., & Walk, H. (2021). Strongly universally consistent nonparametric regression and classification with privatised data. ELECTRONIC JOURNAL OF STATISTICS, 15(1), Article 1. https://doi.org/10.1214/21-EJS1845
- Bramas, B., Hassan, M., & Stamm, B. (2021). An integral equation formulation of the $N$-body dielectric spheres problem. Part II: complexity analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S625--S651. https://doi.org/10.1051/m2an/2020055
- Brencher, L., & Barth, A. (2021). Scalar conservation laws with stochastic discontinuous flux function. ArXiv E-Prints, ArXiv:2107.00549 Math.NA.
- Brencher, L., & Barth, A. (2021). Stochastic conservation laws with discontinuous flux functions: The multidimensional case.
- Buchfink, P., Glas, S., & Haasdonk, B. (2021). Symplectic Model Reduction of Hamiltonian Systems on Nonlinear Manifolds. https://doi.org/10.48550/arXiv.2112.10815
- Buchfink, P., & Haasdonk, B. (2021). Experimental Comparison of Symplectic and Non-symplectic Model Order Reduction an Uncertainty Quantification Problem. In F. J. Vermolen & C. Vuik (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2019 (Vol. 139). Springer International Publishing. https://doi.org/10.1007/978-3-030-55874-1
- Cairano, L. D., Stamm, B., & Calandrini, V. (2021). Subdiffusive-Brownian crossover in membrane proteins: a generalized Langevin equation-based approach. Biophysical Journal, 120(21), Article 21. https://doi.org/10.1016/j.bpj.2021.09.033
- Claeys, X., Hassan, M., & Stamm, B. (2021). Continuity estimates for Riesz potentials on polygonal boundaries. arXiv. https://doi.org/10.48550/ARXIV.2107.10713
- Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
- de Rijk, B., & Sandstede, B. (2021). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 274, 1223--1261. https://doi.org/10.1016/j.jde.2020.10.027
- de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. NoDEA Nonlinear Differential Equations Appl., 28(1), Article 1. https://doi.org/10.1007/s00030-020-00665-5
- Dusson, G., Sigal, I. M., & Stamm, B. (2021). The Feshbach--Schur map and perturbation theory. Partial Differential Equations, Spectral Theory, and Mathematical Physics, 65--88.
- Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), Article 2. https://doi.org/10.1007/s00205-020-01586-4
- Echterdiek, F., Kitterer, D., Dippon, J., Paul, G., Schwenger, V., & Latus, J. (2021). Impact of cardiopulmonary resuscitation on outcome of kidney transplantations from braindead donors aged ≥65 years. Clin Transplant., 2021 Aug 13:, e14452. https://doi.org/10.1111/ctr.14452
- Eggenweiler, E., Discacciati, M., & Rybak, I. (2021). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal. (Submitted). https://arxiv.org/abs/2104.02339
- Ehring, T., & Haasdonk, B. (2021). Feedback control for a coupled soft tissue system by kernel surrogates. Coupled Problems 2021, IS11, Article IS11. https://doi.org/10.23967/coupled.2021.026
- Ehring, T., & Haasdonk, B. (2021). Greedy sampling and approximation for realizing feedback control for high dimensional nonlinear systems.
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), Article 8. https://ojs.aaai.org/index.php/AAAI/article/view/16912
- Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Learning-enhanced robust controller synthesis with rigorous statistical and control-theoretic guarantees. 60th IEEE Conf. Decision and Control, 5122–5129. https://arxiv.org/abs/2105.03397
- Freiberg, U., & Kohl, S. (2021). Box dimension of fractal attractors and their numerical computation. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 95. https://doi.org/10.1016/j.cnsns.2020.105615
- Freiherr von Wolff, L. (2021). The Dune-Phasefield Module release 1.0. DaRUS. https://doi.org/10.18419/darus-1634
- Gander, M., Lunowa, S., & Rohde, C. (2021). Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
- Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
- Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), Article 1. https://doi.org/10.1007/s00031-020-09575-3
- Giesselmann, J., Meyer, F., & Rohde, C. (2021). Error control for statistical solutions of hyperbolic systems of conservation laws. Calcolo, 58(2), Article 2. https://doi.org/10.1007/s10092-021-00417-6
- Girardi, G., & Wirth, J. (2021). Decay Estimates for a Klein-Gordon Model with Time-Periodic Coeffizients. In M. Cicognani, D. del Santo, A. Parmeggiani, & M. Reissig (Eds.), Anomalies in Partial Differential Equations (Vol. 43). Springer. https://doi.org/10.1007/978-3-030-61346-4_14
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2021). Kernel methods for center manifold approximation and a weak data-based version of the center manifold theorem. Phys. D, 427, Paper No. 133007, 14. https://doi.org/10.1016/j.physd.2021.133007
- Haasdonk, B. (2021). Model Order Reduction, Applications, MOR Software (D. Gruyter, Ed.; Vol. 3). De Gruyter. https://doi.org/10.1515/9783110499001
- Haasdonk, B., Ohlberger, M., & Schindler, F. (2021). An adaptive model hierarchy for data-augmented training of kernel models for reactive flow.
- Haasdonk, B., Wenzel, T., Santin, G., & Schmitt, S. (2021). Biomechanical Surrogate Modelling Using Stabilized Vectorial Greedy Kernel Methods.
- Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
- Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
- Hamm, T., & Steinwart, I. (2021). Intrinsic Dimension Adaptive Partitioning for Kernel Methods. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Hamm, T., & Steinwart, I. (2021). Adaptive Learning Rates for Support Vector Machines Working on Data with Low Intrinsic Dimension. Ann. Statist., 49, 3153--3180. https://doi.org/10.1214/21-AOS2078
- Hang, H., & Steinwart, I. (2021). Optimal Learning with Anisotropic Gaussian SVMs. Appl. Comput. Harmon. Anal., 55, Article 55. https://doi.org/10.1016/j.acha.2021.06.004
- Hassan, M., & Stamm, B. (2021). An integral equation formulation of the $N$-body dielectric spheres problem. Part I: numerical analysis. ESAIM: Mathematical Modelling and Numerical Analysis, 55, S65--S102. https://doi.org/10.1051/m2an/2020030
- Hassan, M., & Stamm, B. (2021). A Linear Scaling in Accuracy Numerical Method for Computing the Electrostatic Forces in the $N$-Body Dielectric Spheres Problem. Communications in Computational Physics, 29(2), Article 2. https://doi.org/10.4208/cicp.oa-2020-0090
- Heid, P., Stamm, B., & Wihler, T. P. (2021). Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. Journal of Computational Physics, 436, 110165. https://doi.org/10.1016/j.jcp.2021.110165
- Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), Article 8. https://doi.org/10.1088/1361-6544/abd612
- Holicki, T., & Scherer, C. W. (2021). Algorithm Design and Extremum Control: Convex Synthesis due to Plant Multiplier Commutation. Proc. 60th IEEE Conf. Decision and Control, 3249–3256. https://doi.org/10.1109/CDC45484.2021.9683012
- Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control, 66(11), Article 11. https://doi.org/10.1109/TAC.2021.3052751
- Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), Article 2. https://doi.org/10.1109/LCSYS.2020.3004506
- Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
- Holzmüller, D., & Pflüger, D. (2021). Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework. In H.-J. Bungartz, J. Garcke, & D. Pflüger (Eds.), Sparse Grids and Applications - Munich 2018 (pp. 69--100). Springer International Publishing.
- Hsiao, G. C., & Wendland, W. L. (2021). On the propagation of acoustic waves in a thermo-electro-magneto-elastic solid. Applicable Analysis, 101 (2022)(0), Article 0. https://doi.org/10.1080/00036811.2021.1986027
- Hsiao, G. C., & Wendland, W. L. (2021). Boundary integral equations. In Applied Mathematical Sciences (Vol. 164, p. xx+783). Springer, Cham. https://doi.org/10.1007/978-3-030-71127-6
- Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Eds.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
- Jentsch, T., & Weingart, G. (2021). Jacobi relations on naturally reductive spaces. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 59(1), Article 1. https://doi.org/10.1007/s10455-020-09740-7
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2021). Layer potential theory for the anisotropic Stokes system with variable L∞ symmetrically elliptic tensor coeffici. Math. Methods Appl. Sci., 44(12), Article 12. https://doi.org/10.1002/mma.7167
- Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and Its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
- Krämer, A., Maier, B., Rau, T., Huber, F., Klotz, T., Ertl, T., Göddeke, D., Mehl, M., Reina, G., & Röhrle, O. (2021). Multi-physics multi-scale HPC simulations of skeletal muscles. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020. https://doi.org/10.1007/978-3-030-80602-6_13
- Kühnert, J., Göddeke, D., & Herschel, M. (2021, July). Provenance-integrated parameter selection and optimization in numerical simulations. 13th International Workshop on Theory and Practice OfProvenance (TaPP 2021). https://www.usenix.org/conference/tapp2021/presentation/kühnert
- Lang, R. (2021). On the eigenvalues of the non-self-adjoint Robin Laplacian on bounded domains and compact quantum graphs. [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11428
- Leiteritz, R., Buchfink, P., Haasdonk, B., & Pflüger, D. (2021). Surrogate-data-enriched Physics-Aware Neural Networks.
- Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow: Modeling and Numerical Simulation [Ph.D. Thesis]. https://doi.org/10.18419/opus-11797
- Magiera, J. (2021). A Molecular--Continuum Multiscale Solver for Liquid--Vapor Flow. Small Collaboration: Advanced Numerical Methods for Nonlinear Hyperbolic Balance Laws and Their Applications (Hybrid Meeting), 41. https://doi.org/10.14760/OWR-2021-41
- Magiera, J., & Rohde, C. (2021). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Eds.), Droplet Dynamics under Extreme Ambient Conditions. Springer.
- Makogin, V., Oesting, M., Rapp, A., & Spodarev, E. (2021). Long range dependence for stable random processes. J. Time Series Anal., 42(2), Article 2. https://doi.org/10.1111/jtsa.12560
- Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2021). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
- Mehl, L., Beschle, C., Barth, A., & Bruhn, A. (2021). An Anisotropic Selection Scheme for Variational Optical Flow Methods with Order-Adaptive Regularisation. Proceedings of the International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 140--152. https://doi.org/10.1007/978-3-030-75549-2_12
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2021). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 94(11), Article 11. https://doi.org/10.1080/00207179.2020.1745286
- Nonnenmacher, M., Reeb, D., & Steinwart, I. (2021). Which Minimizer Does My Neural Network Converge To? In N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Eds.), Joint European Conference on Machine Learning and Knowledge Discovery in Databases (pp. 87--102). Springer International Publishing. https://doi.org/10.1007/978-3-030-86523-8_6
- Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
- Polack, É., Dusson, G., Stamm, B., & Lipparini, F. (2021). Grassmann Extrapolation of Density Matrices for Born–Oppenheimer Molecular Dynamics. Journal of Chemical Theory and Computation, 17(11), Article 11. https://doi.org/10.1021/acs.jctc.1c00751
- Reusken, A., & Stamm, B. (2021). Analysis of the Schwarz Domain Decomposition Method for the Conductor-like Screening Continuum Model. SIAM Journal on Numerical Analysis, 59(2), Article 2. https://doi.org/10.1137/20m1342872
- Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Article 1. https://doi.org/10.1007/s00030-020-00661-9
- Rohde, C., & von Wolff, L. (2021). A ternary Cahn–Hilliard–Navier–Stokes model for two-phase flow with precipitation and dissolution. Mathematical Models and Methods in Applied Sciences, 31(01), Article 01. https://doi.org/10.1142/S0218202521500019
- Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
- Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), Article 5. https://doi.org/10.1088/1361-6420/abd85a
- Santin, G., & Haasdonk, B. (2021). Kernel methods for surrogate modeling. In P. Benner, W. Schilders, S. Grivet-Talocia, A. Quarteroni, G. Rozza, & L. M. Silveira (Eds.), Model Order Reduction: Vol. 1: System-and Data-Driven Methods and Algorithms (pp. 311–354). de Gruyter.
- Scherer, C., & Ebenbauer, C. (2021). Convex Synthesis of Accelerated Gradient Algorithms. SIAM Journal on Control and Optimization, 59(6), Article 6. https://doi.org/10.1137/21M1398598
- Schmalfuss, J., Riethmüller, C., Altenbernd, M., Weishaupt, K., & Göddeke, D. (2021). Partitioned coupling vs. monolithic block-preconditioning approaches for solving Stokes-Darcy systems. Proceedings of the International Conference on Computational Methods for Coupled Problems in Science and Engineering (COUPLED PROBLEMS). https://doi.org/10.23967/coupled.2021.043
- Schricker, S., Monje, DC., Dippon, J., Kimmel, M., Alscher, MD., & Schanz, M. (2021). Physician-guided, hybrid genetic testing exerts promising effects on health-related behavior without compromising quality of life. Sci Rep., 2021 Apr 19;11(1), 8494. https://doi.org/10.1038/s41598-021-87821-8
- Stauch, G., Fritz, P., Rokai, R., Sediqi, A., Firooz, H., Voelker, HU., Weinhara, M., Mollin, J., Soudah, B., Dalquen, P., Brinckmann, F., & Dippon, J. (2021). The Importance of Clinical Data for the Diagnosis of Breast Tumours in North Afghanistan. Int. Jounal Breast Cancer, Jul 30;2021, 6625239. https://doi.org/10.1155/2021/6625239
- Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
- Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
- Strohbeck, P., Eggenweiler, E., & Rybak, I. (2021). Determination of the Beavers-Joseph slip coefficient for coupled Stokes/Darcy problems. Adv. Water Res. (Submitted). https://arxiv.org/abs/2106.15556
- Veenman, J., Scherer, C. W., Ardura, C., Bennani, S., Preda, V., & Girouart, B. (2021). IQClab: A new IQC based toolbox for robustness analysis and control design. IFAC-PapersOnline, 54(8), Article 8. https://doi.org/10.1016/j.ifacol.2021.08.583
- von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transport in Porous Media, 137(2), Article 2. https://doi.org/10.1007/s11242-021-01560-y
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability and uniform point distribution.
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Analysis of target data-dependent greedy kernel algorithms: Convergence rates for f-, f P- and f/P-greedy. arXiv. https://doi.org/10.48550/ARXIV.2105.07411
- Wenzel, T., Santin, G., & Haasdonk, B. (2021). Universality and Optimality of Structured Deep Kernel Networks. arXiv. https://doi.org/10.48550/ARXIV.2105.07228
- Wittwar, D., & Haasdonk, B. (n.d.). Convergence rates for matrix P-greedy variants. In Numerical mathematics and advanced applications---ENUMATH 2019 (Vol. 139, pp. 1195--1203). Springer, Cham. https://doi.org/10.1007/978-3-030-55874-1\_119
- Zaverkin, V., Kästner, J., Holzmüller, D., & Steinwart, I. (2021). Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments. J. Chem. Theory Comput. https://doi.org/10.1021/acs.jctc.1c00527
2020
- Alla, A., Haasdonk, B., & Schmidt, A. (2020). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. Adv. Comput. Math., 46(1), Article 1. https://doi.org/10.1007/s10444-020-09744-8
- Barberis, M. L., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
- Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC-PapersOnline, 53(2), Article 2. https://www.sciencedirect.com/science/article/pii/S2405896320321297
- Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields in Elliptic Partial Differential Equations. ArXiv E-Prints, ArXiv:2011.09311 Math.NA.
- Barth, A., & Merkle, R. (2020). Subordinated Gaussian Random Fields. ArXiv E-Prints, ArXiv:2012.06353 Math.PR.
- Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2016--2019 (pp. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
- Baumstark, S., Schneider, G., & Schratz, K. (2020). Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. In Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018 (pp. 37--48). Cham: Birkhäuser.
- Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective Slow Dynamics Models for a Class of Dispersive Systems. Journal of Dynamics and Differential Equations, 32(4), Article 4. https://doi.org/10.1007/s10884-019-09791-w
- Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), Article 4. https://doi.org/10.1137/18M1210575
- Berberich, J., Koch, A., Scherer, C. W., & Allgöwer, F. (2020). Robust data-driven state-feedback design. 2020 American Control Conference (ACC), 1532–1538. https://doi.org/10.23919/acc45564.2020.9147320
- Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
- Bitter, A. (2020). Virtual levels of multi-particle quantum systems and their implications for the Efimov effect [Dissertation, Universität Stuttgart]. https://doi.org/10.18419/opus-11315
- Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), Article 12. https://doi.org/10.1088/1361-6420/abb5e1
- Brencher, L., & Barth, A. (2020). Hyperbolic Conservation Laws with Stochastic Discontinuous Flux Functions. International Conference on Finite Volumes for Complex Applications, 265--273.
- Bringedal, C., von Wolff, L., & Pop, I. S. (2020). Phase Field Modeling of Precipitation and Dissolution Processes in Porous Media: Upscaling and Numerical Experiments. Multiscale Modeling &$\mathsemicolon$ Simulation, 18(2), Article 2. https://doi.org/10.1137/19m1239003
- Brinker, J., & Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In Advances in Harmonic Analysis and Partial Differential Equations. (pp. 51–97). Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9_3
- Buchfink, P., Haasdonk, B., & Rave, S. (2020). PSD-Greedy Basis Generation for Structure-Preserving Model Order Reduction of Hamiltonian Systems. In P. Frolkovič, K. Mikula, & D. Ševčovič (Eds.), Proceedings of the Conference Algoritmy 2020 (pp. 151--160). Vydavateľstvo SPEKTRUM. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/1577/829
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohral\’ık, M. (2020). Post-processing of the planewave approximation of Schrödinger equations. Part I: linear operators. IMA Journal of Numerical Analysis, 41(4), Article 4. https://doi.org/10.1093/imanum/draa044
- Cancès, E., Dusson, G., Maday, Y., Stamm, B., & Vohralík, M. (2020). Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters. Mathematics of Computation. https://doi.org/10.1090/mcom/3549
- Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An embedded corrector problem for homogenization. Part II: Algorithms and discretization. Journal of Computational Physics, 407, 109254. https://doi.org/10.1016/j.jcp.2020.109254
- Cancès, E., Ehrlacher, V., Legoll, F., Stamm, B., & Xiang, S. (2020). An Embedded Corrector Problem for Homogenization. Part I: Theory. Multiscale Modeling &$\mathsemicolon$ Simulation, 18(3), Article 3. https://doi.org/10.1137/18m120035x
- Ciaramella, G., Hassan, M., & Stamm, B. (2020). On the Scalability of the Schwarz Method. The SMAI Journal of Computational Mathematics, 6, 33--68. https://doi.org/10.5802/smai-jcm.61
- de Rijk, B., & Schneider, G. (2020). Global Existence and Decay in Nonlinearly Coupled Reaction-Diffusion-Advection Equations with Different Velocities. J. Differential Equations, 268(7), Article 7. https://doi.org/10.1016/j.jde.2019.09.056
- Duan, X., Quan, C., & Stamm, B. (2020). A boundary-partition-based Voronoi diagram of d-dimensional balls: definition, properties, and applications. Advances in Computational Mathematics, 46(3), Article 3. https://doi.org/10.1007/s10444-020-09765-3
- Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. Manuscripta Mathematica, 161(1), Article 1. https://doi.org/10.1007/s00229-018-1077-1
- Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 345–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
- Escher, J., Knopf, P., Lienstromberg, C., & Matioc, B.-V. (2020). Stratified periodic water waves with singular density gradients. Ann. Mat. Pura Appl. (4), 199(5), Article 5. https://doi.org/10.1007/s10231-020-00950-1
- IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22-25, 2018: MORCOS 2018. (2020). In J. Fehr & B. Haasdonk (Eds.), IUTAM Bookseries. Springer.
- Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, Article 205.
- Fischer, S. (2020). Some new bounds on the entropy numbers of diagonal operators. J. Approx. Theory, 251, 105343. https://doi.org/10.1016/j.jat.2019.105343
- Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), Article 1. https://doi.org/10.4007/annals.2020.192.1.4
- Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), Article 36. https://doi.org/10.13001/ela.2020.5055
- Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
- Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), Article 1. https://doi.org/10.2140/jsag.2020.10.41
- Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Vol. 187, p. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
- Advances in Harmonic Analysis and Partial Differential Equations. (2020). In V. Georgiev, T. Ozawa, M. Ruzhansky, & J. Wirth (Eds.), Trends in Mathematics. Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9
- Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numerical Mathematics, 60(3), Article 3. https://doi.org/10.1007/s10543-019-00794-z
- Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line bundles. North-West. Eur. J. Math., 6, 119--136, i.
- Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), Article 3. https://doi.org/10.4230/DagRep.10.3.1
- Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Article 2. https://doi.org/10.1007/s11040-020-09344-4
- Grunert, D., Fehr, J., & Haasdonk, B. (2020). Well-scaled, a-posteriori error estimation for model order reduction of large second-order mechanical systems. ZAMM, 100(8), Article 8. https://doi.org/10.1002/zamm.201900186
- Göddeke, D., Schirwon, M., & Borg, N. (2020). Smartphone-Apps im Mathematikstudium. https://doi.org/10.18419/darus-1147
- Haas, T., de Rijk, B., & Schneider, G. (2020). MODULATION EQUATIONS NEAR THE ECKHAUS BOUNDARY: THE KdV EQUATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 52(6), Article 6. https://doi.org/10.1137/19M1266873
- Haas, T., & Schneider, G. (2020). Failure of the N-wave interaction approximation without imposing periodic boundary conditions. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 100(6), Article 6. https://doi.org/10.1002/zamm.201900230
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2020). Greedy kernel methods for center manifold approximation. In Spectral and high order methods for partial differential equations---ICOSAHOM 2018 (Vol. 134, pp. 95--106). Springer, Cham. https://doi.org/10.1007/978-3-030-39647-3\_6
- Hilder, B. (2020). Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. Journal of Differential Equations, 269(5), Article 5. https://doi.org/10.1016/j.jde.2020.03.033
- Hilder, B., Peletier, M. A., Sharma, U., & Tse, O. (2020). An inequality connecting entropy distance, Fisher Information and large deviations. Stochastic Processes and Their Applications, 130(5), Article 5. https://doi.org/10.1016/j.spa.2019.07.012
- Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.981
- Holzmüller, D., & Steinwart, I. (2020). Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Häufle, D. F. B., Wochner, I., Holzmüller, D., Driess, D., Günther, M., & Schmitt, S. (2020). Muscles Reduce Neuronal Information Load : Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Frontiers In Robotics and AI, 7, 77. https://doi.org/10.3389/frobt.2020.00077
- Jentsch, T., & Weingart, G. (2020). RIEMANNIAN AND KAHLERIAN NORMAL COORDINATES. ASIAN JOURNAL OF MATHEMATICS, 24(3), Article 3.
- Kennedy, J. B., & Lang, R. (2020). On the eigenvalues of quantum graph Laplacians with large complex δ couplings. Portugaliae Mathematica. A Journal of the Portuguese Mathematical Society, 77(2), Article 2.
- Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
- Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), Article 07. https://doi.org/10.1142/s0129167x20500512
- Lienstromberg, C., & Müller, S. (2020). Local strong solutions to a quasilinear degenerate fourth-order thin-film equation. NoDEA Nonlinear Differential Equations Appl., 27(2), Article 2. https://doi.org/10.1007/s00030-020-0619-x
- Maier, D. (2020). BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS. OPERATORS AND MATRICES, 14(3), Article 3. https://doi.org/10.7153/oam-2020-14-48
- Maier, D. (2020). Construction of breather solutions for nonlinear Klein-Gordon equations on periodic metric graphs. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(6), Article 6. https://doi.org/10.1016/j.jde.2019.09.035
- Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms: An integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
- Minorics, L. A. (2020). Spectral asymptotics for Krein-Feller operators with respect to V-variable Cantor measures. Forum Mathematicum, 32(1), Article 1. https://doi.org/10.1515/forum-2018-0188
- Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Kähler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
- Oesting, M., & Schnurr, A. (2020). Ordinal patterns in clusters of subsequent extremes of regularly varying time series. Extremes, 23(4), Article 4. https://doi.org/10.1007/s10687-020-00391-2
- Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian(3)Active Learning for the Gaussian Process Emulator Using Information Theory. ENTROPY, 22(8), Article 8. https://doi.org/10.3390/e22080890
- Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
- Polack, É., Mikhalev, A., Dusson, G., Stamm, B., & Lipparini, F. (2020). An approximation strategy to compute accurate initial density matrices for repeated self-consistent field calculations at different geometries. Molecular Physics, 118(19–20), Article 19–20. https://doi.org/10.1080/00268976.2020.1779834
- Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Eds.), Numerical Computations: Theory and Algorithms (pp. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
- Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), Article 7. https://doi.org/10.1080/17415977.2020.1815723
- Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
- Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnline, 53(2), Article 2. https://doi.org/10.1016/j.ifacol.2020.12.570
- Rösinger, C. A., & Scherer, C. W. (2020). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), Article 1. https://doi.org/10.1109/TCNS.2019.2914411
- Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), Article 6.
- Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), Article 1. https://doi.org/10.1007/s10455-019-09686-5
- Steinwart, I. (2020). Reproducing Kernel Hilbert Spaces Cannot Contain all Continuous Functions on a Compact Metric Space. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
- Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O’Donnell-Luria, A. H., Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), Article 1. https://doi.org/10.1016/j.ydbio.2020.03.015
2019
- Ammann, B., Kröncke, K., Weiss, H., & Witt, F. (2019). Holonomy rigidity for Ricci-flat metrics. Math. Z., 291(1–2), Article 1–2. https://doi.org/10.1007/s00209-018-2084-3
- Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 58th IEEE Conf. Decision and Control, 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
- Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2019). Exa-Dune -- Flexible PDE Solvers, Numerical Methods and Applications.
- Bauer, R., Cummings, P., & Schneider, G. (2019). A model for the periodic water wave problem and its long wave amplitude equations. In Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017 (pp. 123--138). Cham: Birkhäuser.
- Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg-de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. R. Soc. Edinb., Sect. A, Math., 149(1), Article 1.
- Bhatt, A., Fehr, J., Grunert, D., & Haasdonk, B. (2019). A Posteriori Error Estimation in Model Order Reduction of Elastic Multibody Systems with Large Rigid Motion. In J. Fehr & B. Haasdonk (Eds.), IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. Springer. https://doi.org/DOI:10.1007/978-3-030-21013-7_7
- Bhatt, A., Fehr, J., & Haasdonk, B. (2019). Model order reduction of an elastic body under large rigid motion. Proceedings of ENUMATH 2017, Lect. Notes Comput. Sci. Eng.,(126), Article 126. https://doi.org/10.1007/978-3-319-96415-7\_23
- Bianchi, L. A., Blömker, D., & Schneider, G. (2019). Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys., 371(1), Article 1.
- Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2019). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation. https://doi.org/10.1016/j.cnsns.2019.105150
- Brünnette, T., Santin, G., & Haasdonk, B. (2019). Greedy Kernel Methods for Accelerating Implicit Integrators for Parametric ODEs. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications - ENUMATH 2017 (pp. 889--896). Springer International Publishing.
- Buchfink, P., Bhatt, A., & Haasdonk, B. (2019). Symplectic Model Order Reduction with Non-Orthonormal Bases. Mathematical and Computational Applications, 24(2), Article 2. https://doi.org/10.3390/mca24020043
- Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2019). Data-Driven Time Parallelism via Forecasting. SIAM Journal on Scientific Computing, 41(3), Article 3. https://doi.org/10.1137/18M1174362
- Chirilus-Bruckner, M., Maier, D., & Schneider, G. (2019). Diffusive stability for periodic metric graphs. Math. Nachr., 292(6), Article 6.
- Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, Article 16. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
- Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), Article 1. https://doi.org/10.2140/gt.2019.23.29
- Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
- Denzel, A., Haasdonk, B., & Kästner, J. (2019). Gaussian Process Regression for Minimum Energy Path Optimization and Transition State Search. J. Phys. Chem. A, 123(44), Article 44. https://doi.org/10.1021/acs.jpca.9b08239
- Engelke, S., de Fondeville, R., & Oesting, M. (2019). Extremal behaviour of aggregated data with an application to downscaling. Biometrika, 106(1), Article 1. https://doi.org/10.1093/biomet/asy052
- Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
- Föll, R., Haasdonk, B., Hanselmann, M., & Ulmer, H. (2019). Deep Recurrent Gaussian Process with Variational Sparse Spectrum Approximation. https://openreview.net/forum?id=BkgosiRcKm
- Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), Article 10. https://doi.org/10.1080/00029890.2019.1651168
- Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), Article 6. https://doi.org/10.1007/s00023-019-00796-1
- Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), Article 9. https://doi.org/10.1088/1361-6420/ab178b
- Hansmann, M., Kohler, M., & Walk, H. (2019). On the strong universal consistency of local averaging regression estimates (vol 71, pg 1233, 2019). ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 71(5), Article 5. https://doi.org/10.1007/s10463-018-0687-4
- Heil, K., & Jentsch, T. (2019). A special class of symmetric Killing 2-tensors. JOURNAL OF GEOMETRY AND PHYSICS, 138, 103–123. https://doi.org/10.1016/j.geomphys.2018.12.009
- Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
- Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
- Homma, Y., & Semmelmann, U. (2019). The Kernel of the Rarita-Schwinger Operator on Riemannian Spin Manifolds. Comm. Math. Phys., 370(3), Article 3. https://doi.org/10.1007/s00220-019-03324-8
- Aufgaben und Lösungen zur Höheren Mathematik 1. (2019). In K. V. Höllig & J. V. Hörner (Eds.), SpringerLink. Bücher (2. Auflage, Vol. 1). https://doi.org/10.1007/978-3-662-58445-3
- Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and single layer potentials for the Stokes system with L∞ coefficients and the exterior Dirichlet problem. In Analysis as a life (pp. 237--260). Birkhäuser/Springer, Cham. https://doi.org/10.1007/978-3-030-02650-9\_12
- Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), Article 1. https://doi.org/10.1080/17476933.2019.1631293
- Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, Article 131. https://doi.org/10.1016/j.matpur.2019.04.002
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. Computational Geosciences, 23(2), Article 2. https://doi.org/10.1007/s10596-018-9785-x
- Lindgren, E. B., Quan, C., & Stamm, B. (2019). Theoretical analysis of screened many-body electrostatic interactions between charged polarizable particles. The Journal of Chemical Physics. https://doi.org/10.1063/1.5079515
- Mazzeo, R., Swoboda, J., Weiss, H., & Witt, F. (2019). Asymptotic geometry of the Hitchin metric. Commun. Math. Phys., 367(1), Article 1. https://doi.org/10.1007/s00220-019-03358-y
- Mücke, N., & Steinwart, I. (2019). Empirical Risk Minimization in the Interpolating Regime with Application to Neural Network Learning. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Oesting, M., Schlather, M., & Schillings, C. (2019). Sampling sup-normalized spectral functions for Brown-Resnick processes. Stat, 8, e228, 11. https://doi.org/10.1002/sta4.228
- Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Eds.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (pp. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
- Quan, C., Stamm, B., & Maday, Y. (2019). A Domain Decomposition Method for the Poisson--Boltzmann Solvation Models. SIAM Journal on Scientific Computing, 41(2), Article 2. https://doi.org/10.1137/18m119553x
- Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), Article 28. https://doi.org/10.1016/j.ifacol.2019.12.347
- Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modelling. University of Stuttgart.
- Santin, G., & Haasdonk, B. (2019). Kernel Methods for Surrogate Modeling (ArXiv 1907.10556; Issue 1907.10556). https://arxiv.org/abs/1907.10556
- Santin, G., Wittwar, D., & Haasdonk, B. (2019). Sparse approximation of regularized kernel interpolation by greedy algorithms.
- Schanz, M., Wasser, C., Allgaeuer, S., Schricker, S., Dippon, J., Alscher, MD., & Kimmel, M. (2019). Urinary TIMP-2·IGFBP7-guided randomized controlled intervention trial to prevent acute kidney injury in the emergency department. Transplant., 2019 Nov 1;34(11), 1902–1909. https://doi.org/10.1093/ndt/gfy186
- Schmidt, A., Wittwar, D., & Haasdonk, B. (2019). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods. Advances in Computational Mathematics. https://doi.org/10.1007/s10444-019-09730-9
- Schneider, G. (2019). The Zakharov limit of Klein-Gordon-Zakharov like systems in case of analytic solutions. Applicable Analysis. https://doi.org/10.1080/00036811.2019.1695785
- Schricker, S., Heider, T., Schanz, M., Dippon, J., Alscher, MD., Weiss, H., Mettang, T., & Kimmel, M. (2019). Strong Associations Between Inflammation, Pruritus and Mental Health in Dialysis Patients. Acta Derm Venereol., 2019 May 1;99(6), 524–529. https://doi.org/10.2340/00015555-3128
- Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), Article 1–2. https://doi.org/10.1007/s00229-018-1023-2
- Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
- Steinwart, I. (2019). Convergence Types and Rates in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
- Steinwart, I. (2019). A Sober Look at Neural Network Initializations. Fakultät für Mathematik und Physik, Universität Stuttgart.
- Wenzel, T., Santin, G., & Haasdonk, B. (2019). A novel class of stabilized greedy kernel approximation algorithms: Convergence, stability & uniform point distribution.
- Wittwar, D., & Haasdonk, B. (2019). Greedy Algorithms for Matrix-Valued Kernels. In F. A. Radu, K. Kumar, I. Berre, J. M. Nordbotten, & I. S. Pop (Eds.), Numerical Mathematics and Advanced Applications ENUMATH 2017 (pp. 113--121). Springer International Publishing.
- Wittwar, D., Santin, G., & Haasdonk, B. (2019). Part II on matrix valued kernels including analysis.
- Zhang, R., Kyriss, T., Dippon, J., Boedeker, E., & Friedel, G. (2019). Preoperative serum lactate dehydrogenase level as a predictor of major omplications following thoracoscopic lobectomy: a propensity-adjusted analysis. European Journal of Cardio-Thoracic Surgery, 56(2), Article 2. https://doi.org/10.1093/ejcts/ezz027
- Zhang R, Dippon J, F. G. (2019). Refined risk stratification for thoracoscopic lobectomy or segmentectomy. Dis., J Thorac, 2019 Jan;11(1), :222-230. https://doi.org/10.21037/jtd.2018.12.44
2018
- Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
- Babak, M. Afkham., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
- Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion Coefficients. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 6(4), Article 4. https://doi.org/10.1137/17M1148888
- Barth, A., & Stein, A. (2018). Approximation and simulation of infinite-dimensional Levy processes. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 6(2), Article 2. https://doi.org/10.1007/s40072-017-0109-2
- Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
- Bhatt, A., Fehr, J., & Hassdonk, B. (2018). Model Order Reduction of an Elastic Body under Large Rigid Motion. Proceedings of ENUMATH 2017, Voss, Norway.
- Bhatt, A., & Haasdonk, B. (2018). Certified and structure-preserving model order reduction of EMBS. In RAMSA 2017, New Delhi.
- Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction.
- Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
- Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018, July). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
- Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. Proc. ENUMATH 2017.
- Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
- Cagniart, N., Maday, Y., & Stamm, B. (2018). Model Order Reduction for Problems with Large Convection Effects. In Computational Methods in Applied Sciences (pp. 131--150). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_10
- De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive definite kernel functions. Calcolo, 55(1), Article 1. https://doi.org/10.1007/s10092-018-0247-6
- de Rijk, B. (2018). Spectra and stability of spatially periodic pulse patterns II: the critical spectral curve. SIAM J. Math. Anal., 50(2), Article 2. https://doi.org/10.1137/17M1127594
- de Rijk, B., & Sandstede, B. (2018). Diffusive stability against nonlocalized perturbations of planar wave trains in reaction-diffusion systems. J. Differential Equations, 265(10), Article 10. https://doi.org/10.1016/j.jde.2018.07.011
- Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), Article 5. https://doi.org/10.1112/plms.12105
- Devroye, L., Gyorfi, L., Lugosi, G., & Walk, H. (2018). A nearest neighbor estimate of the residual variance. ELECTRONIC JOURNAL OF STATISTICS, 12(1), Article 1. https://doi.org/10.1214/18-EJS1438
- Dibak, C., Haasdonk, B., Schmidt, A., Dürr, F., & Rothermel, K. (2018). Enabling interactive mobile simulations through distributed reduced models. Pervasive and Mobile Computing, Elsevier BV, 45, 19--34. https://doi.org/10.1016/j.pmcj.2018.02.002
- Doelman, A., Rademacher, J., de Rijk, B., & Veerman, F. (2018). Destabilization Mechanisms of Periodic Pulse Patterns Near a Homoclinic Limit. SIAM J. Appl. Dyn. Syst., 17(2), Article 2. https://doi.org/10.1137/17M1122840
- Doering, M., Gyorfi, L., & Walk, H. (2018). Rate of Convergence of k-Nearest-Neighbor Classification Rule. JOURNAL OF MACHINE LEARNING RESEARCH, 18.
- Dreier, N.-A., Altenbernd, M., Engwer, C., & Göddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application. Proceedings of 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2018).
- Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), Article 2. https://doi.org/10.1365/s13291-017-0173-6
- Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), Article 4. https://doi.org/10.1016/j.jde.2017.10.031
- Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1.
- Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), Article 1. https://doi.org/10.1515/jaa-2018-0007
- Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
- Engwer, C., Altenbernd, M., Dreier, N.-A., & G�ddeke, D. (2018, March). A high-level C++ approach to manage local errors, asynchrony and faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
- Escher, J., & Lienstromberg, C. (2018). Travelling waves in dilatant non-Newtonian thin films. J. Differential Equations, 264(3), Article 3. https://doi.org/10.1016/j.jde.2017.10.015
- Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
- Fehr, J., Grunert, D., Bhatt, A., & Haasdonk, B. (2018). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
- Fritz, P., Dippon, J., Müller, S., Goletz, S., Trautmann, C., Pappas, X., Ott, G., Brauch, H., Schwab, M., Winter, S., Mürdter, T., Brinkmann, F., Faisst, S., Rössle, S., Gerteis, A., & Friedel, G. (2018). Is Mistletoe Treatment Beneficial in Invasive Breast Cancer? A New Approach to an Unresolved Problem. Anticancer Research, 38(3), Article 3. https://doi.org/10.21873/anticanres.12388
- Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
- Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (Eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
- Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti Del Seminario Matematico Della Università Di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
- Georgiev, V., & Wirth, J. (2018). Zero resonances for localised potentials. Journal of Mathematical Physics, 59(7), Article 7. https://doi.org/10.1063/1.5027717
- Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species cancer invasion haptotaxis model. Accepted for Publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
- Gimperlein, H., Meyer, F., �zdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., (accepted). https://arxiv.org/abs/1801.09736
- Gimperlein, H., Meyer, F., �zdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
- Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), Article 4. https://doi.org/10.1063/1.5018579
- Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), Article 8. https://doi.org/10.1007/s11005-018-1055-2
- Guo, Y., & Scherer, C. W. (2018). Robust Gain-Scheduled Controller Design with a Hierarchical Structure. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.110
- Haasdonk, B., Hamzi, B., Santin, G., & Wittwar, D. (2018). Greedy Kernel Methods for Center Manifold Approximation (ArXiv 1810.11329; Issue 1810.11329).
- Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Eds.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful Algorithms as Key Enablers for Scientific Computing (pp. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
- Haesaert, S., Weiland, S., & Scherer, C. W. (2018). A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 96, 306–313. https://doi.org/10.1016/j.automatica.2018.07.002
- Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Mathematische Nachrichten, 291, Article 291. https://doi.org/10.1002/mana.201600024
- Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
- Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
- Kohler, M., Krzyzak, A., Tent, R., & Walk, H. (2018). Nonparametric quantile estimation using importance sampling. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 70(2), Article 2. https://doi.org/10.1007/s10463-016-0595-4
- Kohr, M., & Wendland, W. L. (2018). Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces. Journal of Mathematical Fluid Mechanics, 4(20), Article 20. https://doi.org/10.1007/s00021-018-0394-1
- Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calculus of Variations and Partial Differential Equations, 57:165. https://doi.org/10.1007/s00526-018-1426-7
- Kovar\’ık, H., Ruszkowski, B., & Weidl, T. (2018). Melas-type bounds for the Heisenberg Laplacian on bounded domains. Journal of Spectral Theory, 8(2), Article 2. https://doi.org/10.4171/jst/200
- Kraemer, B., Scharpf, M., Keckstein, S., Dippon, J., Tsaousidis, C., Brunecker, K., Enderle, MD., Neugebauer, A., Nuessle, D., Fend, F., Brucker, S., Taran, FA., Kommoss, S., & Rothmund, R. (2018). A prospective randomized experimental study to investigate the peritoneal adhesion formation after waterjet injection and argon plasma coagulation (HybridAPC) in a rat model. Arch Gynecol Obstet., 2018, Apr;297(4), 961–967. https://doi.org/10.1007/s00404-018-4661-4
- Kuhn, T., Dürrwächter, J., Beck, A., Munz, C.-D., Meyer, F., & Rohde, C. (2018). Uncertainty Quantification for Direct Aeroacoustic Simulations of Cavity Flows: Vol. (submitted). http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1891
- Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 34(8), Article 8. https://doi.org/10.1002/cnm.3095
- K�ppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow in porous media. (Submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
- K�ppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in porous media with fractures. (Submitted). https://hal.archives-ouvertes.fr/hal-01761591
- Lagardère, L., Jolly, L.-H., Lipparini, F., Aviat, F., Stamm, B., Jing, Z. F., Harger, M., Torabifard, H., Cisneros, G. A., Schnieders, M. J., Gresh, N., Maday, Y., Ren, P. Y., Ponder, J. W., & Piquemal, J.-P. (2018). Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields. Chemical Science. https://doi.org/10.1039/c7sc04531j
- Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
- Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
- Langer, A. (2018). Investigating the influence of box-constraints on the solution of a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
- Lindgren, E. B., Stamm, B., Maday, Y., Besley, E., & Stace, A. J. (2018). Dynamic simulations of many-body electrostatic self-assembly. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2115), Article 2115. https://doi.org/10.1098/rsta.2017.0143
- Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
- Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme for uncertain hyperbolic systems of equations. https://arxiv.org/abs/1805.10177
- Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2018). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res. (Accepted).
- Nochetto, R. H., & Stamm, B. (2018). A Posteriori Error Estimates for the Electric Field Integral Equation on Polyhedra. In Computational Methods in Applied Sciences (pp. 371--394). Springer International Publishing. https://doi.org/10.1007/978-3-319-78325-3_20
- Oesting, M. (2018). Equivalent representations of max-stable processes via $\ell^p$-norms. J. Appl. Probab., 55(1), Article 1. https://doi.org/10.1017/jpr.2018.5
- Oesting, M., Bel, L., & Lantuéjoul, C. (2018). Sampling from a max-stable process conditional on a homogeneous functional with an application for downscaling climate data. Scand. J. Stat., 45(2), Article 2. https://doi.org/10.1111/sjos.12299
- Oesting, M., Schlather, M., & Zhou, C. (2018). Exact and fast simulation of max-stable processes on a compact set using the normalized spectral representation. Bernoulli, 24(2), Article 2. https://doi.org/10.3150/16-BEJ905
- Oesting, M., & Stein, A. (2018). Spatial modeling of drought events using max-stable processes. Stoch. Env. Res. Risk A., 32(1), Article 1. https://doi.org/10.1007/s00477-017-1406-z
- Oesting, M., & Strokorb, K. (2018). Efficient simulation of Brown-Resnick processes based on variance reduction of Gaussian processes. Adv. in Appl. Probab., 50(4), Article 4. https://doi.org/10.1017/apr.2018.54
- Quan, C., Stamm, B., & Maday, Y. (2018). A domain decomposition method for the polarizable continuum model based on the solvent excluded surface. Mathematical Models and Methods in Applied Sciences, 28(07), Article 07. https://doi.org/10.1142/s0218202518500331
- Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow past a viscous drop at low surface P�clet number. Erscheint Bei Int. J. Multiph. Flow. http://arxiv.org/abs/1609.03410
- Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), Article 7. https://doi.org/10.1088/1361-6420/aabf0b
- Rohde, C., & Zeiler, C. (2018). On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension. Z. Angew. Math. Phys., 69:76. https://doi.org/10.1007/s00033-018-0958-1
- Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Eds.), New trends and results in mathematical description of fluid flows (pp. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
- Ruiz, P. A., Freiberg, U. R., & Kigami, J. (2018). Completely symmetric resistance forms on the stretched Sierpinski gasket. JOURNAL OF FRACTAL GEOMETRY, 5(3), Article 3. https://doi.org/10.4171/JFG/61
- Santin, G., Wittwar, D., & Haasdonk, B. (2018). Greedy regularized kernel interpolation (ArXiv Preprint 1807.09575; Issue 1807.09575). University of Stuttgart.
- Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnline, 51(25), Article 25. https://doi.org/10.1016/j.ifacol.2018.11.138
- Scherer, C. W., & Veenman, J. (2018). Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions. Syst. Control Lett., 121, 7–15. https://doi.org/10.1016/j.sysconle.2018.08.005
- Schmidt, A., & Haasdonk, B. (2018). Data-driven surrogates of value functions and applications to feedback control for dynamical systems. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1766
- Schmidt, A., Wittwar, D., & Haasdonk, B. (2018). Rigorous and effective a-posteriori error bounds for nonlinear problems -- Application to RB methods [SimTech Preprint]. University of Stuttgart.
- Schmidt, A., & Haasdonk, B. (2018). Reduced basis approximation of large scale parametric algebraic Riccati equations. ESAIM: Control, Optimisation and Calculus of Variations, 24(1), Article 1. https://doi.org/10.1051/cocv/2017011
- Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow in porous media. Comp. Methods in Appl. Mech. Eng, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
- Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, 82–103. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
- Stamm, B., Lagardère, L., Polack, É., Maday, Y., & Piquemal, J.-P. (2018). A coherent derivation of the Ewald summation for arbitrary orders of multipoles: The self-terms. The Journal of Chemical Physics. https://doi.org/10.1063/1.5044541
- Stamm, B., Lagardère, L., Scalmani, G., Gatto, P., Cancès, E., Piquemal, J.-P., Maday, Y., Mennucci, B., & Lipparini, F. (2018). How to make continuum solvation incredibly fast in a few simple steps: A practical guide to the domain decomposition paradigm for the conductor-like screening model. International Journal of Quantum Chemistry, e25669. https://doi.org/10.1002/qua.25669
- Wittwar, D., Santin, G., & Haasdonk, B. (2018). Interpolation with uncoupled separable matrix-valued kernels. ArXiv E-Prints.
- Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
- Zhang, R., Kyriss, T., Dippon, J., Ciupa, S., Boedeker, E., & Friedel, G. (2018). Impact of comorbidity burden on morbidity following horacoscopic lobectomy: a propensity-matched analysis. J Thorac Dis., 2018 Mar;10(3), 1806–1814. https://doi.org/10.21037/jtd.2018.02.62
- Zhang, R., Kyriss, T., Dippon, J., Hansen, M., Boedeker, E., & Friedel, G. (2018). American Society of Anesthesiologists physical status facilitates risk stratification of elderly patients undergoing thoracoscopic lobectomy. European Journal of Cardio-Thoracic Surgery, 53(5), Article 5. https://doi.org/10.1093/ejcts/ezx436
2017
- Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), Article 6. https://doi.org/10.1137/17M1111991
- Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
- Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any Dimension. http://arxiv.org/abs/1711.03141
- Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation Functions. Archive of Numerical Software, 5(1), Article 1. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
- Alk�mper, M., & Klofkorn, R. (2017). Distributed Newest Vertex Bisection. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 104, 1–11. https://doi.org/10.1016/j.jpdc.2016.12.003
- Alla, A., Gunzburger, M., Haasdonk, B., & Schmidt, A. (2017). Model order reduction for the control of parametrized partial differential equations via dynamic programming principle. University of Stuttgart.
- Alla, A., Haasdonk, B., & Schmidt, A. (2017). Feedback control of parametrized PDEs via model order reduction and dynamic programming principle. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
- Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Eds.), Model Reduction of Parametrized Systems (pp. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
- Armiti-Juber, A., & Rohde, C. (2017). On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically Flat Domains. https://arxiv.org/abs/1712.07470
- Aviat, F., Levitt, A., Stamm, B., Maday, Y., Ren, P., Ponder, J. W., Lagardere, L., & Piquemal, J.-P. (2017). Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations. Journal of Chemical Theory and Computation, 13(1), Article 1.
- Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with stochastic process or random field coefficients. APPLIED NUMERICAL MATHEMATICS, 121, 38–51. https://doi.org/10.1016/j.apnum.2017.06.009
- Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
- Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), Article 11. http://arxiv.org/abs/1706.03962
- Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion coefficients.
- Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2017). Comparison of methods for parametric model order reduction of instationary problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM Philadelphia. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
- Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric water wheels.
- Bhatt, A., & Moore, B. E. (2017). Structure-preserving ERK methods for non-autonomous DEs.
- Bhatt, A., & Moore, B. E. (2017). Structure-preserving numerical integration of DEs with conformal invariants.
- Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers. Journal of Lightwave Technology, 35(17), Article 17. https://doi.org/10.1109/JLT.2017.2715358
- Brünnette, T., Santin, G., & Haasdonk, B. (2017). Greedy kernel methods for accelerating implicit integrators for parametric ODEs. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
- Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 (pp. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
- Cances, E., Dusson, G., Maday, Y., Stamm, B., & Vohralik, M. (2017). GUARANTEED AND ROBUST A POSTERIORI BOUNDS FOR LAPLACE EIGENVALUES AND EIGENVECTORS: CONFORMING APPROXIMATIONS. Siam Journal on Numerical Analysis, 55(5), Article 5.
- Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), Article SI. https://doi.org/10.1016/j.apnum.2016.07.005
- Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2017). A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow. Erscheint Bei Springer Proc. Math. Stat.
- Chalons, C., Rohde, C., & Wiebe, M. (2017). A FINITE VOLUME METHOD FOR UNDERCOMPRESSIVE SHOCK WAVES IN TWO SPACE DIMENSIONS. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 51(5), Article 5. https://doi.org/10.1051/m2an/2017027
- Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
- De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Eds.), Approximation Theory XV: San Antonio 2016 (pp. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
- De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive Definite Kernel Functions.
- Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), Article 3. https://doi.org/10.1007/s00209-017-1864-5
- Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-assisted interactive mobile simulations for pervasive applications. 2017 IEEE International Conference on Pervasive Computing and Communications (PerCom), 111--120. https://doi.org/10.1109/PERCOM.2017.7917857
- Dombry, C., Engelke, S., & Oesting, M. (2017). Bayesian inference for multivariate extreme value distributions. Electron. J. Stat., 11(2), Article 2. https://doi.org/10.1214/17-EJS1367
- Düll, W.-P. (2017). Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation. Comm. Math. Phys., 355(3), Article 3. https://doi.org/10.1007/s00220-017-2966-y
- Escher, J., Gosselet, P., & Lienstromberg, C. (2017). A note on model reduction for microelectromechanical systems. Nonlinearity, 30(2), Article 2. https://doi.org/10.1088/1361-6544/aa4ff9
- Escher, J., & Lienstromberg, C. (2017). A survey on second-order free boundary value problems modelling MEMS with general permittivity profile. Discrete Contin. Dyn. Syst. Ser. S, 10(4), Article 4. https://doi.org/10.3934/dcdss.2017038
- Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
- Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
- Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
- Feistauer, M., Bartos, O., Roskovec, F., & S�ndig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
- Feistauer, M., Roskovec, F., & S�ndig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
- Fetzer, M., & Scherer, C. W. (2017). Full-block multipliers for repeated, slope restricted scalar nonlinearities. Int. J. Robust Nonlin., 27(17), Article 17. https://doi.org/10.1002/rnc.3751
- Fetzer, M., & Scherer, C. W. (2017). Zames-Falb Multipliers for Invariance. IEEE Control Syst. Lett., 1(2), Article 2. https://doi.org/10.1109/LCSYS.2017.2718556
- Fetzer, M., & Scherer, C. W. (2017). Absolute stability analysis of discrete time feedback interconnections. IFAC-PapersOnline, 50(1), Article 1. https://doi.org/10.1016/j.ifacol.2017.08.757
- Fetzer, M., Scherer, C. W., & Veenman, J. (2017). Invariance with dynamic multipliers. IEEE Trans. Autom. Control, 63(7), Article 7. https://doi.org/10.1109/TAC.2017.2762764
- Fetzer, M. (2017). From classical absolute stability tests towards a comprehensive robustness analysis [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-9726
- Fukuizumi, R., Marzuola, J. L., Pelinovsky, D., & Schneider, G. (Eds.). (2017). Nonlinear partial differential equations on graphs. Abstracts from the workshop held June 18--24, 2017. Oberwolfach Rep., 14(2), Article 2.
- Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January 17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
- Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
- Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev spaces. Numerical Methods for Partial Differential Equations, 33(4), Article 4. https://doi.org/10.1002/num.22065
- Gaspoz, F. D., & Morin, P. (2017). APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT APPROXIMATION (vol 83, pg 2127, 2014). MATHEMATICS OF COMPUTATION, 86(305), Article 305. https://doi.org/10.1090/mcom/3243
- Gatto, P., Lipparini, F., & Stamm, B. (2017). Computation of forces arising from the polarizable continuum model within the domain-decomposition paradigm. The Journal of Chemical Physics, 147(22), Article 22.
- Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), Article 8. https://doi.org/10.1090/proc/13600
- Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
- Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
- Geck, M. (2017). Minuscule weights and Chevalley groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
- Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory (Eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
- Giesselmann, J., Meyer, F., & Rohde, C. (2017). A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method.: Vol. (submitted). https://arxiv.org/abs/1709.04351
- Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 223(3), Article 3. https://doi.org/10.1007/s00205-016-1063-2
- Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient elastodynamics model. In C. Cances & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII-Methods and Theoretical Aspects (Vol. 199). http://www.springer.com/de/book/9783319573960
- Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection dominated problems. Math. Models Methods Appl. Sci. (M3AS), 27(13), Article 13. https://doi.org/10.1142/S0218202517500476
- Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone pressures. Appl. Anal., 96(9), Article 9. https://doi.org/10.1080/00036811.2016.1276175
- Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), Article 10. https://doi.org/10.1142/S0129055X17500301
- Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the high-frequency limit. Lett. Math. Phys., 107(10), Article 10. https://doi.org/10.1007/s11005-017-0969-4
- Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
- Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), Article 18. https://doi.org/10.1002/mma.4562
- Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms (pp. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
- Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8d7b
- Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), Article 10. https://doi.org/10.1007/s11220-017-0159-6
- Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
- Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
- Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
- Hintermueller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 59(3, SI), Article 3, SI. https://doi.org/10.1007/s10851-017-0736-2
- Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
- Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
- Hänel, A., & Weidl, T. (2017). Spectral asymptotics for the Dirichlet Laplacian with a Neumann window via a Birman-Schwinger analysis of the Dirichlet-to-Neumann operator. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 315–352.
- Höllig, K. V., & Hörner, J. V. (Eds.). (2017). Aufgaben und Lösungen zur höheren Mathematik (pp. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
- Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), Article 1.
- Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
- Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte F�r Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
- Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
- Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), Article 1. https://doi.org/10.1007/s00031-016-9384-7
- Kovarik, H., Ruszkowski, B., & Weidl, T. (2017). Spectral estimates for the Heisenberg Laplacian on cylinders. Functional Analysis and Operator Theory for Quantum Physics, EMS Series of Congress Reports, J. Dittrich, et al. (Eds.), 433–446.
- Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with Elasticity. Contin. Mech. Thermodyn., 29(4), Article 4. https://doi.org/10.1007/s00161-015-0462-1
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
- Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Wittwar, D., Santin, G., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Datasets and executables of data-driven uncertainty quantification benchmark in carbon dioxide storage. https://doi.org/10.5281/zenodo.933827
- Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2017). Numerical modelling of a peripheral arterial stenosis using dimensionally reduced models and kernel methods. University of Stuttgart.
- K�ppel, M., Kr�ker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
- Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
- Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
- Lienstromberg, C. (2017). Well-posedness of a quasilinear evolution problem modelling MEMS with general permittivity. J. Evol. Equ., 17(4), Article 4. https://doi.org/10.1007/s00028-016-0375-x
- Lin, L., & Stamm, B. (2017). A POSTERIORI ERROR ESTIMATES FOR DISCONTINUOUS GALERKIN METHODS USING NON-POLYNOMIAL BASIS FUNCTIONS. PART II: EIGENVALUE PROBLEMS. Esaim-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, 51(5), Article 5.
- Lindgren, E. B., Stamm, B., Chan, H.-K., Maday, Y., Stace, A. J., & Besley, E. (2017). The effect of like-charge attraction on aerosol growth in the atmosphere of Titan. Icarus, 291, 245–253.
- Magiera, J., & Rohde, C. (2017). A Particle-based Multiscale Solver for Compressible Liquid-Vapor Flow. Erscheint Bei Springer Proc. Math. Stat. https://arxiv.org/abs/1804.01411
- Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
- Maz’ya, V., Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Eds.). (2017). Recent Trends in Operator Theory and Partial Differential Equations. The Roland Duduchava Anniverary Volume (No. 258; Issue 258). Birkhäuser/Springer International.
- Minbashian, H. (2017).