Department of Mathematics

Listing of Publications

Publication of the Department of Mathematics

Publications Department of Mathematics

  1. 2021

    1. 985.
      Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Eds.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Vol. 12456, pp. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
    2. 984.
      Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Eds.), High Performance Computing in Science and Engineering ’19 (pp. 355--371). Springer International Publishing.
    3. 983.
      Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications (Online First). https://doi.org/10.1177/1094342021990433
    4. 982.
      Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
    5. 981.
      de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. NoDEA, Nonlinear Differ. Equ. Appl., 28(1), 38.
    6. 980.
      Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), 831--914. https://doi.org/10.1007/s00205-020-01586-4
    7. 979.
      Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.-D., & Rohde, C. (2021). A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations. Computers & Fluids, 105039. https://doi.org/10.1016/j.compfluid.2021.105039
    8. 978.
      Eggenweiler, E., Discacciati, M., & Rybak, I. (2021). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal. (Submitted). https://arxiv.org/abs/2104.02339
    9. 977.
      Gander, M., Lunowa, S., & Rohde, C. (2021). Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    10. 976.
      Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    11. 975.
      Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), 305--326. https://doi.org/10.1007/s00031-020-09575-3
    12. 974.
      Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
    13. 973.
      Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
    14. 972.
      Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), 5538--5575. https://doi.org/10.1088/1361-6544/abd612
    15. 971.
      Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), 641–646. https://doi.org/10.1109/LCSYS.2020.3004506
    16. 970.
      Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2021.3052751
    17. 969.
      Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Eds.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
    18. 968.
      Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and Its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
    19. 967.
      Magiera, J., & Rohde, C. (2021). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Eds.), Droplet Dynamics under Extreme Ambient Conditions. Springer.
    20. 966.
      Miao, Y., Rohde, C., & Tang, H. (2021). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities.
    21. 965.
      Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
    22. 964.
      Rohde, C., & von Wolff, L. (2021). A Ternary Cahn-Hilliard-Navier-Stokes model for two phase flow with precipitation and dissolution. Math. Models Methods Appl. Sci., 31(1), 1--35. https://doi.org/10.1142/S0218202521500019
    23. 963.
      Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Paper No. 5, 34. https://doi.org/10.1007/s00030-020-00661-9
    24. 962.
      Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), 055003. https://doi.org/10.1088/1361-6420/abd85a
    25. 961.
      Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), 055003. https://doi.org/10.1088/1361-6420/abd85a
    26. 960.
      Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
    27. 959.
      Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
    28. 958.
      Strohbeck, P., Eggenweiler, E., & Rybak, I. (2021). Determination of the Beavers-Joseph slip coefficient for coupled Stokes/Darcy problems. Adv. Water Res. (Submitted). https://arxiv.org/abs/2106.15556
    29. 957.
      von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transp. Porous Media, 137(2), 327--343. https://doi.org/10.1007/s11242-021-01560-y
  2. 2020

    1. 956.
      Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. https://arxiv.org/abs/2010.09972
    2. 955.
      Barberis, M., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on              negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
    3. 954.
      Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2016--2019 (pp. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
    4. 953.
      Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective Slow Dynamics Models for a Class of Dispersive Systems. Journal of Dynamics and Differential Equations, 32(4), 1867--1899. https://doi.org/10.1007/s10884-019-09791-w
    5. 952.
      Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
    6. 951.
      Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), 124001. https://doi.org/10.1088/1361-6420/abb5e1
    7. 950.
      Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. Manuscripta Mathematica, 161(1), 15--34. https://doi.org/10.1007/s00229-018-1077-1
    8. 949.
      Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Eds.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Vol. 323, pp. 345–353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    9. 948.
      Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, 1--38.
    10. 947.
      Fischer, S. (2020). Some new bounds on the entropy numbers of diagonal operators. J. Approx. Theory, 251, 105343. https://doi.org/10.1016/j.jat.2019.105343
    11. 946.
      Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), 229–249. https://doi.org/10.4007/annals.2020.192.1.4
    12. 945.
      Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), 177--182. https://doi.org/10.13001/ela.2020.5055
    13. 944.
      Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Vol. 187, p. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
    14. 943.
      Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), 41--49. https://doi.org/10.2140/jsag.2020.10.41
    15. 942.
      Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
    16. 941.
      Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numerical Mathematics, 60(3), 619–649. https://doi.org/10.1007/s10543-019-00794-z
    17. 940.
      Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line              bundles. North-West. Eur. J. Math., 6, 119--136, i.
    18. 939.
      Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), 1--57. https://doi.org/10.4230/DagRep.10.3.1
    19. 938.
      Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Paper No. 19, 28. https://doi.org/10.1007/s11040-020-09344-4
    20. 937.
      Haas, T., de Rijk, B., & Schneider, G. (2020). Modulation equations near the Eckhaus boundary: the KdV equation. SIAM J. Math. Anal., 52(6), 5389--5421.
    21. 936.
      Hilder, B. (2020). Modulating traveling fronts for the Swift-Hohenberg equation in the case of an additional conservation law. Journal of Differential Equations, 269(5), 4353--4380. https://doi.org/10.1016/j.jde.2020.03.033
    22. 935.
      Hilder, B., Peletier, M. A., Sharma, U., & Tse, O. (2020). An inequality connecting entropy distance, Fisher Information and large deviations. Stochastic Processes and Their Applications, 130(5), 2596--2638. https://doi.org/10.1016/j.spa.2019.07.012
    23. 934.
      Hitz, T., Keim, J., Munz, C.-D., & Rohde, C. (2020). A parabolic relaxation model for the Navier-Stokes-Korteweg equations. J. Comput. Phys, 421, 109714. https://doi.org/10.1016/j.jcp.2020.109714
    24. 933.
      Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), 7299–7304. https://doi.org/10.1016/j.ifacol.2020.12.981
    25. 932.
      Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    26. 931.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), 109–140. https://doi.org/10.1080/17476933.2019.1631293
    27. 930.
      Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), 2050051. https://doi.org/10.1142/s0129167x20500512
    28. 929.
      Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Káhler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
    29. 928.
      Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
    30. 927.
      Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Eds.), Numerical Computations: Theory and Algorithms (pp. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
    31. 926.
      Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), 967--989. https://doi.org/10.1080/17415977.2020.1815723
    32. 925.
      Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
    33. 924.
      Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), 3185--3199.
    34. 923.
      Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), 15--22. https://doi.org/10.1007/s10455-019-09686-5
    35. 922.
      Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
    36. 921.
      Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O, Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), 71--87. https://doi.org/10.1016/j.ydbio.2020.03.015
  3. 2019

    1. 920.
      Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2019). Exa-Dune -- Flexible PDE Solvers, Numerical Methods and Applications.
    2. 919.
      Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg--de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. Roy. Soc. Edinburgh Sect. A, 149(1), 191--217. https://doi.org/10.1017/S0308210518000227
    3. 918.
      Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2019). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation. https://doi.org/10.1016/j.cnsns.2019.105150
    4. 917.
      Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, 1419–1497. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    5. 916.
      Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), 29--100. https://doi.org/10.2140/gt.2019.23.29
    6. 915.
      Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
    7. 914.
      Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
    8. 913.
      Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), 933--935. https://doi.org/10.1080/00029890.2019.1651168
    9. 912.
      Giesselmann, J., Meyer, F., & Rohde, C. (2019). Error control for statistical solutions. https://arxiv.org/abs/1912.04323
    10. 911.
      Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), 1931--1967. https://doi.org/10.1007/s00023-019-00796-1
    11. 910.
      Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), 094005. https://doi.org/10.1088/1361-6420/ab178b
    12. 909.
      Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
    13. 908.
      Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
    14. 907.
      Homma, Y., & Semmelmann, U. (2019). The kernel of the Rarita-Schwinger operator on              Riemannian spin manifolds. Comm. Math. Phys., 370(3), 853--871. https://doi.org/10.1007/s00220-019-03324-8
    15. 906.
      Aufgaben und Lösungen zur Höheren Mathematik 1. (2019). In K. V. Höllig & J. V. Hörner (Eds.), SpringerLink. Bücher (2. Auflage, Vol. 1). https://doi.org/10.1007/978-3-662-58445-3
    16. 905.
      Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
    17. 904.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), 109–140. https://doi.org/10.1080/17476933.2019.1631293
    18. 903.
      Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, 17–63. https://doi.org/10.1016/j.matpur.2019.04.002
    19. 902.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem. In S. Rogosin & A. O. Celebi (Eds.), Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday (pp. 237--260). Springer International Publishing. https://doi.org/10.1007/978-3-030-02650-9_12
    20. 901.
      Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Eds.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (pp. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
    21. 900.
      Schneider, G. (2019). The Zakharov limit of Klein-Gordon-Zakharov like systems in case of analytic solutions. Applicable Analysis. https://doi.org/10.1080/00036811.2019.1695785
    22. 899.
      Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), 273--293. https://doi.org/10.1007/s00229-018-1023-2
    23. 898.
      Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
    24. 897.
      Steinwart, I. (2019). Convergence Types and Rates  in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
  4. 2018

    1. 896.
      Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
    2. 895.
      Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
    3. 894.
      Bhatt, A., Fehr, J., & Hassdonk, B. (2018). Model Order Reduction of an Elastic Body under Large Rigid Motion. Proceedings of ENUMATH 2017, Voss, Norway.
    4. 893.
      Bhatt, A., Haasdonk, B., & Moore, B. E. (2018). Structure-preserving Integration and Model Order Reduction.
    5. 892.
      Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
    6. 891.
      Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
    7. 890.
      Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric  ODEs. Proceedings of ENUMATH 2017. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    8. 889.
      Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
    9. 888.
      De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive  definite kernel functions. Calcolo, 55(1), 2. https://doi.org/10.1007/s10092-018-0247-6
    10. 887.
      Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), 1112--1160. https://doi.org/10.1112/plms.12105
    11. 886.
      Dreier, N.-A., Altenbernd, M., Engwer, C., & Göddeke, D. (2018). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of 26th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing (PDP 2018).
    12. 885.
      Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), 2598--2632. https://doi.org/10.1016/j.jde.2017.10.031
    13. 884.
      Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), 71--80. https://doi.org/10.1515/jaa-2018-0007
    14. 883.
      Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), 117--141. https://doi.org/10.1365/s13291-017-0173-6
    15. 882.
      Engwer, C., Altenbernd, M., Dreier, N.-A., & G�ddeke, D. (2018). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel,  Distributed and Network-Based Processing (PDP 2018).
    16. 881.
      Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
    17. 880.
      Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
    18. 879.
      Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
    19. 878.
      Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti Del Seminario Matematico Della Università Di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
    20. 877.
      Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (Eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
    21. 876.
      Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model. Accepted for Publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
    22. 875.
      Gimperlein, H., Meyer, F., �zdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
    23. 874.
      Gimperlein, H., Meyer, F., �zdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., (accepted). https://arxiv.org/abs/1801.09736
    24. 873.
      Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), 042111, 21. https://doi.org/10.1063/1.5018579
    25. 872.
      Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), 1837--1849. https://doi.org/10.1007/s11005-018-1055-2
    26. 871.
      Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Eds.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful  Algorithms as Key Enablers for Scientific Computing (pp. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
    27. 870.
      Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
    28. 869.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Mathematische Nachrichten, 291, 55–85. https://doi.org/10.1002/mana.201600024
    29. 868.
      Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
    30. 867.
      Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
    31. 866.
      Kohr, M., & Wendland, W. L. (2018). Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces. Journal of Mathematical Fluid Mechanics, 4(20), 1921–1965. https://doi.org/10.1007/s00021-018-0394-1
    32. 865.
      Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calculus of Variations and Partial Differential Equations, 57:165. https://doi.org/10.1007/s00526-018-1426-7
    33. 864.
      Kuhn, T., Dürrwächter, J., Beck, A., Munz, C.-D., Meyer, F., & Rohde, C. (2018). Uncertainty Quantification for Direct Aeroacoustic Simulations of  Cavity Flows: Vol. (submitted). http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1891
    34. 863.
      Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally  reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 0(ja), e3095. https://doi.org/10.1002/cnm.3095
    35. 862.
      K�ppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow  in porous media. (Submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
    36. 861.
      K�ppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures. (Submitted). https://hal.archives-ouvertes.fr/hal-01761591
    37. 860.
      Langer, A. (2018). Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
    38. 859.
      Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse  noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    39. 858.
      Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    40. 857.
      Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
    41. 856.
      Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations. https://arxiv.org/abs/1805.10177
    42. 855.
      Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2018). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res. (Accepted).
    43. 854.
      Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface P�clet number. Erscheint Bei Int. J. Multiph. Flow. http://arxiv.org/abs/1609.03410
    44. 853.
      Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), 075004. https://doi.org/10.1088/1361-6420/aabf0b
    45. 852.
      Rohde, C., & Zeiler, C. (2018). On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase  Flows with Surface Tension. Z. Angew. Math. Phys., 69:76. https://doi.org/10.1007/s00033-018-0958-1
    46. 851.
      Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Eds.), New trends and results in mathematical description of fluid flows (pp. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
    47. 850.
      Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnLine, 51(25), 390–395. https://doi.org/10.1016/j.ifacol.2018.11.138
    48. 849.
      Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow  in porous media. Comp. Methods in Appl. Mech. Eng, 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    49. 848.
      Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, 82–103. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
    50. 847.
      Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
  5. 2017

    1. 846.
      Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), A2616–A2644. https://doi.org/10.1137/17M1111991
    2. 845.
      Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
    3. 844.
      Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension. http://arxiv.org/abs/1711.03141
    4. 843.
      Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions. Archive of Numerical Software, 5(1), 3--19. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    5. 842.
      Alk�mper, M., & Klofkorn, R. (2017). Distributed Newest Vertex Bisection. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 104, 1–11. https://doi.org/10.1016/j.jpdc.2016.12.003
    6. 841.
      Alla, A., Haasdonk, B., & Schmidt, A. (2017). Feedback control of parametrized PDEs via model order reduction and  dynamic programming principle. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1765
    7. 840.
      Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Eds.), Model Reduction of Parametrized Systems (pp. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
    8. 839.
      Armiti-Juber, A., & Rohde, C. (2017). On Darcy-and Brinkman-Type Models for Two-Phase Flow in Asymptotically  Flat Domains. https://arxiv.org/abs/1712.07470
    9. 838.
      Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with stochastic  process or random field coefficients. Appl. Numer. Math., 121, 38--51. https://doi.org/10.1016/j.apnum.2017.06.009
    10. 837.
      Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
    11. 836.
      Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion  coefficients.
    12. 835.
      Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), 115012. http://arxiv.org/abs/1706.03962
    13. 834.
      Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels.
    14. 833.
      Bhatt, A., & Moore, B. E. (2017). Structure-preserving ERK methods for non-autonomous DEs.
    15. 832.
      Bhatt, A., & Moore, B. E. (2017). Structure-preserving numerical integration of DEs with conformal  invariants.
    16. 831.
      Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-accelerated Fourth-Order Runge-Kutta in the Interaction  Picture Method for the Simulation of Nonlinear Signal Propagation  in Multimode Fibers. Journal of Lightwave Technology, 35(17), 3622--3628. https://doi.org/10.1109/JLT.2017.2715358
    17. 830.
      Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017 (pp. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
    18. 829.
      Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), 95–107. https://doi.org/10.1016/j.apnum.2016.07.005
    19. 828.
      Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2017). A Finite-Volume Tracking Scheme for Two-Phase Compressible Flow. Erscheint Bei Springer Proc. Math. Stat.
    20. 827.
      Chalons, Christophe., Rohde, C., & Wiebe, M. (2017). A Finite Volume Method for Undercompressive Shock Waves in Two Space  Dimensions. ESAIM Math. Model. Numer. Anal., 51(5), 1987–2015. https://doi.org/10.1051/m2an/2017027
    21. 826.
      Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
    22. 825.
      De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions.
    23. 824.
      De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Eds.), Approximation Theory XV: San Antonio 2016 (pp. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
    24. 823.
      Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), 1183--1213. https://doi.org/10.1007/s00209-017-1864-5
    25. 822.
      Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-Assisted Interactive Mobile Simulations for Pervasive Applications. Proceedings of the 15th IEEE International Conference on Pervasive Computing and Communications (PerCom), 1--10. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-02&engl=1
    26. 821.
      Düll, W.-P. (2017). Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation. Comm. Math. Phys., 355(3), 1189--1207. https://doi.org/10.1007/s00220-017-2966-y
    27. 820.
      Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
    28. 819.
      Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase    transition and surface tension. JOURNAL OF COMPUTATIONAL PHYSICS, 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
    29. 818.
      Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    30. 817.
      Feistauer, M., Bartos, O., Roskovec, F., & S�ndig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    31. 816.
      Feistauer, M., Roskovec, F., & S�ndig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
    32. 815.
      Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January 17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
    33. 814.
      Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
    34. 813.
      Gaspoz, F. D., & Morin, P. (2017). APPROXIMATION CLASSES FOR ADAPTIVE HIGHER ORDER FINITE ELEMENT    APPROXIMATION (vol 83, pg 2127, 2014). MATHEMATICS OF COMPUTATION, 86(305), 1525–1526. https://doi.org/10.1090/mcom/3243
    35. 812.
      Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev spaces. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 33(4), 1018–1042. https://doi.org/10.1002/num.22065
    36. 811.
      Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), 3233--3247. https://doi.org/10.1090/proc/13600
    37. 810.
      Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and Experimental Methods in Algebra, Geometry and Number Theory (Eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
    38. 809.
      Geck, M. (2017). Minuscule weights and Chevalley                      groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
    39. 808.
      Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
    40. 807.
      Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
    41. 806.
      Giesselmann, J., Meyer, F., & Rohde, C. (2017). A posteriori error analysis for random scalar conservation laws using  the Stochastic Galerkin method.: Vol. (submitted). https://arxiv.org/abs/1709.04351
    42. 805.
      Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model. In C. Cances & P. Omnes (Eds.), Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects (Vol. 199). http://www.springer.com/de/book/9783319573960
    43. 804.
      Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone  pressures. Appl. Anal., 96(9), 1528–1546. https://doi.org/10.1080/00036811.2016.1276175
    44. 803.
      Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection-dominated problems. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 27(13), 2381–2423. https://doi.org/10.1142/S0218202517500476
    45. 802.
      Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative energy for the Korteweg theory and related Hamiltonian flows  in gas dynamics. Arch. Ration. Mech. Anal., 223, 1427-- 1484. https://doi.org/10.1007/s00205-016-1063-2
    46. 801.
      Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the              high-frequency limit. Lett. Math. Phys., 107(10), 1809--1821. https://doi.org/10.1007/s11005-017-0969-4
    47. 800.
      Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), 1750030, 21. https://doi.org/10.1142/S0129055X17500301
    48. 799.
      Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
    49. 798.
      Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE    system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), 7780–7829. https://doi.org/10.1002/mma.4562
    50. 797.
      Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation: Theory and Algorithms (pp. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    51. 796.
      Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), 114001. https://doi.org/10.1088/1361-6420/aa8d7b
    52. 795.
      Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), 1–20. https://doi.org/10.1007/s11220-017-0159-6
    53. 794.
      Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
    54. 793.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
    55. 792.
      Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
    56. 791.
      Hintermueller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total    Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 59(3, SI), 515–533. https://doi.org/10.1007/s10851-017-0736-2
    57. 790.
      Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
    58. 789.
      Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    59. 788.
      Höllig, K. V., & Hörner, J. V. (Eds.). (2017). Aufgaben und Lösungen zur höheren Mathematik (pp. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
    60. 787.
      Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
    61. 786.
      Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), 129--149.
    62. 785.
      Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte F�r Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
    63. 784.
      Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
    64. 783.
      Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), 207--228. https://doi.org/10.1007/s00031-016-9384-7
    65. 782.
      Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-Posedness of a Two Scale Model for Liquid Phase Epitaxy with  Elasticity. Contin. Mech. Thermodyn., 29(4), 989–1016. https://doi.org/10.1007/s00161-015-0462-1
    66. 781.
      Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2017). Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1759
    67. 780.
      K�ppel, M., Kr�ker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
    68. 779.
      Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    69. 778.
      Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in  Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
    70. 777.
      Magiera, J., & Rohde, C. (2017). A Particle-based Multiscale Solver for Compressible Liquid-Vapor  Flow. Erscheint Bei Springer Proc. Math. Stat. https://arxiv.org/abs/1804.01411
    71. 776.
      Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
    72. 775.
      Maz, Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Eds.). (2017). Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume (No. 258; Issue 258). Birkhäuser/Springer International.
    73. 774.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.
    74. 773.
      Minbashian, H. (2017). Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws. Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran.
    75. 772.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws. Numerical Methods for Partial Differential Equations, 33(6), 2062–2089. https://doi.org/10.1002/num.22180
    76. 771.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations. International Journal of Numerical Methods for Heat & Fluid Flow.
    77. 770.
      Rohde, C. (2017). Fully Resolved Compressible Two-Phase Flow: Modelling, Analytical  and Numerical Issues.
    78. 769.
      Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation. Dolomites Research Notes on Approximation, 10, 68--78. http://www.emis.de/journals/DRNA/9-2.html
    79. 768.
      Schmid, J., & Griesemer, M. (2017). Well-posedness of non-autonomous linear evolution equations in              uniformly convex spaces. Math. Nachr., 290(2–3), 435--441. https://doi.org/10.1002/mana.201500052
    80. 767.
      Schmidt, A., & Haasdonk, B. (2017). Data-driven surrogates of value functions and applications to feedback  control for dynamical systems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
    81. 766.
      Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation of large scale parametric algebraic Riccati  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2017011
    82. 765.
      Seus, D., Radu, F. A., & Rohde, C. (2017). A linear domain decomposition method for two-phase flow in porous  media. https://doi.org/arXiv:1712.04869
    83. 764.
      Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27. https://doi.org/10.1016/j.jat.2016.11.006
    84. 763.
      Steinwart, I. (2017). Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes. Math. Nachr., 290, 1859--1883. https://doi.org/10.1002/mana.201500350
    85. 762.
      Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element Method to the Simulation  of Cable-Driven Parallel Robots. In Computational Kinematics (pp. 198--205). Springer International Publishing. https://doi.org/10.1007/978-3-319-60867-9_23
    86. 761.
      Thomann, P., Steinwart, I., Blaschzyk, I., & Meister, M. (2017). Spatial Decompositions for Large Scale SVMs. In A. Singh & J. Zhu (Eds.), Proceedings of Machine Learning Research Volume 54: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 2017 (pp. 1329--1337).
    87. 760.
      Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation. University of Stuttgart.
  6. 2016

    1. 759.
      Alk�mper, M., Dedner, A., Kl�fkorn, R., & Nolte, M. (2016). The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1), 1--28. https://doi.org/10.11588/ans.2016.1.23252
    2. 758.
      Altenbernd, M., & Göddeke, D. (2016). Soft fault detection and correction for multigrid. The International Journal of High Performance Computing Applications. https://doi.org/10.1177/1094342016684006
    3. 757.
      Amsallem, D., & Haasdonk, B. (2016). PEBL-ROM: Projection-Error Based Local Reduced-Order Models. AMSES, Advanced Modeling and Simulation in Engineering Sciences, 3(6), Article 6. https://doi.org/10.1186/s40323-016-0059-7
    4. 756.
      Antoulas, A. C., Haasdonk, B., & Peherstorfer, B. (2016). MORML 2016 Book of Abstracts. University of Stuttgart.
    5. 755.
      Apprich, C., Höllig, K., Hörner, J., & Reif, U. (2016). Collocation with WEB--Splines. Advances in Computational Mathematics, 42(4), 823--842. https://doi.org/10.1007/s10444-015-9444-x
    6. 754.
      Barth, A., & Stein, A. (2016). Approximation and simulation of infinite-dimensional Lévy processes. http://arxiv.org/abs/1612.05541
    7. 753.
      Barth, A., Schwab, C., & Sukys, J. (2016). Multilevel Monte Carlo simulation of statistical solutions to  the Navier-Stokes equations. In Monte Carlo and quasi-Monte Carlo methods (Vol. 163, pp. 209--227). Springer, Cham. https://doi.org/10.1007/978-3-319-33507-0_8
    8. 752.
      Barth, A., B�rger, R., Kröker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener  model with several random perturbations: A hybrid stochastic Galerkin  approach. Computers & Chemical Engineering, 89, 11-- 26. http://dx.doi.org/10.1016/j.compchemeng.2016.02.016
    9. 751.
      Barth, A., & Kröker, I. (2016). Finite volume methods for hyperbolic partial differential equations  with spatial noise. In Springer Proceedings in Mathematics and Statistics: Vol. submitted. Springer International Publishing.
    10. 750.
      Barth, A., Burger, R., Kr�ker, I., & Rohde, C. (2016). Computational uncertainty quantification for a clarifier-thickener model    with several random perturbations: A hybrid stochastic Galerkin approach. COMPUTERS & CHEMICAL ENGINEERING, 89, 11–26. https://doi.org/10.1016/j.compchemeng.2016.02.016
    11. 749.
      Barth, A., & Fuchs, F. G. (2016). Uncertainty quantification for hyperbolic conservation laws with  flux coefficients given by spatiotemporal random fields. SIAM J. Sci. Comput., 38(4), A2209--A2231. https://doi.org/10.1137/15M1027723
    12. 748.
      Barth, A., Moreno-Bromberg, S., & Reichmann, O. (2016). A Non-stationary Model of Dividend Distribution in a Stochastic Interest-Rate  Setting. Comp. Economics, 47(3), 447--472. https://doi.org/10.1007/s10614-015-9502-y
    13. 747.
      Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Advances Concerning Multiscale Methods and Uncertainty Quantification  in EXA-DUNE. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2013--2015 (pp. 25--43). Springer. https://doi.org/10.1007/978-3-319-40528-5_2
    14. 746.
      Bastian, P., Engwer, C., Fahlke, J., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Milk, R., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., & Turek, S. (2016). Hardware-Based Efficiency Advances in the EXA-DUNE Project. In H.-J. Bungartz, P. Neumann, & W. E. Nagel (Eds.), Software for Exascale Computing -- SPPEXA 2013--2015 (pp. 3--23). Springer. https://doi.org/10.1007/978-3-319-40528-5_1
    15. 745.
      Baur, U., Benner, P., Haasdonk, B., Himpe, C., Maier, I., & Ohlberger, M. (2016). Comparison of methods for parametric model order reduction of instationary  problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Eds.), Model Reduction and Approximation for Complex Systems. Birkhäuser Publishing. https://www2.mpi-magdeburg.mpg.de/preprints/2015/MPIMD15-01.pdf
    16. 744.
      Betancourt, F., & Rohde, C. (2016). Finite-volume schemes for Friedrichs systems with involutions. APPLIED MATHEMATICS AND COMPUTATION, 272(2), 420–439. https://doi.org/10.1016/j.amc.2015.03.050
    17. 743.
      Bhatt, A., & Moore, B. E. (2016). Structure-preserving Exponential Runge-Kutta Methods. SIAM J. Sci Comp.
    18. 742.
      Bhatt, A. (2016). Structure-preserving Finite Difference Methods for Linearly Damped  Differential Equations. University of Central Florida.
    19. 741.
      Bhatt, A., & Moore, B. E. (2016). Geometric Integration of a Damped Driven Nonlinear Schrodinger Equation.
    20. 740.
      Carlberg, K., Brencher, L., Haasdonk, B., & Barth, A. (2016). Data-driven time parallelism via forecasting.
    21. 739.
      Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Partition of unity interpolation using stable kernel-based techniques. Applied Numerical Mathematics. https://doi.org/10.1016/j.apnum.2016.07.005
    22. 738.
      Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2016). Approximating basins of attraction for dynamical systems via stable  radial bases. AIP Conf. Proc. https://doi.org/10.1063/1.4952177
    23. 737.
      Chertock, A., Degond, P., & Neusser, J. (2016). An Asymptotic-Preserving Method for a Relaxation of the Navier-Stokes-Korteweg  Equations. Journal of Computational Physics, 335, 387–403. http://arxiv.org/abs/1512.04228
    24. 736.
      Colombo, R. M., Guerra, G., & Schleper, V. (2016). The compressible to incompressible limit of 1D Euler equations: the  non-smooth case. Archive for Rational Mechanics and Analysis, 219(2), 701–718. https://doi.org/10.1007/s00205-015-0904-8
    25. 735.
      Colombo, R. M., LeFloch, P. G., & Rohde, C. (2016). Hyperbolic techniques in Modelling, Analysis and Numerics. Oberwolfach Reports, 13, 1683–1751. https://doi.org/10.4171/OWR/2016/30
    26. 734.
      Colombo, R. M., Guerra, G., & Schleper, V. (2016). The Compressible to Incompressible Limit of One Dimensional Euler    Equations: The Non Smooth Case. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 219(2), 701–718. https://doi.org/10.1007/s00205-015-0904-8
    27. 733.
      Dedner, A., & Giesselmann, J. (2016). A POSTERIORI ANALYSIS OF FULLY DISCRETE METHOD OF LINES DISCONTINUOUS    GALERKIN SCHEMES FOR SYSTEMS OF CONSERVATION LAWS. SIAM JOURNAL ON NUMERICAL ANALYSIS, 54(6), 3523–3549. https://doi.org/10.1137/15M1046265
    28. 732.
      Dedner, A., & Giesselmann, J. (2016). A posteriori analysis of fully discrete method of lines DG schemes  for systems of conservation laws. SIAM J. Numer. Anal., 54(6), 3523–3549. http://epubs.siam.org/toc/sjnaam/54/6
    29. 731.
      Degeratu, A., & and Thomas Walpuski,. (2016). Rigid HYM Connections on Tautological Bundles over ALE Crepant Resolutions in Dimension Three. Symmetry, Integrability and Geometry: Methods and Applications. https://doi.org/10.3842/sigma.2016.017
    30. 730.
      Diehl, D., Kremser, J., Kröner, D., & Rohde, C. (2016). Numerical Solution of Navier-Stokes-Korteweg Systems by Local Discontinuous  Galerkin Methods in Multiple Space Dimensions. Appl. Math. Comput., 272, Part 2, 309–335. https://doi.org/10.1016/j.amc.2015.09.080
    31. 729.
      Diehl, D., Kremser, J., Kroener, D., & Rohde, C. (2016). Numerical solution of Navier-Stokes-Korteweg systems by Local    Discontinuous Galerkin methods in multiple space dimensions. APPLIED MATHEMATICS AND COMPUTATION, 272(2), 309–335. https://doi.org/10.1016/j.amc.2015.09.080
    32. 728.
      Dihlmann, M., & Haasdonk, B. (2016). A REDUCED BASIS KALMAN FILTER FOR PARAMETRIZED PARTIAL DIFFERENTIAL    EQUATIONS. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 22(3), 625–669. https://doi.org/10.1051/cocv/2015019
    33. 727.
      Dragomirescu, F. I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    34. 726.
      Dragomirescu, I., Eisenschmidt, K., Rohde, C., & Weigand, B. (2016). Perturbation solutions for the finite radially symmetric Stefan problem. Inter. J. Thermal Sci., 104, 386–395. https://doi.org/10.1016/j.ijthermalsci.2016.01.019
    35. 725.
      Dumbser, M., Gassner, G., Rohde, C., & Roller, S. (2016). Preface to the special issue ``Recent Advances in Numerical  Methods for Hyperbolic Partial Differential Equations’’. Appl. Math. Comput., 272(part 2), 235--236. https://doi.org/10.1016/j.amc.2015.11.023
    36. 724.
      Düll, W.-P., Sanei Kashani, K., Schneider, G., & Zimmermann, D. (2016). Attractivity of the Ginzburg-Landau mode distribution for a pattern forming system with marginally stable long modes. J. Differential Equations, 261(1), 319--339. https://doi.org/10.1016/j.jde.2016.03.010
    37. 723.
      Düll, W.-P., Hermann, A., Schneider, G., & Zimmermann, D. (2016). Justification of the 2D NLS equation for a fourth order nonlinear wave equation---quadratic resonances do not matter much in case of analytic initial conditions. J. Math. Anal. Appl., 436(2), 847--867. https://doi.org/10.1016/j.jmaa.2015.12.027
    38. 722.
      Düll, W.-P., Kashani, K. S., & Schneider, G. (2016). The validity of Whitham’s approximation for a Klein-Gordon-Boussinesq model. SIAM J. Math. Anal., 48(6), 4311--4334. https://doi.org/10.1137/16M1071687
    39. 721.
      Düll, W.-P., Schneider, G., & Wayne, C. E. (2016). Justification of the nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal., 220(2), 543--602. https://doi.org/10.1007/s00205-015-0937-z
    40. 720.
      Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2016). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem [Arxiv Report]. University of Stuttgart. https://arxiv.org/abs/1610.05029
    41. 719.
      Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced Landweber Method for Nonlinear Inverse Problems. Inverse Problems, 32(3), 1--21. http://dx.doi.org/10.1088/0266-5611/32/3/035001
    42. 718.
      Garmatter, D., Haasdonk, B., & Harrach, B. (2016). A reduced basis Landweber method for nonlinear inverse problems. INVERSE PROBLEMS, 32(3), Article 3. https://doi.org/10.1088/0266-5611/32/3/035001
    43. 717.
      Gaspoz, F. D., Heine, C.-J., & Siebert, K. G. (2016). Optimal Grading of the Newest Vertex Bisection and H1-Stability of  the L2-Projection. IMA Journal of Numerical Analysis, 36(3), 1217--1241. https://doi.org/10.1093/imanum/drv044
    44. 716.
      Geveler, M., Reuter, B., Aizinger, V., Göddeke, D., & Turek, S. (2016). Energy efficiency of the simulation of three-dimensional coastal  ocean circulation on modern commodity and mobile processors -- A  case study based on the Haswell and Cortex-A15 microarchitectures. Computer Science -- Research and Development, 31(4), 225–234. https://doi.org/10.1007/s00450-016-0324-5
    45. 715.
      Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of  multiphase problems in elastodynamics. IMA J. Numer. Anal., 36(4), 1685-- 1714. http://imajna.oxfordjournals.org/content/36/4/1685
    46. 714.
      Giesselmann, J. (2016). Relative entropy based error estimates for discontinuous Galerkin  schemes. Bull. Braz. Math. Soc. (N.S.), 47(1), 359--372. https://doi.org/10.1007/s00574-016-0144-z
    47. 713.
      Giesselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a priori analysis of multiphase    problems in elastodynamics. BIT NUMERICAL MATHEMATICS, 56(1), 99–127. https://doi.org/10.1007/s10543-015-0560-2
    48. 712.
      Giesselmann, J., & LeFloch, P. G. (2016). Formulation and convergence of the finite volume method for conservation  laws on spacetimes with boundary. ArXiv. http://arxiv.org/abs/1607.03944
    49. 711.
      Gisselmann, J., & Pryer, T. (2016). Reduced relative entropy techniques for a posteriori analysis of    multiphase problems in elastodynamics. IMA JOURNAL OF NUMERICAL ANALYSIS, 36(4), 1685–1714. https://doi.org/10.1093/imanum/drv052
    50. 710.
      Gorodski, C., & Kollross, A. (2016). Some remarks on polar actions. Annals of Global Analysis and Geometry, 49(1), 43–58. https://doi.org/10.1007/s10455-015-9479-8
    51. 709.
      Griesemer, M., & Wünsch, A. (2016). Self-adjointness and domain of the Fröhlich Hamiltonian. J. Math. Phys., 57(2), 021902, 15. https://doi.org/10.1063/1.4941561
    52. 708.
      Guerra, G., & Schleper, V. (2016). A coupling between a 1D compressible-incompressible limit and the 1D    p-system in the non smooth case. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 47(1), 381–396. https://doi.org/10.1007/s00574-016-0146-x
    53. 707.
      Gutt, R., Kohr, M., Pintea, C., & Wendland, W. L. (2016). On the transmission problems for the Oseen and Brinkman systems on  Lipschitz domains in compact Riemannian manifolds. Math. Nachr, 289, 471–484.
    54. 706.
      Hahn, B. N., & Quinto, E. T. (2016). Detectable singularities from dynamic Radon data. SIAM J. Imaging Sciences, 9(3), 1195–1225. https://doi.org/10.1137/16M1057917
    55. 705.
      Hahn, B. N. (2016). Null space and resolution in dynamic computerized tomography. Inverse Problems, 32(2), 025006. https://doi.org/10.1088/0266-5611/32/2/025006
    56. 704.
      Hang, H., Feng, Y., Steinwart, I., & Suykens, J. A. K. (2016). Learning theory estimates with observations from general stationary stochastic processes. Neural Computation, 28, 2853--2889. https://doi.org/10.1162/NECO_a_00870
    57. 703.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2016). Rapid solution of minimal Riesz energy problems. Numer. Methods Partial Diff. Equ., 32, 1535–1552.
    58. 702.
      Heil, K., Moroianu, A., & Semmelmann, U. (2016). Killing and conformal Killing tensors. J. Geom. Phys., 106, 383--400. https://doi.org/10.1016/j.geomphys.2016.04.014
    59. 701.
      Kabil, B., & Rohde, C. (2016). Persistence of undercompressive phase boundaries for isothermal Euler  equations including configurational forces and surface tension. Math. Meth. Appl. Sci., 39(18), 5409--5426. https://doi.org/10.1002/mma.3926
    60. 700.
      Kabil, B., & Rodrigues, M. (2016). Spectral validation of the Whitham equations for periodic waves of  lattice dynamical systems. Journal of Differential Equations, 260(3), 2994–3028. https://doi.org/10.1016/j.jde.2015.10.025
    61. 699.
      Kohr, M., de Cristoforis, L., Mikhailov, S., & Wendland, W. L. (2016). Integral potential method for transmission problem with Lipschitz  interface in R� for the Stokes and Darcy-Forchheimer-Brinkman PED  systems. ZAMP, 67:116, 1–30.
    62. 698.
      Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2016). On the Robin transmission boundary value problem for the nonlinear  Darcy-Forchheimer-Brinkman and Navier-Stokes system. J. Math. Fluid Mechanics, 18, 293–329.
    63. 697.
      Kohr, M., Pintea, C., & Wendland, W. L. (2016). Poisson transmission problems for L^infty perturbations of the Stokes  system on Lipschitz domains on compact Riemannian manifolds. J. Dyn. Diff. Equations, DOI 110.1007/s10884-014-9359-0.
    64. 696.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2016). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian manifolds. Journal of Mathematical Fluid Dynamics, DOI 10.1007/s 00021-16-0273-6.
    65. 695.
      Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2016). On the Robin-Transmission Boundary Value Problems for the Nonlinear    Darcy-Forchheimer-Brinkman and Navier-Stokes Systems. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 18(2), 293–329. https://doi.org/10.1007/s00021-015-0236-3
    66. 694.
      Kohr, M., de Cristoforis, M. L., Mikhailov, S. E., & Wendland, W. L. (2016). Integral potential method for a transmission problem with Lipschitz    interface in R-3 for the Stokes and Darcy-Forchheimer-Brinkman PDE    systems. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 67(5), Article 5. https://doi.org/10.1007/s00033-016-0696-1
    67. 693.
      Köppel, M., & Rohde, C. (2016). Uncertainty Quantification for Two-Phase Flow in Heterogeneous Porous  Media. PAMM Proc. Appl. Math. Mech., 16(1), 749�750. https://doi.org/10.1002/pamm.201610363
    68. 692.
      List, F., & Radu, F. A. (2016). A study on iterative methods for solving Richards’ equation. COMPUTATIONAL GEOSCIENCES, 20(2), 341–353. https://doi.org/10.1007/s10596-016-9566-3
    69. 691.
      Magiera, J., Rohde, C., & Rybak, I. (2016). A Hyperbolic-Elliptic Model Problem for Coupled Surface-Subsurface Flow. TRANSPORT IN POROUS MEDIA, 114(2, SI), 425–455. https://doi.org/10.1007/s11242-015-0548-z
    70. 690.
      Meister, M., & Steinwart, I. (2016). Optimal Learning Rates for Localized SVMs. J. Mach. Learn. Res., 17, 1–44.
    71. 689.
      Ostrowski, L., Ziegler, B., & Rauhut, G. (2016). Tensor decomposition in potential energy surface representations. The Journal of Chemical Physics, 145(10), 104103. https://doi.org/10.1063/1.4962368
    72. 688.
      Redeker, M., Pop, I. S., & Rohde, C. (2016). Upscaling of a Tri-Phase Phase-Field Model for Precipitation in Porous  Media. IMA J. Appl. Math., 81(5), 898–939. https://doi.org/10.1093/imamat/hxw023
    73. 687.
      Redeker, M., & Haasdonk, B. (2016). A POD-EIM reduced two-scale model for precipitation in porous media. MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 20(4), 323–344. https://doi.org/10.1080/13873954.2016.1198384
    74. 686.
      Rossi, E., & Schleper, V. (2016). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. ESAIM Math. Model. Numer. An., 50(2), 475–497. https://doi.org/10.1051/m2an/2015050
    75. 685.
      Rybak, I., & Magiera, J. (2016). Decoupled schemes for free flow and porous medium systems. In T. D. et al. (Ed.), Domain Decomposition Methods in Science and Engineering XXII (Vol. 104, pp. 613--621). Springer. https://doi.org/10.1007/978-3-319-18827-0\_54
    76. 684.
      Santin, G. (2016). Approximation in kernel-based spaces, optimal subspaces and approximation  of eigenfunction [Doctoral School in Mathematical Sciences, University of Padova]. http://paduaresearch.cab.unipd.it/9186/
    77. 683.
      Santin, G., & Schaback, R. (2016). Approximation of eigenfunctions in kernel-based spaces. Adv. Comput. Math., 42(4), 973--993. https://doi.org/10.1007/s10444-015-9449-5
    78. 682.
      Schleper, V. (2016). A HLL-type Riemann solver for two-phase flow with surface forces and    phase transitions. APPLIED NUMERICAL MATHEMATICS, 108, 256–270. https://doi.org/10.1016/j.apnum.2015.12.010
    79. 681.
      Schmidt, A., & Haasdonk, B. (2016). Reduced basis method for H2 optimal feedback control problems. IFAC-PapersOnLine, 49(8), 327–332. http://dx.doi.org/10.1016/j.ifacol.2016.07.462
    80. 680.
      Sharanya, V., Raja Sekhar, G. P., & Rohde, C. (2016). Bed of polydisperse viscous spherical drops under thermocapillary  effects. Z. Angew. Math. Phys., 67(4), 101. https://doi.org/10.1007/s00033-016-0699-y
    81. 679.
      Stein, A. (2016). Exakte Simulation von Optionspreisen und Sensitivitäten unter  stochastischer Volatilität [Master Thesis].
  7. 2015

    1. 678.
      Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Editorial: Special Issue on Modelling Reduction. IJNME, International Journal of Numerical Methods in Engineering, 102(5), 931--932. https://doi.org/10.1002/nme.4889
    2. 677.
      Amsallem, D., Farhat, C., & Haasdonk, B. (2015). Special Issue on Model Reduction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), 931–932. https://doi.org/10.1002/nme.4889
    3. 676.
      Bhatt, A., Floyd, D., & Moore, B. E. (2015). Second Order Conformal Symplectic Schemes for Damped Hamiltonian  Systems. Journal of Scientific Computing. https://doi.org/10.1007/s10915-015-0062-z
    4. 675.
      Bhatt, A., Floyd, D., & Moore, B. E. (2015). Second Order Conformal Symplectic Integrators for Damped Hamiltonian  Systems.
    5. 674.
      Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced basis methods for pricing options with the Black-Scholes  and Heston model. SIAM Journal on Financial Mathematics (SIFIN), 1408.1220, Article 1408.1220. http://arxiv.org/abs/1408.1220
    6. 673.
      Burkovska, O., Haasdonk, B., Salomon, J., & Wohlmuth, B. (2015). Reduced Basis Methods for Pricing Options with the Black-Scholes and    Heston Models. SIAM JOURNAL ON FINANCIAL MATHEMATICS, 6(1), 685–712. https://doi.org/10.1137/140981216
    7. 672.
      Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2015). RBF approximation of large datasets by partition of unity and local  stabilization. In J. Vigo-Aguiar (Ed.), CMMSE 2015 : Proceedings of the 15th International Conference on  Mathematical Methods in Science and Engineering (pp. 317--326).
    8. 671.
      Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2015). NLS approximation of time oscillatory long waves for equations with quasilinear quadratic terms. Math. Nachr., 288(2–3), 158--166. https://doi.org/10.1002/mana.201200325
    9. 670.
      De Marchi, S., & Santin, G. (2015). Fast computation of orthonormal basis for RBF spaces through Krylov  space methods. BIT Numerical Mathematics, 55(4), 949--966. https://doi.org/10.1007/s10543-014-0537-6
    10. 669.
      Dihlmann, M., & Haasdonk, B. (2015). A reduced basis Kalman filter for parametrized partial differential  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2015019
    11. 668.
      Dihlmann, M. A., & Haasdonk, B. (2015). Certified PDE-constrained parameter optimization using reduced basis    surrogate models for evolution problems. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 60(3), 753–787. https://doi.org/10.1007/s10589-014-9697-1
    12. 667.
      Geck, M., & Bonnafe, C. (2015). Hecke algebras with unequal parameters and Vogan’s left cell invariants. Representations of Reductive Groups. In Honor of the 60th Birthday of David A. Vogan, Jr (Eds. M. Nevins and P. Trapa), 312, 173--188. https://doi.org/10.1007/978-3-319-23443-4_6
    13. 666.
      Geck, M. (2015). On Kottwitz’ conjecture for twisted involutions. Journal of Lie Theory, 25(2), 395–429. https://www.heldermann.de/JLT/JLT25/JLT252/jlt25019.htm
    14. 665.
      Geck, M., & Halls, A. (2015). On the Kazhdan-Lusztig cells in type E8. Mathematics of Computation, 84(296), 3029--3049. https://doi.org/10.1090/mcom/2963
    15. 664.
      Geck, M. (2015). Eigenvalues of Real Symmetric Matrices. The American Mathematical Monthly, 122(5), 482. https://doi.org/10.4169/amer.math.monthly.122.5.482
    16. 663.
      Gerth, D., Hahn, B. N., & Ramlau, R. (2015). The method of the approximate inverse for atmospheric tomography. Inverse Problems, 31(6), 065002. https://doi.org/10.1088/0266-5611/31/6/065002
    17. 662.
      Giesselmann, J. (2015). Entropy as a fundamental principle in hyperbolic conservation laws and related models [Habilitationsschrift].
    18. 661.
      Giesselmann, J., & Pryer, T. (2015). Energy consistent discontinuous Galerkin methods for a quasi-incompressible  diffuse two phase flow model. M2AN Math. Model. Numer. Anal., 49(1), 275–301. http://www.esaim-m2an.org/articles/m2an/pdf/2015/01/m2an140033.pdf
    19. 660.
      Giesselmann, J. (2015). Low Mach asymptotic preserving scheme for the Euler-Korteweg model. IMA J. Numer. Anal., 35(2), 802--832. https://doi.org/10.1093/imanum/dru022
    20. 659.
      Giesselmann, J. (2015). Relative entropy in multi-phase models of 1d elastodynamics: Convergence    of a non-local to a local model. JOURNAL OF DIFFERENTIAL EQUATIONS, 258(10), 3589–3606. https://doi.org/10.1016/j.jde.2015.01.047
    21. 658.
      Giesselmann, J., Makridakis, C., & Pryer, T. (2015). A posteriori analysis of discontinuous Galerkin schemes for systems  of hyperbolic conservation laws. SIAM J. Numer. Anal., 53, 1280--1303. http://dx.doi.org/10.1137/140970999
    22. 657.
      Goeddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically    compressed asynchronous checkpointing. PARALLEL COMPUTING, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
    23. 656.
      Grosan, T., Kohr, M., & Wendland, W. L. (2015). Dirichlet problem for a nonlinear generalized Darcy-Forchheimer-Brinkman    system in Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(17), 3615–3628. https://doi.org/10.1002/mma.3302
    24. 655.
      Gugat, M., Herty, M., & Schleper, V. (2015). flow control in gas networks: exact controllability to a given demand    (vol 34, pg 745, 2011). MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 38(5), 1001–1004. https://doi.org/10.1002/mma.3122
    25. 654.
      Göddeke, D., Altenbernd, M., & Ribbrock, D. (2015). Fault-tolerant finite-element multigrid algorithms with hierarchically  compressed asynchronous checkpointing. Parallel Computing, 49, 117–135. https://doi.org/10.1016/j.parco.2015.07.003
    26. 653.
      Hahn, B. N. (2015). Dynamic linear inverse problems with moderate movements of the object: Ill-posedness and regularization. Inverse Problems & Imaging, 9(2), 395–413. https://doi.org/10.3934/ipi.2015.9.395
    27. 652.
      Hintermüller, M., & Langer, A. (2015). Non-overlapping domain decomposition methods for dual total variation  based image denoising. Journal of Scientific Computing, 62(2), 456--481. http://link.springer.com/article/10.1007/s10915-014-9863-8
    28. 651.
      Höllig, K., & Hörner, J. (2015). Programming finite element methods with weighted B-splines. Computers & Mathematics with Applications, 70(7), 1441--1456. https://doi.org/10.1016/j.camwa.2015.02.019
    29. 650.
      Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K. A., & Ohlberger, M. (2015). The localized reduced basis multiscale method for two-phase flows in    porous media. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 102(5, SI), 1018–1040. https://doi.org/10.1002/nme.4773
    30. 649.
      Kissling, F., & Rohde, C. (2015). The Computation of Nonclassical Shock Waves in Porous Media with  a Heterogeneous Multiscale Method: The Multidimensional Case. Multiscale Model. Simul., 13 no. 4, 1507–1541. https://doi.org/10.1137/120899236
    31. 648.
      Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains  in R^3. ZAMP, 66, 833–846.
    32. 647.
      Kohr, M., Pintea, C., & Wendland, W. L. (2015). Poisson-Transmission Problems for -Perturbations of the Stokes System on    Lipschitz Domains in Compact Riemannian Manifolds. JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 27(3–4), 823–839. https://doi.org/10.1007/s10884-014-9359-0
    33. 646.
      Kohr, M., de Cristoforis, M. L., & Wendland, W. L. (2015). Poisson problems for semilinear Brinkman systems on Lipschitz domains in    R-n. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 66(3), 833–864. https://doi.org/10.1007/s00033-014-0439-0
    34. 645.
      Kroeker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain    and nonlinear two-phase flow problems. COMPUTATIONAL GEOSCIENCES, 19(2), 269–284. https://doi.org/10.1007/s10596-014-9464-5
    35. 644.
      Kr�ker, I., Nowak, W., & Rohde, C. (2015). A stochastically and spatially adaptive parallel scheme for uncertain  and nonlinear two-phase flow problems. Comput. Geosci., 19(2), 269--284. https://doi.org/10.1007/s10596-014-9464-5
    36. 643.
      Kutter, M. (2015). A two scale model for liquid phase epitaxy with elasticity [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2015/9833/
    37. 642.
      List, F., & Radu, F. A. (2015). A study on iterative methods for solving Richards� equation. http://www.nupus.uni-stuttgart.de/07_Preprints_Publications/Preprints/Preprints-PDFs/Preprint_201506.pdf
    38. 641.
      Martini, I., & Haasdonk, B. (2015). Output Error Bounds for the Dirichlet-Neumann Reduced Basis Method. Numerical Mathematics and Advanced Applications - ENUMATH 2013, 103, 437--445. https://doi.org/10.1007/978-3-319-10705-9_43
    39. 640.
      Martini, I., Rozza, G., & Haasdonk, B. (2015). Reduced basis approximation and a-posteriori error estimation for  the coupled Stokes-Darcy system. Advances in Computational Mathematics, 41(5), 1131--1157. https://doi.org/10.1007/s10444-014-9396-6
    40. 639.
      Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems  in doubly connected domains. IMA J. Num. Analysis, 35, 834–858.
    41. 638.
      Micula, S., & Wendland, W. L. (2015). Trigonometric collocation for nonlinear Riemann-Hilbert problems on    doubly connected domains. IMA JOURNAL OF NUMERICAL ANALYSIS, 35(2), 834–858. https://doi.org/10.1093/imanum/dru009
    42. 637.
      Müthing, S., Ribbrock, D., & Göddeke, D. (2015). Integrating multi-threading and accelerators into DUNE-ISTL. In A. Abdulle, S. Deparis, D. Kressner, F. Nobile, & M. Picasso (Eds.), Numerical Mathematics and Advanced Applications -- ENUMATH 2013 (Vol. 103, pp. 601--609). Springer. https://doi.org/10.1007/978-3-319-10705-9_59
    43. 636.
      Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxation of the Navier-Stokes-Korteweg Equations for Compressible  Two-Phase Flow with Phase Transition. J. Numer. Methods Fluids, 79, 615–639. https://doi.org/10.1002/fld.4065
    44. 635.
      Neusser, J., Rohde, C., & Schleper, V. (2015). Relaxed Navier-Stokes-Korteweg Equations for compressible two-phase  flow with phase transition. J. Numer. Meth. Fluids, 79(12), 615–639. https://doi.org/10.1002/fld.4065
    45. 634.
      Neusser, J., & Schleper, V. (2015). Numerical schemes for the coupling of compressible and incompressible  fluids in several space dimensions.
    46. 633.
      Oztepe, G. S., Choudhury, S. R., & Bhatt, A. (2015). Multiple Scales and Energy Analysis of Coupled Rayleigh-Van der Pol  Oscillators with Time-Delayed Displacement and Velocity Feedback:  Hopf Bifurcations and Amplitude Death. Far East Journal of Dynamical Systems. https://doi.org/10.17654/FJDSMar2015_031_059
    47. 632.
      Redeker, M., & Haasdonk, B. (2015). A POD-EIM reduced two-scale model for crystal growth. Advances in Computational Mathematics, 41(5), 987--1013. https://doi.org/10.1007/s10444-014-9367-y
    48. 631.
      Rohde, C., & Zeiler, C. (2015). A relaxation Riemann solver for compressible two-phase flow with  phase transition and surface tension. Appl. Numer. Math., 95, 267--279. https://doi.org/10.1016/j.apnum.2014.05.001
    49. 630.
      Rybak, I. V., Gray, W. G., & Miller, C. T. (2015). Modeling two-fluid-phase flow and species transport in porous media. J. Hydrology, 521, 565--581. http://www.sciencedirect.com/science/article/pii/S002216941400972X
    50. 629.
      Rybak, I., Magiera, J., Helmig, R., & Rohde, C. (2015). Multirate time integration for coupled saturated/unsaturated porous    medium and free flow systems. COMPUTATIONAL GEOSCIENCES, 19(2), 299–309. https://doi.org/10.1007/s10596-015-9469-8
    51. 628.
      Schleper, V. (2015). Nonlinear Transport and Coupling of Conservation Laws.
    52. 627.
      Schleper, V. (2015). A HYBRID MODEL FOR TRAFFIC FLOW AND CROWD DYNAMICS WITH RANDOM    INDIVIDUAL PROPERTIES. MATHEMATICAL BIOSCIENCES AND ENGINEERING, 12(2), 393–413. https://doi.org/10.3934/mbe.2015.12.393
    53. 626.
      Schmidt, A., Dihlmann, M., & Haasdonk, B. (2015). Basis generation approaches for a reduced basis linear quadratic  regulator. Proc. MATHMOD 2015 - 8th Vienna International Conference on Mathematical Modelling, 713--718. https://doi.org/10.1016/j.ifacol.2015.05.016
    54. 625.
      Steinwart, I. (2015). Supplement B to ``Fully Adaptive Density-Based Clustering’’. Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    55. 624.
      Steinwart, I. (2015). Fully Adaptive Density-Based Clustering. Ann. Statist., 43, 2132--2167. https://doi.org/10.1214/15-AOS1331
    56. 623.
      Steinwart, I. (2015). Supplement A to ``Fully Adaptive Density-Based Clustering’’ (No. 2013–016; Issues 2013–016). Fakultät für Mathematik und Physik, Universität Stuttgart. https://doi.org/10.1214/15-AOS1331SUPP
    57. 622.
      Steinwart, I. (2015). Measuring the capacity of sets of functions in the analysis of ERM. In A. Gammerman & V. Vovk (Eds.), Festschrift in Honor of Alexey Chervonenkis (pp. 223--239). Springer. https://doi.org/10.1007/978-3-642-41136-6
    58. 621.
      Thomann, P., Steinwart, I., & Schmid, N. (2015). Towards an Axiomatic Approach to Hierarchical Clustering of Measures. J. Mach. Learn. Res., 16, 1949--2002.
    59. 620.
      Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate Modelling of multiscale models using kernel methods. International Journal of Numerical Methods in Engineering, 101(1), 1--28. https://doi.org/10.1002/nme.4767
    60. 619.
      Wirtz, D., Karajan, N., & Haasdonk, B. (2015). Surrogate modeling of multiscale models using kernel methods. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 101(1), 1–28. https://doi.org/10.1002/nme.4767
    61. 618.
      Zeiler, C. (2015). Liquid Vapor Phase Transitions: Modeling, Riemann Solvers and Computation [Verlag Dr. Hut]. http://elib.uni-stuttgart.de/handle/11682/8919%7D
  8. 2014

    1. 617.
      Adibi, H., & Minbashian, H. (2014). Integral Equations (in Persian). Amirkabir University of Technology Press.
    2. 616.
      Aki, G. L., Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A quasi-incompressible diffuse interface model with phase transition. Math. Models Methods Appl. Sci., 24(5), 827–861. https://doi.org/10.1142/S0218202513500693
    3. 615.
      Apprich, C., Höllig, K., Hörner, J., Keller, A., & Yazdani, E. N. (2014). Finite Element Approximation with Hierarchical B-Splines. In J.-D. Boissonnat, A. Cohen, O. Gibaru, C. Gout, T. Lyche, M.-L. Mazure, & L. L. Schumaker (Eds.), Curves and Surfaces (Vol. 9213, pp. 1–15). Springer. http://dblp.uni-trier.de/db/conf/cas/cas2014.html#ApprichHHKY14
    4. 614.
      Armiti-Juber, A., & Rohde, C. (2014). Almost Parallel Flows in Porous Media. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Elliptic, Parabolic and  Hyperbolic Problems (Vol. 78, pp. 873–881). Springer International Publishing. https://doi.org/10.1007/978-3-319-05591-6_88
    5. 613.
      Barth, A., & Moreno-Bromberg, S. (2014). Optimal risk and liquidity management with costly refinancing opportunities. Insurance Math. Econom., 57, 31--45. https://doi.org/10.1016/j.insmatheco.2014.05.001
    6. 612.
      Barth, A., & Benth, F. E. (2014). The forward dynamics in energy markets -- infinite-dimensional modelling  and simulation. Stochastics, 86(6), 932--966. https://doi.org/10.1080/17442508.2014.895359
    7. 611.
      Bastian, P., Engwer, C., Göddeke, D., Iliev, O., Ippisch, O., Ohlberger, M., Turek, S., Fahlke, J., Kaulmann, S., Müthing, S., & Ribbrock, D. (2014). EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications. In L. Lopes, J. Zilinskas, A. Costan, RobertoG. Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit, V. Scarano, J. Gracia, S. Hunold, StephenL. Scott, S. Lankes, C. Lengauer, J. Carretero, J. Breitbart, & M. Alexander (Eds.), Euro-Par 2014: Parallel Processing Workshops (Vol. 8806, pp. 530--541). Springer. https://doi.org/10.1007/978-3-319-14313-2_45
    8. 610.
      Bonnafé, C., & Geck, M. (2014). Conjugacy classes of involutions and Kazhdan–Lusztig cells. Representation Theory of the American Mathematical Society, 18(6), 155--182. https://doi.org/10.1090/s1088-4165-2014-00456-4
    9. 609.
      Bürger, R., Kröker, I., & Rohde, C. (2014). A hybrid stochastic Galerkin method for uncertainty quantification applied to a conservation law modelling a clarifier-thickener unit. ZAMM Z. Angew. Math. Mech., 94(10), 793–817. https://doi.org/10.1002/zamm.201200174
    10. 608.
      Chalons, C., Engel, P., & Rohde, C. (2014). A Conservative and Convergent Scheme for Undercompressive Shock Waves. SIAM J. Numer. Anal., 52(1), 554–579. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=732
    11. 607.
      Chirilus-Bruckner, M., Düll, W.-P., & Schneider, G. (2014). Validity of the KdV equation for the modulation of periodic traveling waves in the NLS equation. J. Math. Anal. Appl., 414(1), 166--175. https://doi.org/10.1016/j.jmaa.2013.12.061
    12. 606.
      Corli, A., Rohde, C., & Schleper, V. (2014). Parabolic approximations of diffusive-dispersive equations. J. Math. Anal. Appl., 414, 773–798. http://dx.doi.org/10.1016/j.jmaa.2014.01.049
    13. 605.
      Dreyer, W., Giesselmann, J., & Kraus, C. (2014). A compressible mixture model with phase transition. Physica D, 273–274, 1–13. http://dx.doi.org/10.1016/j.physd.2014.01.006
    14. 604.
      Dreyer, W., Giesselmann, J., & Kraus, C. (2014). Modeling of compressible electrolytes with phase transition. http://arxiv.org/abs/1405.6625
    15. 603.
      Düll, W.-P., Kirchhoff, A., & Schneider, G. (2014). The existence of bifurcating invariant tori in a spatially              extended reaction-diffusion-convection system with spatially              localized amplification. J. Nonlinear Sci., 24(2), 305--358. https://doi.org/10.1007/s00332-013-9190-5
    16. 602.
      Ehlers, W., Helmig, R., & Rohde, C. (2014). Editorial: Deformation and transport phenomena in porous media. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift F�r Angewandte Mathematik Und Mechanik, 94(7–8), 559--559. https://doi.org/10.1002/zamm.201400559
    17. 601.
      Engel, P., Viorel, A., & Rohde, C. (2014). A Low-Order Approximation for Viscous-Capillary Phase Transition  Dynamics. Port. Math., 70(4), 319–344. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=723
    18. 600.
      Eymard, R., & Schleper, V. (2014). Study of a numerical scheme for miscible two-phase flow in porous  media. Numer. Meth. Part. D. E., 30, 723–748. https://doi.org/10.1002/num.21823
    19. 599.
      Fechter, S., Zeiler, C., Munz, C.-D., & Rohde, C. (2014). Simulation of compressible multi-phase flows at extreme ambient conditions  using a Discontinuous-Galerkin Method. ILASS�Europe, 26th European Conference on Liquid Atomization and  Spray Systems.
    20. 598.
      Finite Volumes for Complex Applications VII Elliptic, Parabolic and  Hyperbolic Problems, FVCA 7, Berlin, June 2014. (2014). In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Springer Proceedings in Mathematics & Statistics: Vol. Vol. 77/78.
    21. 597.
      Garikapati, H. (2014). A PGD Based Preconditioner for Scalar Elliptic Problems.
    22. 596.
      Gaspoz, F. D., & Morin, P. (2014). Approximation classes for adaptive higher order finite element approximation. Math. Comp., 83(289), 2127--2160. https://doi.org/10.1090/S0025-5718-2013-02777-9
    23. 595.
      Geck, M. (2014). On the Characterization of Galois Extensions. The American Mathematical Monthly, 121(7), 637. https://doi.org/10.4169/amer.math.monthly.121.07.637
    24. 594.
      Geck, M. (2014). Algebra: Gruppen, Ringe, Körper. Mit einer Einführung in die Darstellungstheorie endlicher Gruppen. edition delkhofen.
    25. 593.
      Geck, M. (2014). Kazhdan-Lusztig cells and the Frobenius-Schur indicator. Journal of Algebra, 398, 329--342. https://doi.org/10.1016/j.jalgebra.2013.01.019
    26. 592.
      Giesselmann, J., & Tzavaras, A. E. (2014). Singular Limiting Induced from Continuum Solutions and the Problem  of Dynamic Cavitation. Arch. Ration. Mech. Anal., 212(1), 241–281. https://doi.org/10.1007/s00205-013-0677-x
    27. 591.
      Giesselmann, J., & M�ller, T. (2014). Estimating the Geometric Error of Finite Volume Schemes for Conservation  Laws on Surfaces for generic numerical flux functions. In M. O. J. Fuhrmann & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77).
    28. 590.
      Giesselmann, J., & Tzavaras, A. E. (2014). On cavitation in elastodynamics. In F. Ancona, A. Bressan, P. Marcati, & A. Marson (Eds.), Hyperbolic Problems: Theory, Numerics, Applications (pp. 599–606). AIMS. https://aimsciences.org/books/am/AMVol8.html
    29. 589.
      Giesselmann, J., Makridakis, C., & Pryer, T. (2014). Energy consistent DG methods for the Navier-Stokes-Korteweg system. Math. Comp., 83, 2071-- 2099. http://dx.doi.org/10.1090/S0025-5718-2014-02792-0
    30. 588.
      Giesselmann, J., & M�ller, T. (2014). Geometric error of finite volume schemes for conservation laws on  evolving surfaces. Numer. Math., 128(3), 489�516. https://doi.org/10.1007/s00211-014-0621-5
    31. 587.
      Giesselmann, J., & Pryer, T. (2014). On aposteriori error analysis of DG schemes approximating hyperbolic  conservation laws. In M. O. J. Fuhrmann & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77).
    32. 586.
      Giesselmann, J. (2014). A Relative Entropy Approach to Convergence of a Low Order Approximation  to a Nonlinear Elasticity Model with Viscosity and Capillarity. SIAM J. Math. Anal., 46(5), 3518--3539. https://doi.org/10.1137/140951710
    33. 585.
      Göddeke, D., Komatitsch, D., & Möller, M. (2014). Finite and Spectral Element Methods on Unstructured Grids for Flow  and Wave Propagation Methods. In V. Kindratenko (Ed.), Numerical Computations with GPUs (pp. 183--206). Springer. https://doi.org/10.1007/978-3-319-06548-9_9
    34. 584.
      Haasdonk, B. (2014). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems [{S}im{T}ech Preprint]. IANS, University of Stuttgart, Germany. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    35. 583.
      Haasdonk, B., & Ohlberger, M. (2014). Wenn die Probleme zahlreicher werden: Reduzierte Basis Methoden  f�r effiziente und gesicherte numerische Simulation. GAMM Rundbrief, 2014(1), 6–13.
    36. 582.
      Hahn, B. N. (2014). Reconstruction of dynamic objects with affine deformations in computerized tomography. Journal of Inverse and Ill-Posed Problems, 22(3), 323–339. https://doi.org/10.1515/jip-2012-0094
    37. 581.
      Hahn, B. N. (2014). Efficient algorithms for linear dynamic inverse problems with known motion. Inverse Problems, 30(3), 035008. https://doi.org/10.1088/0266-5611/30/3/035008
    38. 580.
      Hang, H., & Steinwart, I. (2014). Fast Learning from $\alpha$-mixing Observations. J. Multivariate Anal., 127, 184--199. https://doi.org/10.1016/j.jmva.2014.02.012
    39. 579.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2014). Riesz minimal energy problems on C^k-1,1 manifolds. Math. Nachr., 287, 48–69.
    40. 578.
      Hintermüller, M., & Langer, A. (2014). Adaptive Regularization for Parseval Frames in Image Processing. SFB-Report No. 2014-014. http://people.ricam.oeaw.ac.at/a.langer/publications/SFB-Report-2014-014.pdf
    41. 577.
      Hintermüller, M., & Langer, A. (2014). Surrogate Functional Based Subspace Correction Methods for Image  Processing. In Domain Decomposition Methods in Science and Engineering XXI (pp. 829--837). Springer. http://link.springer.com/chapter/10.1007/978-3-319-05789-7_80
    42. 576.
      Kabil, B., & Rohde, C. (2014). The influence of surface tension and configurational forces on the  stability of liquid-vapor interfaces. Nonlinear Analysis: Theory, Methods & Applications, 107(0), 63–75. http://dx.doi.org/10.1016/j.na.2014.04.003
    43. 575.
      Kaulmann, S., Flemisch, B., Haasdonk, B., Lie, K.-A., & Ohlberger, M. (2014). The Localized Reduced Basis Multiscale method for two-phase flows  in porous media. ArXiv.Org. http://arxiv.org/abs/1405.2810v1
    44. 574.
      Kazaz, L. (2014). Black Box Model Order Reduction of Nonlinear Systems with Kernel  and Discrete Empirical Interpolation.
    45. 573.
      Kohls, K., Rösch, A., & Siebert, K. G. (2014). A Posteriori Error Analysis of Optimal Control Problems with Control  Constraints. SIAM J. Control Optim., 52(3), 1832�1861. (30 pages). http://dx.doi.org/10.1137/130909251
    46. 572.
      Kohr, M., Pintea, C., & Wendland, W. L. (2014). Neumann-transmission problems for pseudodifferential Brinkman operators  on Lipschitz domains in compact Riemannian manifolds. Communications in Pure and Applied Analysis, 13, 1–28. https://doi.org/03934/cpaa.2013.13.
    47. 571.
      Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Boundary value problems of Robin type for the Brinkman and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains. J. Math. Fluid Mechanics, 16, 595–830.
    48. 570.
      Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2014). Nonlinear Darcy-Forchheimer-Brinkman system with linear boundary  conditions in Lipschitz domains. In A. G. T. Aliev Azerogly & S. V. Rogosin (Eds.), Complex Analysis and Potential Theory with Applications (pp. 111–124). Cambridge Sci. Publ.
    49. 569.
      Köppel, M., Kröker, I., & Rohde, C. (2014). Stochastic Modeling for Heterogeneous Two-Phase Flow. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII-Methods and Theoretical  Aspects (Vol. 77, pp. 353–361). Springer International Publishing. https://doi.org/10.1007/978-3-319-05684-5_34
    50. 568.
      Maier, I., & Haasdonk, B. (2014). A Dirichlet-Neumann reduced basis method for homogeneous domain  decomposition problems. Applied Numerical Mathematics, 78, 31--48. https://doi.org/10.1016/j.apnum.2013.12.001
    51. 567.
      Müthing, S., Bastian, P., Göddeke, D., & Ribbrock, D. (2014). Node-level performance engineering for an advanced density driven  porous media flow solver. 3rd Workshop on Computational Engineering 2014, Stuttgart, Germany, 109--113.
    52. 566.
      Redeker, M. (2014). Adaptive two-scale models for processes with evolution of microstructures [University of Stuttgart]. http://elib.uni-stuttgart.de/opus/volltexte/2014/9443
    53. 565.
      Rossi, E., & Schleper, V. (2014). Convergence of a numerical scheme for a mixed hyperbolic-parabolic  system in two space dimensions. http://www.mathematik.uni-stuttgart.de/preprints/downloads/2015/2015-003.pdf
    54. 564.
      Rybak, I. (2014). Coupling free flow and porous medium flow systems using sharp interface  and transition region concepts. In J. Fuhrmann, M. Ohlberger, & C. Rohde (Eds.), Finite Volumes for Complex Applications VII - Elliptic, Parabolic  and Hyperbolic Problems, FVCA 7 (Vol. 78, pp. 703--711). Springer. https://doi.org/10.1007/978-3-319-05591-6_70
    55. 563.
      Rybak, I., & Magiera, J. (2014). A multiple-time-step technique for coupled free flow and porous medium  systems. J. Comput. Phys., 272, 327--342. https://doi.org/10.1016/j.jcp.2014.04.036
    56. 562.
      Staehle, M. (2014). Anisotrope Diffusion zur Bildfilterung.
    57. 561.
      Steinwart, I., Pasin, C., Williamson, R., & Zhang, S. (2014). Elicitation and Identification of Properties. In M. F. Balcan & C. Szepesvari (Eds.), JMLR Workshop and Conference Proceedings Volume 35: Proceedings of the 27th Conference on Learning Theory 2014 (pp. 482--526).
    58. 560.
      Wendland, W. L. (2014). Martin Costabel’s version of the trace theorem revisited. Math. Methods Appl. Sci., 37 (13), 1924–1955.
    59. 559.
      Wirtz, D., Sorensen, D. C., & Haasdonk, B. (2014). A Posteriori Error Estimation for DEIM Reduced Nonlinear Dynamical  Systems. SIAM Journal on Scientific Computing, 36(2), A311--A338. https://doi.org/10.1137/120899042
    60. 558.
      Wittwar, D. (2014). Empirische Interpolation and Anwendung zur Numerischen Integration.
  9. 2013

    1. 557.
      Abdulle, A., Barth, A., & Schwab, C. (2013). Multilevel Monte Carlo methods for stochastic elliptic multiscale  PDEs. Multiscale Model. Simul., 11(4), 1033--1070. https://doi.org/10.1137/120894725
    2. 556.
      Amsallem, D., Haasdonk, B., & Rozza, G. (2013). A Conference within a Conference for MOR Researchers. SIAM News, 46(6), 8. http://www.siam.org/news/news.php?id=2089
    3. 555.
      Barth, A., Lang, A., & Schwab, C. (2013). Multilevel Monte Carlo method for parabolic stochastic partial  differential equations. BIT, 53(1), 3--27. https://doi.org/10.1007/s10543-012-0401-5
    4. 554.
      Barth, A., & Lang, A. (2013). L^p and almost sure convergence of a Milstein scheme for stochastic  partial differential equations. Stochastic Process. Appl., 123(5), 1563--1587. https://doi.org/10.1016/j.spa.2013.01.003
    5. 553.
      Bissinger, T. (2013). Verfahren zur Stabilen Kerninterpolation.
    6. 552.
      Curto, C., Degeratu, A., & Itskov, V. (2013). Encoding Binary Neural Codes in Networks of Threshold-Linear Neurons. Neural Computation, 25(11), 2858--2903. https://doi.org/10.1162/neco_a_00504
    7. 551.
      De Marchi, S., & Santin, G. (2013). A new stable basis for radial basis function interpolation. J. Comput. Appl. Math., 253, 1--13. https://doi.org/10.1016/j.cam.2013.03.048
    8. 550.
      Degeratu, A., & Stern, M. (2013). Witten spinors on nonspin manifolds. Comm. Math. Phys., 324(2), 301--350. https://doi.org/10.1007/s00220-013-1804-0
    9. 549.
      Dihlmann, M., & Haasdonk, B. (2013). Certified Nonlinear Parameter Optimization with Reduced Basis Surrogate  Models. PAMM, Proc. Appl. Math. Mech., Special Issue: 84th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Novi Sad 2013; Editors: L. Cvetkovic, T. Atanackovic and  V. Kostic, 13(1), 3–6. https://doi.org/doi: 10.1002/pamm.201310002
    10. 548.
      Dihlmann, M. A., & Haasdonk, B. (2013). Certified PDE-constrained parameter optimization using reduced basis  surrogate models for evolution problems [SimTech Preprint]. University of Stuttgart (The final publication is available at Springer  via http://dx.doi.org/10.1007/s10589-014-9697-1).
    11. 547.
      Düll, W.-P. (2013). Validity of the Cahn-Hilliard approximation for modulations of slightly unstable pattern in the real Ginzburg-Landau equation. Nonlinear Anal. Real World Appl., 14(6), 2204--2211. https://doi.org/10.1016/j.nonrwa.2013.04.007
    12. 546.
      Eberts, M., & Steinwart, I. (2013). Optimal regression rates for SVMs using Gaussian kernels. Electron. J. Stat., 7, 1--42. https://doi.org/10.1214/12-EJS760
    13. 545.
      Eck, Ch., Kutter, M., Sändig, A.-M., & Rohde, Ch. (2013). A two scale model for liquid phase epitaxy with elasticity: An iterative  procedure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93(10–11), 745--761. https://doi.org/10.1002/zamm.201200238
    14. 544.
      Eisenschmidt, K., Rauschenberger, P., Rohde, C., & Weigand, B. (2013). Modelling of freezing processes in super-cooled droplets on sub-grid  scale. ILASS�Europe, 25th European Conference on Liquid Atomization and  Spray Systems.
    15. 543.
      Fechter, S., Jägle, F., & Schleper, V. (2013). Exact and approximate Riemann solvers at phase boundaries. Computers & Fluids, 75, 112--126. https://doi.org/10.1016/j.compfluid.2013.01.024
    16. 542.
      Fehr, J., Fischer, M., Haasdonk, B., & Eberhard, P. (2013). Greedy-based Approximation of Frequency-weighted Gramian Matrices  for Model Reduction in Multibody Dynamics. ZAMM, 93(8), 501–519. https://doi.org/10.1002/zamm.201200014
    17. 541.
      Fericean, D., Grosan, T., Kohr, M., & Wendland, W. L. (2013). Interface boundary value problems of Robin-transmission type for  the Stokes and Brinkman systems on n-dimensional Lipschitz domains:  Applications. Math. Methods Appl. Sci., 36, 1631–1648. https://doi.org/10.1002/mma.2716
    18. 540.
      Fericean, D., & Wendland, W. L. (2013). Layer potential analysis for a Dirichlet-transmission problem in  Lipschitz domains in R^n. ZAMM, 93, 762–776. https://doi.org/10.1002/zamm.20100185
    19. 539.
      Geck, M. (2013). An Introduction to Algebraic Geometry and Algebraic Groups. In Oxford Graduate Texts in Mathematics (Vol. 10, p. ix+307). Oxford University Press.
    20. 538.
      Geck, M., & Iancu, L. (2013). Ordering Lusztig’s families in type Bn. J. Algebr. Comb., 38, 457–489. https://doi.org/DOI 10.1007/s10801-012-0411-z
    21. 537.
      Geck, M., & Malle, G. (2013). Frobenius-Schur indicators of unipotent characters and the twisted involution module. Representation Theory of the American Mathematical Society, 17(5), 180--198. https://doi.org/10.1090/s1088-4165-2013-00430-2
    22. 536.
      Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2013). Towards a complete FEM-based simulation toolkit on GPUs: Unstructured  Grid Finite Element Geometric Multigrid solvers with strong smoothers  based on Sparse Approximate Inverses. Computers & Fluids, 80, 327--332. https://doi.org/10.1016/j.compfluid.2012.01.025
    23. 535.
      Giesselmann, J. (2013). Cavitation and Singular Solutions in Nonlinear Elastodynamics. PAMM 13, 363–364. https://doi.org/10.1002/pamm.201310177
    24. 534.
      Giesselmann, J., Miroshnikov, A., & Tzavaras, A. E. (2013). The problem of dynamic cavitation in nonlinear elasticity. S�minaire Laurent Schwartz � EDP et Applications. http://slsedp.cedram.org/cedram-bin/article/SLSEDP_2012-2013____A14_0.pdf
    25. 533.
      Göddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D., Rajovic, N., Puzovic, N., & Ramirez, A. (2013). Energy efficiency vs. performance of the numerical solution of PDEs:  an application study on a low-power ARM-based cluster. Journal of Computational Physics, 237, 132--150. https://doi.org/10.1016/j.jcp.2012.11.031
    26. 532.
      Göttlich, S., Hoher, S., Schindler, P., Schleper, V., & Verl, A. (2013). Modeling, simulation and validation of material flow on conveyor  belts. Appl. Math. Modell., 38(13), 3295–3313. http://dx.doi.org/10.1016/j.apm.2013.11.039
    27. 531.
      Haasdonk, B., Urban, K., & Wieland, B. (2013). Reduced basis methods for parametrized partial differential equations  with stochastic influences using the Karhunen Loeve expansion. SIAM/ASA J. Unc. Quant., 1, 79–105.
    28. 530.
      Haasdonk, B. (2013). Convergence Rates of the POD--Greedy Method. ESAIM: Mathematical Modelling and Numerical Analysis, 47(3), 859--873. https://doi.org/10.1051/m2an/2012045
    29. 529.
      Hahn, B. N., Louis, A. K., Maisl, M., & Schorr, C. (2013). Combined reconstruction and edge detection in dimensioning. Meas. Sci. Technol, 24(12), 125601. https://doi.org/10.1088/0957-0233/24/12/125601
    30. 528.
      Heine, C.-J., M�ller, C. A., Peter, M. A., & Siebert, K. G. (2013). Multiscale adaptive simulations of concrete carbonation taking into  account the evolution of the microstructure. In C. Hellmich, B. Pichler, & D. Adam (Eds.), Poromechanics: Vol. V (p. 1964�1972). ASCE. http://dx.doi.org/10.1061/9780784412992.232
    31. 527.
      Hintermüller, M., & Langer, A. (2013). Subspace Correction Methods for a Class of Nonsmooth and Nonadditive  Convex Variational Problems with Mixed L\^1/L\^2 Data-Fidelity  in Image Processing. SIAM Journal on Imaging Sciences, 6(4), 2134--2173. http://epubs.siam.org/doi/abs/10.1137/120894130
    32. 526.
      Höllig, K., & Hörner, J. (2013). Approximation and Modeling with B-Splines. (pp. I–XIII, 1–211). SIAM.
    33. 525.
      Kaulmann, S., & Haasdonk, B. (2013). Online Greedy Reduced Basis Construction Using Dictionaries. In J. P. B. Moitinho de Almeida, D, C. Tiago, & N. Parés (Eds.), VI International Conference on Adaptive Modeling and Simulation (ADMOS  2013) (pp. 365--376). http://www.lacan.upc.edu/admos2013/Proceedings.html
    34. 524.
      Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics in low dimensions. Annals of Global Analysis and Geometry, 43(3), 273--286. https://doi.org/10.1007/s10455-012-9345-x
    35. 523.
      Kerr, M. M., & Kollross, A. (2013). Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions. Geometriae Dedicata, 166(1), 269--287. https://doi.org/10.1007/s10711-012-9795-0
    36. 522.
      Kissling, F., & Karlsen, K. H. (2013). On the singular limit of a two-phase flow equation with heterogeneities  and dynamic capillary pressure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, n/a--n/a. https://doi.org/10.1002/zamm.201200141
    37. 521.
      Kissling, F. (2013). Analysis and Numerics for Nonclassical Wave Fronts in Porous Media [Universit�t Stuttgart]. http://www.dr.hut-verlag.de/978-3-8439-0996-9.html
    38. 520.
      Kohr, M., Pintea, C., & Wendland, W. L. (2013). Dirichlet-transmission problems for pseudodifferential Brinkman operators  on Sobolev and Besov spaces associated to Lipschitz domains in Riemannian  manifolds. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift Für Angewandte Mathematik Und Mechanik, 93, 446–458. https://doi.org/10.1002/zamm.201100194
    39. 519.
      Kohr, M., Pintea, C., & Wendland, W. L. (2013). Layer Potential Analysis for Pseudodifferential Matrix Operators  in Lipschitz Domains on Compact Riemannian Manifolds: Applications  to Pseudodifferential Brinkman Operators. International Mathematics Research Notices, 2013 (19), 4499–4588. https://doi.org/10.1093/imnr/run999
    40. 518.
      Kohr, M., Lanza de Cristoforis, M., & Wendland, W. L. (2013). Nonlinear Neumann-Transmission Problems for Stokes and Brinkman Equations  on Euclidean Lipschitz Domains. Potential Analysis, 38, 1123–1171. https://doi.org/10.1007/s.11118-012-9310-0
    41. 517.
      Kollross, A., & Lytchak, A. (2013). Polar actions on symmetric spaces of higher rank. Bulletin of the London Mathematical Society, 45(2), 341–350. https://doi.org/10.1112/blms/bds091
    42. 516.
      Kreplin, D. (2013). Adaptive Reduzierte Basis Methoden f�r Evolutionsprobleme.
    43. 515.
      Kröker, I. (2013). Stochastic models for nonlinear convection-dominated flows. Universit�t Stuttgart.
    44. 514.
      K�ppel, M. (2013). Flow Modelling of Coupled Fracture-Matrix Porous Media Systems with  a Two Mesh Concept [Diplomarbeit]. Institut f�r Wasserbau, Universit�t Stuttgart, Zusammenarbeit mit  Pomdapi INRIA Rocquencourt . Paris, France.
    45. 513.
      Langer, A., Osher, S., & Schönlieb, C.-B. (2013). Bregmanized domain decomposition for image restoration. Journal of Scientific Computing, 54(2–3), 549--576. http://link.springer.com/article/10.1007/s10915-012-9603-x
    46. 512.
      Moutari, S., Herty, M., Klein, A., Oeser, M., Schleper, V., & Steinaur, G. (2013). Modeling road traffic accidents using macroscopic second-order models  of traffic flow. IMA Journal of Applied Mathematics, 78(5), 1087–1108. https://doi.org/doi: 10.1093/imamat/hxs012
    47. 511.
      Nitsch, F. (2013). Stability Analysis of Linear Time-periodic Systems.
    48. 510.
      Ortmann, V. (2013). Empirische Matrixinterpolation.
    49. 509.
      Ostrowski, L. (2013). LQR control for Parametric Systems with Reduced Basis Controllers.
    50. 508.
      Redeker, M., & Eck, C. (2013). A fast and accurate adaptive solution strategy for two-scale models  with continuous inter-scale dependencies. Journal of Computational Physics, 240, 268–283. https://doi.org/10.1016/j.jcp.2012.12.025
    51. 507.
      Rohde, C., Wang, W., & Xie, F. (2013). Decay Rates to Viscous Contact Waves for a 1D Compressible Radiation  Hydrodynamics Model. Mathematical Models and Methods in Applied Sciences, 23(03), 441--469. https://doi.org/10.1142/S0218202512500522
    52. 506.
      Rohde, C., Wang, W., & Xie, F. (2013). Hyperbolic-hyperbolic relaxation limit for a 1D compressible radiation  hydrodynamics model: superposition of rarefaction and contact waves. Communications on Pure and Applied Analysis, 12(5), 2145--2171. https://doi.org/10.3934/cpaa.2013.12.2145
    53. 505.
      Sachs, A. (2013). Proper-Generalized-Decomposition-Methode für elliptische partielle  Differentialgleichungen.
    54. 504.
      Schmidt, A. (2013). Galerkin-Radiosity.
    55. 503.
      Seus, D. (2013). Spektralasymptotiken auf dem Loopgraphen.
    56. 502.
      Simon, A. (2013). Vergleich zwischen dem Galerkinverfahren und dem Verfahren des minimalen  Residuums im Zusammenhang mit der Reduzierte-Basis-Methode.
    57. 501.
      Simon, D. (2013). Algorithmen der gitterfreien Kollokation durch radiale Basisfunktionen.
    58. 500.
      Stein, A. (2013). Limit Pricing als extensives Spiel mit sequentiellen Gleichgewichten [Bachelor Thesis].
    59. 499.
      Steinwart, I. (2013). Some Remarks on the Statistical Analysis of SVMs and Related Methods. In B. Schölkopf, Z. Luo, & V. Vovk (Eds.), Empirical Inference -- Festschrift in Honor of Vladimir N. Vapnik (pp. 25–36). Springer. https://doi.org/10.1007/978-3-642-41136-6
    60. 498.
      Strecker, T. (2013). Simulation and Model Reduction of a Skeletal Muscle Fibre System.
    61. 497.
      Turek, S., & Göddeke, D. (2013). Hardware-oriented Numerics for PDE. In B. Engquist, T. Chan, W. J. Cook, E. Hairer, J. Hastad, A. Iserles, H. P. Langtangen, C. Le Bris, P. L. Lions, C. Lubich, A. J. Majda, J. R. McLaughlin, R. M. Nieminen, J. T. Oden, P. Souganidis, & A. Tveito (Eds.), Encyclopedia of Applied and Computational Mathematics. Springer.
    62. 496.
      Wirtz, D., & Haasdonk, B. (2013). An Improved Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Research Notes on Approximation, 6, 83–100. http://drna.di.univr.it/papers/2013/WirtzHaasdonk.2013.VKO.pdf
    63. 495.
      Wirtz, D., & Haasdonk, B. (2013). A Vectorial Kernel Orthogonal Greedy Algorithm. Dolomites Res. Notes Approx., 6, 83–100. http://drna.padovauniversitypress.it/system/files/papers/WirtzHaasdonk-2013-VKO.pdf
    64. 494.
      Wolf, J.-P., & Ganser, M. (2013). Modelling and Simulation of Lithium-Ion Batteries.
    65. 493.
      Yannou, B., Cluzel, F., & Dihlmann, M. (2013). Evolutionary and interactive sketching tool for innovative car shape  design. Machanics & Industry, 14, 1–22.
  10. 2012

    1. 492.
      Aki, G. L., Daube, J., Dreyer, W., Giesselmann, J., Kr�nkel, M., & Kraus, C. (2012). A diffuse interface model for quasi-incompressible flows : Sharp  interface limits and numerics. ESAIM Proceedings Vol. 38, 54–77. https://doi.org/10.1051/proc/201238004
    2. 491.
      Albrecht, F., Haasdonk, B., Kaulmann, S., & Ohlberger, M. (2012). The Localized Reduced Basis Multiscale Method. In A. Handlovicová, Z. Minarechová, & D. v Sevcovic (Eds.), Algoritmy 2012 (pp. 393--403). Publishing House of STU. http://www.iam.fmph.uniba.sk/algoritmy2012/
    3. 490.
      Appel, C. (2012). Mathematische Methoden zur Bestimmung alterungskritischer Parameter  von Lithium-Ionen Zellen [Diploma thesis].
    4. 489.
      Audusse, E., Berthon, C., Chalons, C., Delestre, O., Goutal, N., Jodeau, M., Sainte-Marie, J., Giesselmann, J., & Sadaka, G. (2012). Sediment transport modelling : Relaxation schemes for Saint-Venant  - Exner and three layer models. ESAIM Proceedings Vol. 38, 78–98. https://doi.org/10.1051/proc/201238005
    5. 488.
      Barth, A., & Lang, A. (2012). Simulation of stochastic partial differential equations using finite  element methods. Stochastics, 84(2–3), 217--231. https://doi.org/10.1080/17442508.2010.523466
    6. 487.
      Barth, A., & Lang, A. (2012). Milstein approximation for advection-diffusion equations driven by  multiplicative noncontinuous martingale noises. Appl. Math. Optim., 66(3), 387--413. https://doi.org/10.1007/s00245-012-9176-y
    7. 486.
      Barth, A., & Lang, A. (2012). Multilevel Monte Carlo method with applications to stochastic  partial differential equations. Int. J. Comput. Math., 89(18), 2479--2498. https://doi.org/10.1080/00207160.2012.701735
    8. 485.
      Bernl�hr, J. (2012). Online Reduzierte Basis Generierung f�r Parameterabh�ngige Elliptische  Partielle Differentialgleichungen [Diploma thesis].
    9. 484.
      Brdar, S., Baldauf, M., Dedner, A., & Klöfkorn, R. (2012). Comparison of dynamical cores for NWP models: comparison of COSMO  and Dune. Theoretical and Computational Fluid Dynamics, 1–20. https://doi.org/10.1007/s00162-012-0264-z
    10. 483.
      Brdar, S., Dedner, A., & Klöfkorn, R. (2012). Compact and stable Discontinuous Galerkin methods for convection-diffusion  problems. SIAM J. Sci. Comput., 34(1), Article 1. https://doi.org/10.1137/100817528
    11. 482.
      Chalons, C., Coquel, F., Engel, P., & Rohde, C. (2012). Fast Relaxation Solvers for Hyperbolic-Elliptic Phase Transition  Problems. SIAM Journal on Scientific Computing, 34(3), A1753--A1776. https://doi.org/10.1137/110848815
    12. 481.
      Cluzel, F., Yannou, B., & Dihlmann, M. (2012). Using Evolutionary Design to Interactively Sketch Car Silhouettes  and Stimulate Designer’s Creativity. Engineering Applications of Artificial Intelligence, 25(7), 1413–1424.
    13. 480.
      Colombo, R. M., & Schleper, V. (2012). Two-phase flows: non-smooth well posedness and the compressible to  incompressible limit. Nonlinear Anal. Real World Appl., 13(5), 2195--2213. https://doi.org/10.1016/j.nonrwa.2012.01.015
    14. 479.
      Coquel, F., Gutnic, M., Helluy, P., Lagoutière, F., Rohde, C., & Seguin, N. (Eds.). (2012). CEMRACS 2011, Multiscale Coupling of Complex Models (Vol. 38). ESAIM Proceedings.
    15. 478.
      Corli, A., & Rohde, C. (2012). Singular limits for a parabolic-elliptic regularization of scalar conservation laws. J. Differential Equations, 253(5), 1399--1421. https://doi.org/10.1016/j.jde.2012.05.006
    16. 477.
      Curto, C., Degeratu, A., & Itskov, V. (2012). Flexible memory networks. Bull. Math. Biol., 74(3), 590--614. https://doi.org/10.1007/s11538-011-9678-9
    17. 476.
      Dedner, A., Klöfkorn, R., Nolte, M., & Ohlberger, M. (2012). Dune-Fem: A General Purpose Discretization Toolbox for Parallel and  Adaptive Scientific Computing. In A. Dedner, B. Flemisch, & R. Klöfkorn (Eds.), Advances in DUNE (pp. 17–31). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28589-9_2
    18. 475.
      Dedner, A., Flemisch, B., & Klöfkorn, R. (2012). Advances in DUNE. Springer.
    19. 474.
      Dihlmann, M., Kaulmann, S., & Haasdonk, B. (2012). Online Reduced Basis Construction Procedure for Model Reduction of  Parametrized Evolution Systems. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling.
    20. 473.
      Dreyer, W., Giesselmann, J., Kraus, C., & Rohde, C. (2012). Asymptotic Analysis for Korteweg Models. Interfaces Free Bound., 14, 105–143. http://www.ems-ph.org/journals/show_pdf.php?issn=1463-9963&vol=14&iss=1&rank=4
    21. 472.
      Drohmann, M., Haasdonk, B., & Ohlberger, M. (2012). Reduced Basis Model Reduction of Parametrized Two-phase Flow in Porous  Media. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling. https://doi.org/10.3182/20120215-3-AT-3016.00128
    22. 471.
      Drohmann, M., Haasdonk, B., & Ohlberger, M. (2012). Reduced Basis Approximation for Nonlinear Parametrized Evolution  Equations based on Empirical Operator Interpolation. SIAM J. Sci. Comput., 34(2), A937–A969. https://doi.org/10.1137/10081157X
    23. 470.
      Drohmann, M., Haasdonk, B., & Ohlberger, M. (2012). A Software Framework for Reduced Basis Methods Using DUNE-RB and  RBMATLAB. In A. Dedner, B. Flemisch, & R. Klöfkorn (Eds.), Advances in DUNE: Proceedings of the DUNE User Meeting, Held in October  6th-8th 2010 in Stuttgart, Germany. Springer. http://www.springer.com/engineering/computational+intelligence+and+complexity/book/978-3-642-28588-2
    24. 469.
      Düll, W.-P. (2012). Validity of the Korteweg-de Vries approximation for the two-dimensional water wave problem in the arc length formulation. Comm. Pure Appl. Math., 65(3), 381--429. https://doi.org/10.1002/cpa.21381
    25. 468.
      Düll, W.-P. (2012). A waiting time phenomenon for modulations of pattern in reaction-diffusion systems. Z. Angew. Math. Phys., 63(1), 1--23. https://doi.org/10.1007/s00033-011-0159-7
    26. 467.
      Engel, P., & Rohde, C. (2012). On the Space-Time Expansion Discontinuous Galerkin Method. In T. Li & S. Jiang (Eds.), Hyperbolic Problems: Theory, Numerics and Applications (pp. 406--414).
    27. 466.
      Feistauer, M., & Sändig, A.-M. (2012). Graded mesh refinement and error estimates of higher order for DGFE  solutions of elliptic boundary value problems in polygons. Numerical Methods for Partial Differential Equations, 28(4), 1124--1151. https://doi.org/10.1002/num.20668
    28. 465.
      Fornasier, M., Kim, Y., Langer, A., & Sch�nlieb, C.-B. (2012). Wavelet Decomposition Method for L\_2//TV-Image Deblurring. SIAM Journal on Imaging Sciences, 5(3), 857--885. http://epubs.siam.org/doi/abs/10.1137/100819801
    29. 464.
      Garmatter, D. (2012). Reduzierte Basis Methoden f�r lineare Evolutionsprobleme am Beispiel  von European Option Pricing [Diploma thesis].
    30. 463.
      Geck, M. (2012). Remarks on modular representations of finite groups of Lie type in non-defining characteristic. In Contemporary Mathematics (Vol. 565, pp. 71--80). American Mathematical Society. https://doi.org/10.1090/conm/565/11160
    31. 462.
      Geck, M. (2012). On the Kazhdan–Lusztig order on cells and families. Commentarii Mathematici Helvetici, 87(4), 905--927. https://doi.org/10.4171/cmh/273
    32. 461.
      Geck, M. (2012). PyCox: computing with (finite) Coxeter groups and Iwahori–Hecke algebras. LMS Journal of Computation and Mathematics, 15, 231–256. https://doi.org/DOI: 10.1112/S1461157012001064
    33. 460.
      Giesselmann, J., & Wiebe, M. (2012). Finite volume schemes for balance laws on time-dependent surfaces. In E. Vasquez-Cendon, A. Hidalgo, P. Garcia Navarro, & L. Cea (Eds.), Numerical Methods for Hyperbolic Equations. Taylor and Francis Group.
    34. 459.
      Giesselmann, J. (2012). Sharp interface limits for Korteweg Models. In T. Li & S. Jiang (Eds.), Hyperbolic Problems: Theory, Numerics, Applications (Vol. 2, pp. 422–430).
    35. 458.
      Haasdonk, B., Salomon, J., & Wohlmuth, B. (2012). A Reduced Basis Method for the Simulation of American Options. ENUMATH 2011 Proceedings. http://arxiv.org/pdf/1201.3289v1
    36. 457.
      Haasdonk, B., Salomon, J., & Wohlmuth, B. (2012). A Reduced Basis Method for Parametrized Variational Inequalities [{S}im{T}ech Preprint]. University of Stuttgart.
    37. 456.
      Hahn, B. N. (2012). Reconstruction of dynamic objects in computerized tomography. Oberwolfach Reports, 9, 3069-3071B.
    38. 455.
      Hahn, B. N., & Louis, A. K. (2012). Reconstruction in the three-dimensional parallel scanning geometry with application in synchrotronbased x-ray tomography. Inverse Problems, 28(4), 045013. https://doi.org/10.1088/0266-5611/28/4/045013
    39. 454.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2012). On Riesz minimal energy problems. J. Math. Anal. Appl., 393(2), 397--412. https://doi.org/10.1016/j.jmaa.2012.04.019
    40. 453.
      Hoher, S., Schindler, P., G?ttlich, S., Schleper, V., & Röck, S. (2012). System Dynamic Models and Real-time Simulation of Complex Material  Flow Systems. In H. A. ElMaraghy (Ed.), Enabling Manufacturing Competitiveness and Economic Sustainability (pp. 316–321). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23860-4_52
    41. 452.
      H�cker, A. (2012). A mathematical model for mesenchymal and chemosensitive cell dynamics. Journal of Mathematical Biology, 64, 361–401. https://doi.org/10.1007/s00285-011-0415-7
    42. 451.
      Jackson, A. S., Rybak, I., Helmig, R., Gray, W. G., & Miller, C. T. (2012). Thermodynamically constrained averaging theory approach for modeling  flow and transport phenomena in porous medium systems: 9. Transition  region models. Adv. Water Res., 42, 71--90. https://doi.org/10.1016/j.advwatres.2012.01.006
    43. 450.
      Jaegle, F., Rohde, C., & Zeiler, C. (2012). A multiscale method for compressible liquid-vapor flow with surface  tension. ESAIM: Proc., 38, 387–408. https://doi.org/10.1051/proc/201238022
    44. 449.
      Kelkel, J., & Surulescu, C. (2012). A Multiscale Approach to Cell Migration in Tissue Networks. Mathematical Models and Methods in Applied Sciences, 22(03), 1150017. https://doi.org/10.1142/S0218202511500175
    45. 448.
      Kissling, F., & Rohde, C. (2012). Numerical Simulation of Nonclassical Shock Waves in Porous  Media with a Heterogeneous Multiscale Method. In T. Li & S. Jiang (Eds.), Hyperbolic Problems: Theory, Numerics and Applications (pp. 469--478).
    46. 447.
      Kissling, F., Helmig, R., & Rohde, C. (2012). Simulation of Infiltration Processes in the Unsaturated Zone  Using a Multi-Scale Approach. Vadose Zone J., 11(3). https://doi.org/10.2136/vzj2011.0193
    47. 446.
      Klöfkorn, R. (2012). Efficient Matrix-Free Implementation of Discontinuous Galerkin Methods  for Compressible Flow Problems. In A. H. et al. (Ed.), Proceedings of the ALGORITMY 2012 (pp. 11–21).
    48. 445.
      Klöfkorn, R., & Nolte, M. (2012). Performance Pitfalls in the Dune Grid Interface. In A. Dedner, B. Flemisch, & R. Klöfkorn (Eds.), Advances in DUNE (pp. 45–58). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-28589-9_4
    49. 444.
      Kohls, K., Rösch, A., & Siebert, K. G. (2012). A Posteriori Error Estimators for Control Constrained Optimal Control  Problems. In L. et al. (Ed.), Constrained Optimiziation and Optimal Control for Partial Differential  Equations (Vol. 160, pp. 431–443). Springer. https://doi.org/10.1007/978-3-0348-0133-1_22
    50. 443.
      Kohr, M., Pintea, C., & Wendland, W. L. (2012). Potential analysis for pseudodifferential matrix operators in Lipschitz  domains on Riemannian manifolds: Applications to Brinkman operators. Mathematica, 54, 159–176.
    51. 442.
      Kohr, M., Raja Sekhar, G. P., Ului, E. M., & Wendland, W. L. (2012). Two-dimensional Stokes-Brinkman cell model---a boundary integral  formulation. Appl. Anal., 91(2), 251--275. https://doi.org/10.1080/00036811.2011.614604
    52. 441.
      Kreuzer, C., Möller, C., Schmidt, A., & Siebert, K. G. (2012). Design and Convergence Analysis for an Adaptive Discretization of  the Heat Equation. IMA Journal of Numerical Analysis. https://doi.org/10.1093/imanum/drr026
    53. 440.
      Kröker, I., & Rohde, C. (2012). Finite volume schemes for hyperbolic balance laws with multiplicative  noise. Appl. Numer. Math., 62(4), 441--456. https://doi.org/10.1016/j.apnum.2011.01.011
    54. 439.
      Langer, U., Schanz, M., Steinbach, O., & Wendland, W. L. (Eds.). (2012). Fast Boundary Element Methods on Engineering and Industrial Applications (p. 269). Springer.
    55. 438.
      Richter, T., Rudlof, S., Adjibadji, B., Bernl�hr, H., Gr�ninger, C., Munz, C.-D., Stock, A., Rohde, C., & Helmig, R. (2012). ViPLab: a virtual programming laboratory for mathematics and engineering. Interactive Technology and Smart Education, 9, 246–262. https://doi.org/10.1108/17415651211284039
    56. 437.
      Rohde, C., & Xie, F. (2012). Global existence and blowup phenomenon for a 1D radiation hydrodynamics  model problem. Math. Methods Appl. Sci., 35(5), 564--573. https://doi.org/10.1002/mma.1593
    57. 436.
      Ruiner, T., Fehr, J., Haasdonk, B., & Eberhard, P. (2012). A-posteriori error estimation for second order mechanical systems. Acta Mechanica Sinica, 28(3), 854–862.
    58. 435.
      Schleper, V. (2012). On the coupling of compressible and incompressible fluids. In E. Vazquez-Cendon, A. Hidalgo, P. Garcia-Navarro, & L. Cea (Eds.), Numerical Methods for Hyperbolic Equations. Taylor & Francis Group. http://www.taylorandfrancis.com/books/details/9780415621502/
    59. 434.
      Schleper, V., Gugat, M., Herty, M., Klar, A., & Leugering, G. (2012). Well-posedness of networked hyperbolic systems of balance laws. In G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, & S. Ulbrich (Eds.), Constrained Optimization and Optimal Control for Partial Differential  Equations (Vol. 160). Birkh�user.
    60. 433.
      Siebert, K. G. (2012). Mathematically Founded Design of Adaptive Finite Element Software. In Multiscale and Adaptivity: Modelling, Numerics and Applications (Vol. 2040, pp. 227–309). Springer. https://doi.org/10.1007/978-3-642-24079-9_4
    61. 432.
      Sriperumbudur, B. K., & Steinwart, I. (2012). Consistency and Rates for Clustering with DBSCAN. In N. Lawrence & M. Girolami (Eds.), JMLR Workshop and Conference Proceedings Volume 22: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics 2012 (pp. 1090–1098).
    62. 431.
      Steinhorst, P., & Sändig, A.-M. (2012). Reciprocity principle for the detection of planar cracks in anisotropic  elastic material. Inverse Problems, 28(8), 085010. http://stacks.iop.org/0266-5611/28/i=8/a=085010
    63. 430.
      Steinwart, I., & Scovel, C. (2012). Mercer’s Theorem on General Domains: on the Interaction between Measures, Kernels, and RKHSs. Constr. Approx., 35, 363--417. https://doi.org/10.1007/s00365-012-9153-3
    64. 429.
      Waldherr, S., & Haasdonk, B. (2012). Efficient Parametric Analysis of the Chemical Master Equation through  Model Order Reduction. BMC Systems Biology, 6, 81. http://www.biomedcentral.com/1752-0509/6/81
    65. 428.
      Winkel, C., Neumann, S., Surulescu, C., & Scheurich, P. (2012). A minimal mathematical model for the initial molecular interactions  of death receptor signalling. Math. Biosci. Eng., 9, 663–683. https://doi.org/10.3934/mbe.2012.9.663
    66. 427.
      Wirtz, D., & Haasdonk, B. (2012). An Improved Vectorial Kernel Orthogonal Greedy Algorithm [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=742
    67. 426.
      Wirtz, D., Sorensen, D. C., & Haasdonk, B. (2012). A-posteriori error estimation for DEIM reduced nonlinear dynamical  systems [SimTech Preprint]. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=733
    68. 425.
      Wirtz, D., Karajan, N., & Haasdonk, B. (2012). Model order reduction of multiscale models using kernel methods [Preprint]. SRC SimTech, University of Stuttgart, Germany.
    69. 424.
      Wirtz, D., & Haasdonk, B. (2012). Efficient a-posteriori error estimation for nonlinear kernel-based  reduced systems. Systems and Control Letters, 61(1), 203–211. https://doi.org/10.1016/j.sysconle.2011.10.012
    70. 423.
      Wirtz, D., & Haasdonk, B. (2012). A-posteriori error estimation for parameterized kernel-based systems. Proc. MATHMOD 2012 - 7th Vienna International Conference on Mathematical Modelling. http://www.ifac-papersonline.net/
  11. 2011

    1. 422.
      Barth, A., Schwab, C., & Zollinger, N. (2011). Multi-level Monte Carlo finite element method for elliptic PDEs  with stochastic coefficients. Numer. Math., 119(1), 123--161. https://doi.org/10.1007/s00211-011-0377-0
    2. 421.
      Barth, A., Benth, F. E., & Potthoff, J. (2011). Hedging of spatial temperature risk with market-traded futures. Appl. Math. Finance, 18(2), 93--117. https://doi.org/10.1080/13504861003722385
    3. 420.
      Brdar, S., Dedner, A., & Klöfkorn, R. (2011). Compact and Stable Discontinuous Galerkin Methods with Application  to Atmospheric Flows. In I. K. et al. (Ed.), Computational Methods in Science and Engineering: Proceedings of  the Workshop SimLabs@KIT (pp. 109–116). KIT Scientific Publishing. https://doi.org/10.5445/KSP/1000023323
    4. 419.
      Brdar, S., Dedner, A., Klöfkorn, R., Kränkel, M., & Kröner, D. (2011). Simulation of Geophysical Problems with DUNE-FEM. In E. K. et al. (Ed.), Computational Science and High Performance Computing IV (Vol. 115, pp. 93–106). Springer. https://doi.org/10.1007/978-3-642-17770-5_8
    5. 418.
      B�rger, R., Kr�ker, I., & Rohde, C. (2011). Uncertainty quantification for a clarifier-thickener model with random  feed. In Finite volumes for complex applications. VI. Problems & perspectives.  Volume 1, 2 (Vol. 4, pp. 195--203). Springer. https://doi.org/10.1007/978-3-642-20671-9_21
    6. 417.
      Dedner, A., Fein, M., Klöfkorn, R., Kröner, D., Lebiedz, D., Siehr, J., & Unger, J. (2011). On the computation of slow manifolds in chemical kinetics via optimization  and their use as reduced models in reactive flow systems.
    7. 416.
      Dedner, A., & Klöfkorn, R. (2011). A Generic Stabilization Approach for Higher Order Discontinuous  Galerkin Methods for Convection Dominated Problems. J. Sci. Comput., 47(3), 365–388. https://doi.org/10.1007/s10915-010-9448-0
    8. 415.
      Dihlmann, M., Drohmann, M., & Haasdonk, B. (2011). Model Reduction of Parametrized Evolution Problems using the Reduced  basis Method with Adaptive Time-Partitioning. Proc. of ADMOS 2011.
    9. 414.
      Drohmann, M., Haasdonk, B., & Ohlberger, M. (2011). Adaptive Reduced Basis Methods for Nonlinear Convection-Diffusion  Equations. In Proc. FVCA6.
    10. 413.
      Díaz-Ramos, J. C., & Kollross, A. (2011). Polar actions with a fixed point. Differential Geometry and Its Applications, 29(1), 20–25. https://doi.org/10.1016/j.difgeo.2011.01.001
    11. 412.
      Düll, W.-P., Schneider, G., & Uecker, H. (2011). Local existence and uniqueness of solutions of the weak electrolyte model describing electro-convection in nematic liquid crystals. ZAMM Z. Angew. Math. Mech., 91(3), 247--256. https://doi.org/10.1002/zamm.201000038
    12. 411.
      Eberts, M., & Steinwart, I. (2011). Optimal learning rates for least squares SVMs using  Gaussian kernels. In J. Shawe-Taylor, R. S. Zemel, P. Bartlett, F. C. N. Pereira, & K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems 24 (pp. 1539--1547).
    13. 410.
      Eck, C., & Kutter, M. (2011). On the solvability of a two scale model for liquid phase epitaxy  with elasticity. Bericht 2011/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart. http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-001.pdf
    14. 409.
      Eymard, R., Henry, G., Herbin, R., Hubert, F., Klöfkorn, R., & Manzini, G. (2011). 3D Benchmark on Discretization Schemes for Anisotropic Diffusion  Problems on General Grids. In J. Fort, J. Fürst, J. Halama, R. Herbin, & F. Hubert (Eds.), Finite Volumes for Complex Applications VI Problems & Perspectives (Vol. 4, pp. 895–930). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20671-9_89
    15. 408.
      Geck, M., & Jacon, N. (2011). Representations of Hecke algebras at roots of unity. In Algebra and Applications (Vol. 15, p. xii+401). Springer-Verlag London. https://doi.org/10.1007/978-0-85729-716-7
    16. 407.
      Geck, M. (2011). Some applications of CHEVIE to the theory of algebraic groups. Carpathian J. Math., 27(1), 64–94. https://www.carpathian.cunbm.utcluj.ro/article/some-applications-of-chevie-to-the-theory-of-algebraic-groups/
    17. 406.
      Geck, M. (2011). On Iwahori-Hecke Algebras with Unequal Parameters and Lusztig’s Isomorphism Theorem. Pure and Applied Mathematics Quarterly, 7(3), 587--620. https://doi.org/10.4310/pamq.2011.v7.n3.a5
    18. 405.
      Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2011). Towards a complete FEM-based simulation toolkit on GPUs: Geometric  multigrid solvers. 23rd International Conference on Parallel Computational Fluid Dynamics (ParCFD’11).
    19. 404.
      Geveler, M., Ribbrock, D., Mallach, S., Göddeke, D., & Turek, S. (2011). A Simulation Suite for Lattice-Boltzmann based Real-Time CFD  Applications Exploiting Multi-Level Parallelism on modern Multi-  and Many-Core Architectures. Journal of Computational Science, 2, 113--123. https://doi.org/10.1016/j.jocs.2011.01.008
    20. 403.
      Geveler, M., Ribbrock, D., Göddeke, D., Zajac, P., & Turek, S. (2011). Efficient Finite Element Geometric Multigrid Solvers for Unstructured  Grids on GPUs. In P. Iványi & B. H. V. Topping (Eds.), Second International Conference on Parallel, Distributed, Grid and  Cloud Computing for Engineering. https://doi.org/10.4203/ccp.95.22
    21. 402.
      Giesselmann, J. (2011). Modelling and Analysis for Curvature Driven Partial Differential  Equations. Universit�t Stuttgart.
    22. 401.
      Gugat, M., Herty, M., & Schleper, V. (2011). Flow control in gas networks: exact controllability to a given demand. Math. Methods Appl. Sci., 34(7), 745--757. https://doi.org/10.1002/mma.1394
    23. 400.
      Göddeke, D., & Strzodka, R. (2011). Cyclic Reduction Tridiagonal Solvers on GPUs Applied to Mixed Precision  Multigrid. IEEE Transactions on Parallel and Distributed Systems, 22(1), 22--32. https://doi.org/10.1109/TPDS.2010.61
    24. 399.
      Haasdonk, B., Dihlmann, M., & Ohlberger, M. (2011). A Training Set and Multiple Basis Generation Approach for Parametrized  Model Reduction Based on Adaptive Grids in Parameter Space. Mathematical and Computer Modelling of Dynamical Systems, 17, 423--442.
    25. 398.
      Haasdonk, B. (2011). Reduzierte-Basis-Methoden, Vorlesungsskript SS 2011 (IANS-Report No. 2011–004; Issues 2011–004). University of Stuttgart.
    26. 397.
      Haasdonk, B., & Lohmann, B. (2011). Special Issue on “‘Model Order Reduction of Parametrized Problems.’” Mathematical and Computer Modelling of Dynamical Systems, 17(4), 295--296. https://doi.org/10.1080/13873954.2011.547661
    27. 396.
      Haasdonk, B., & Ohlberger, M. (2011). Efficient reduced models and a posteriori error estimation  for parametrized dynamical systems by offline/online decomposition. Math. Comput. Model. Dyn. Syst., 17(2), 145--161. https://doi.org/10.1080/13873954.2010.514703
    28. 395.
      Hemmat, A. A., Rivaz, A., & Minbashian, H. (2011). Construction of Biorthogonal Wavelets by the Aid of the Perfect Reconstruction  FIR Filters. Proceedings of the 19th Seminar on Mathematical Analysis and Its Applications.
    29. 394.
      Herty, M., & Schleper, V. (2011). Traffic flow with unobservant drivers. ZAMM Z. Angew. Math. Mech., 91(10), 763--776. https://doi.org/10.1002/zamm.201000122
    30. 393.
      Herty, M., & Schleper, V. (2011). Time discretizations for numerical optimisation of hyperbolic problems. Appl. Math. Comput., 218(1), 183--194. https://doi.org/10.1016/j.amc.2011.05.116
    31. 392.
      Jung, N., Patera, A. T., Haasdonk, B., & Lohmann, B. (2011). Model Order Reduction and Error Estimation with an Application to  the Parameter-Dependent Eddy Current Equation. Mathematical and Computer Modelling of Dynamical Systems, 17(4), 561--582. https://doi.org/10.1080/13873954.2011.582120
    32. 391.
      Kabil, B. (2011). On the asymptotics of solutions to resonator equations. Hyperbolic Problems: Theory, Numerics, Applications, 8, 373–380. https://aimsciences.org/books/am/AMVol8.html
    33. 390.
      Kaulmann, S., Ohlberger, M., & Haasdonk, B. (2011). A new local reduced basis discontinuous Galerkin approach for heterogeneous  multiscale problems. Comptes Rendus Mathematique, 349(23–24), 1233--1238. https://doi.org/10.1016/j.crma.2011.10.024
    34. 389.
      Kaulmann, S. (2011). A Localized Reduced Basis Approach for Heterogenous Multiscale Problems. Westfälische Wilhelms Universität Münster.
    35. 388.
      Kelkel, J., & Surulescu, C. (2011). On a stochastic reaction--diffusion system modeling pattern formation  on seashells. Mathematical Biosciences and Engineering, 8(2), 575--589. https://doi.org/10.3934/mbe.2011.8.575
    36. 387.
      Kelkel, J. (2011). A Multiscale Approach to Cell Migration in Tissue Networks. Universität Stuttgart.
    37. 386.
      Klöfkorn, R. (2011). Benchmark 3D: The Compact Discontinuous Galerkin 2 Scheme. In J. Fort, J. Fürst, J. Halama, R. Herbin, & F. Hubert (Eds.), Finite Volumes for Complex Applications VI Problems & Perspectives (Vol. 4, pp. 1023–1033). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-20671-9_100
    38. 385.
      Kohr, M., Pintea, C., & Wendland, W. L. (2011). Dirichlet-transmission problems for general Brinkman operators  on Lipschitz and $C^1$ domains in Riemannian manifolds. Discrete Contin. Dyn. Syst. Ser. B, 15(4), 999--1018. https://doi.org/10.3934/dcdsb.2011.15.999
    39. 384.
      Kollross, A., & Samiou, E. (2011). Manifolds with large isotropy groups. Advances in Geometry, 11, 89–102. https://doi.org/10.1515/advgeom.2010.040
    40. 383.
      Kollross, A. (2011). Duality of Symmetric Spaces and Polar Actions. Journal of Lie Theory, 21(4), 961–986. https://www.heldermann.de/JLT/JLT21/JLT214/jlt21037.htm
    41. 382.
      Kreuzer, C., & Siebert, K. G. (2011). Decay Rates of Adaptive Finite Elements with Dörfler Marking. Numerische Mathematik, 117(4), 679–716. https://doi.org/10.1007/s00211-010-0324-5
    42. 381.
      Kutter, M., & Sändig, A.-M. (2011). Modeling of ferroelectric hysteresis as variational inequality. GAMM-Mitteilungen, 34(1), 84--89. https://doi.org/10.1002/gamm.201110013
    43. 380.
      Lalegname, A., & Sändig, A. (2011). Wave-crack interaction in finite elastic bodies. International Journal of Fracture, 172(2), 131--149. https://doi.org/10.1007/s10704-011-9650-6
    44. 379.
      Lalegname, A., & Sändig, A.-M. (2011). Wave-crack interaction in ?nite elastic bodies. Bericht 2011/002 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart. http://preprints.ians.uni-stuttgart.de/downloads/2011/2011-002.pdf
    45. 378.
      Maier. (2011). Ein iteratives Gebietszerlegungsverfahren f�r die Reduzierte-Basis-Methode [Diploma thesis].
    46. 377.
      Mel, Nakvasiuk, Iu. A., & Wendland, W. L. (2011). Homogenization of the Signorini boundary-value problem in a thick  junction and boundary integral equations for the homogenized problem. Math. Methods Appl. Sci., 34(7), 758--775. https://doi.org/10.1002/mma.1395
    47. 376.
      Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., & Wohlmuth, B. (2011). A coupling concept for two-phase compositional porous-medium and  single-phase compositional free flow. Water Resour. Res., 47, W10522. https://doi.org/10.1029/2011WR010685
    48. 375.
      Richter, Th., Rudlof, S., Adjibadji, B., Berlohr, H., Gruninger, Ch., Munz, C.-D., Rohde, Ch., & Helmig, R. (2011). ViPLab - A Virtual Programming Laboratory for Mathematics and Engineering. Proceedings of the 2011 IEEE International Symposium on Multimedia, 537--542. https://doi.org/10.1109/ISM.2011.95
    49. 374.
      Ruiner, T. (2011). A-posteriori Fehlersch�tzer f�r Reduzierte Mechanische Systeme zweiter  Ordnung [Diploma thesis].
    50. 373.
      Rössle, A., & Sändig, A.-M. (2011). Corner Singularities and Regularity Results for the Reissner/Mindlin  Plate Model. Journal of Elasticity, 103(2), 113--135. https://doi.org/10.1007/s10659-010-9258-5
    51. 372.
      Santin, G., Sommariva, A., & Vianello, M. (2011). An algebraic cubature formula on curvilinear polygons. Applied Mathematics and Computation, 217(24), 10003--10015. https://doi.org/10.1016/j.amc.2011.04.071
    52. 371.
      Schuster, D. (2011). SVD-basierte Modellreduktion f�r Elastische Mehrk�rpersysteme [Diploma thesis].
    53. 370.
      Siebert, K. G. (2011). A Convergence Proof for Adaptive Finite Elements without Lower Bound. IMA Journal of Numerical Analysis, 31(3), 947–970. http://imajna.oxfordjournals.org/content/31/3/947.abstract
    54. 369.
      Steinwart, I., & Christmann, A. (2011). Estimating Conditional Quantiles with the Help of the Pinball Loss. Bernoulli, 17, 211--225. https://doi.org/10.3150/10-BEJ267
    55. 368.
      Steinwart, I., Hush, D., & Scovel, C. (2011). Training SVMs without offset. J. Mach. Learn. Res., 12, 141--202.
    56. 367.
      Steinwart, I. (2011). Adaptive Density Level Set Clustering. In S. Kakade & U. von Luxburg (Eds.), JMLR Workshop and Conference Proceedings Volume 19: Proceedings of the 24th Conference on Learning Theory 2011 (pp. 703--738).
    57. 366.
      Wendland, W. L. (2011). Boundary element domain decomposition with Trefftz elements and Levi  fuctions. 19th Intern. Conf. on Computer Methods in Mechanics.
    58. 365.
      Winkel, C., Neumann, S., Surulescu, C., & Scheurich, P. (2011). A minimal mathematical model for the initial molecular interactions  of death receptor signalling. SRC SimTech. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=486
    59. 364.
      Zeeb, O. (2011). Reduzierte Basis Modelle f�r Formoptimierung unter Verwendung des  SQP-Algorithmus [Diploma thesis].
  12. 2010

    1. 363.
      Barth, A. (2010). A finite element method for martingale-driven stochastic partial  differential equations. Commun. Stoch. Anal., 4(3), 355--375. https://www.math.lsu.edu/cosa/4-3-04209.pdf
    2. 362.
      Bonnafe, C., Geck, M., Iancu, L., & Lam, T. (2010). On domino insertion and Kazhdan--Lusztig cells in type Bn. Representation Theory of Algebraic Groups and Quantum Groups (Nagoya, 2006; Eds. A. Gyoja et Al.), 284, 33--54. https://doi.org/10.1007/978-0-8176-4697-4_3
    3. 361.
      Brdar, S., Dedner, A., & Klöfkorn, R. (2010). CDG Method for Navier-Stokes Equations. In Proc. of the 13th International Conference on Hyperbolic Problems:  Theory, Numerics, Applications.
    4. 360.
      Christmann, A., & Steinwart, I. (2010). Universal Kernels on Non-Standard Input Spaces. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 23 (pp. 406--414).
    5. 359.
      Deckelnick, K., Dziuk, G., Elliott, C. M., & Heine, C.-J. (2010). An $h$-narrow band finite-element method for elliptic equations on  implicit surfaces. IMA J. Numer. Anal., 30(2), 351–376.
    6. 358.
      Dedner, A., Klöfkorn, R., Nolte, M., & Ohlberger, M. (2010). A Generic Interface for Parallel and Adaptive Scientific Computing:  Abstraction Principles and the DUNE-FEM Module. Computing, 90(3--4), 165--196. http://www.springerlink.com/content/vj103u6079861001/
    7. 357.
      Dedner, A., Klöfkorn, R., & Kröner, D. (2010). Higher Order Adaptive and Parallel Simulations Including Dynamic  Load Balancing with the Software Package DUNE. In W. N. et al. (Ed.), High Performance Computing in Science and Engineering ’09 (pp. 229–239). Springer. https://doi.org/10.1007/978-3-642-04665-0_16
    8. 356.
      Degeratu, A., & Wendland, K. (2010). Friendly giant meets pointlike instantons? On a new conjecture by John McKay. In Moonshine: the first quarter century and beyond (Vol. 372, pp. 55--127). Cambridge Univ. Press, Cambridge.
    9. 355.
      Feistauer, M., & Sändig, A.-M. (2010). Graded Mesh Re?nement and Error Estimates of Higher Order for DGFE-solutions  of Elliptic Boundary Value Problems in Polygons. Bericht 2010/005 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart. http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-005.pdf
    10. 354.
      Fornasier, M., Langer, A., & Schönlieb, C.-B. (2010). A convergent overlapping domain decomposition method for total variation  minimization. Numerische Mathematik, 116(4), 645--685. http://link.springer.com/article/10.1007/s00211-010-0314-7
    11. 353.
      Geveler, M., Ribbrock, D., Göddeke, D., & Turek, S. (2010). Lattice-Boltzmann Simulation of the Shallow-Water Equations with  Fluid-Structure Interaction on Multi- and Manycore Processors. In R. Keller, D. Kramer, & J.-P. Weiß (Eds.), Facing the Multicore Challenge (Vol. 6310, pp. 92--104). Springer. https://doi.org/10.1007/978-3-642-16233-6_11
    12. 352.
      Göddeke, D., & Strzodka, R. (2010). Mixed Precision GPU-Multigrid Solvers with Strong Smoothers. In J. Kurzak, D. A. Bader, & J. J. Dongarra (Eds.), Scientific Computing with Multicore and Accelerators (pp. 131--147). CRC Press. https://doi.org/10.1201/b10376-11
    13. 351.
      Göddeke, D. (2010). Fast and Accurate Finite-Element Multigrid Solvers for PDE Simulations  on GPU Clusters [Technische Universität Dortmund, Fakultät für Mathematik]. http://hdl.handle.net/2003/27243
    14. 350.
      Haasdonk, B. (2010). Effiziente und Gesicherte Modellreduktion f�r Parametrisierte Dynamische  Systeme. At - Automatisierungstechnik, 58(8), 468--474.
    15. 349.
      Hemmat, A. A., Rivaz, A., & Minbashian, H. (2010). Approximating Functions by Using Daubechies Wavelets and comparison  with Other Approximation Methods. Proceedings of the 4th Iranian Conference on Applied Mathematics.
    16. 348.
      Hemmat, A. A., Rivaz, A., & Minbashian, H. (2010). Numerical Solution of Linear Fredholm Integral Equations by Using  Daubechies Wavelets. Proceedings of the 23rd International Conference of the Jangjeon Mathematical Society.
    17. 347.
      Herty, M., Mohring, J., & Sachers, V. (2010). A new model for gas flow in pipe networks. Math. Methods Appl. Sci., 33(7), 845--855. https://doi.org/10.1002/mma.1197
    18. 346.
      Kargar, M., Minbashian, H., & Mashinchi, M. (2010). Solving Delay Differential Equation with Fuzzy Coefficients. Proceedings of the 10th Iranian Conference on Fuzzy Systems.
    19. 345.
      Kargar, M., Minbashian, H., & Yaghoobi., M. A. (2010). Fuzzy Multicriteria Convex Quadratic Programming Model for Data Classification. Proceedings of the 4th International Conference on Fuzzy Information & Engineering (ICFIE).
    20. 344.
      Kelkel, J., & Surulescu, C. (2010). On a stochastic reaction--diffusion system modeling pattern formation  on seashells. Journal of Mathematical Biology, 60(6), 765--796. https://doi.org/10.1007/s00285-009-0284-5
    21. 343.
      Kissling, F., & Rohde, C. (2010). The Computation of Nonclassical Shock Waves with a Heterogeneous  Multiscale Method. Netw. Heterog. Media, 5(3), 661--674. https://doi.org/10.3934/nhm.2010.5.661
    22. 342.
      Kohls, K., Rösch, A., & Siebert, K. G. (2010). Analysis of Adaptive Finite Elements for Constrained Optimal Control  Problems (pp. 308–311). https://doi.org/10.4171/OWR/2010/07
    23. 341.
      Komatitsch, D., Michéa, Erlebacher, G., & Göddeke, D. (2010). Running 3D finite-difference or spectral-element wave propagation  codes 25x to 50x faster using a GPU cluster. 72nd European Association of Geoscientists and Engineers Conference and Exhibition (EAGE’2010), 4, 2920--2924.
    24. 340.
      Komatitsch, D., Erlebacher, G., Göddeke, D., & Michéa, D. (2010). High-order finite-element seismic wave propagation modeling with  MPI on a large GPU cluster. Journal of Computational Physics, 229, 7692--7714. https://doi.org/10.1016/j.jcp.2010.06.024
    25. 339.
      Komatitsch, D., Göddeke, D., Erlebacher, G., & Michéa, D. (2010). Modeling the propagation of elastic waves using spectral elements  on a cluster of 192 GPUs. Computer Science -- Research and Development, 25(1--2), 75--82. https://doi.org/10.1007/s00450-010-0109-1
    26. 338.
      Kutter, M., & Sändig, A.-M. (2010). Modeling of ferroelectric hysteresis as variational inequality. Bericht 2010/008 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart. http://preprints.ians.uni-stuttgart.de/downloads/2010/2010-008.pdf
    27. 337.
      Li, H. (2010). Modellreduktion f�r Stochastische Modelle Biochemischer Netzwerke.
    28. 336.
      Pekalska, E., & Haasdonk, B. (2010). Indefinite Kernel Discriminant Analysis. Proc. COMPSTAT 2010, International Conference on Computational Statistics.
    29. 335.
      Ribbrock, D., Geveler, M., Göddeke, D., & Turek, S. (2010). Performance and Accuracy of Lattice-Boltzmann Kernels on Multi-  and Manycore Architectures. In P. M. A. Sloot, G. D. van Albada, & J. J. Dongarra (Eds.), International Conference on Computational Science (ICCS’10) (Vol. 1, pp. 239--247). https://doi.org/10.1016/j.procs.2010.04.027
    30. 334.
      Rohde, C. (2010). A local and low-order Navier-Stokes-Korteweg system. In Nonlinear partial differential equations and hyperbolic wave phenomena (Vol. 526, pp. 315--337). Amer. Math. Soc. https://doi.org/10.1090/conm/526/10387
    31. 333.
      Scovel, C., Hush, D., Steinwart, I., & Theiler, J. (2010). Radial kernels and their reproducing kernel Hilbert spaces. J. Complexity, 26, 641–660. https://doi.org/10.1016/j.jco.2010.03.002
    32. 332.
      Tobiska, L., & Winkel, C. (2010). The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study. Int. J. Numer. Anal. Model., 7(3), 520--534. http://www.math.ualberta.ca/ijnam/Volume-7-2010/No-3-10/2010-03-09.pdf
    33. 331.
      Turek, S., Göddeke, D., Buijssen, S. H. M., & Wobker, H. (2010). Hardware-Oriented Multigrid Finite Element Solvers on GPU-Accelerated  Clusters. In J. Kurzak, D. A. Bader, & J. J. Dongarra (Eds.), Scientific Computing with Multicore and Accelerators (pp. 113--130). CRC Press. https://doi.org/10.1201/b10376-10
    34. 330.
      Turek, S., Göddeke, D., Becker, C., Buijssen, S. H. M., & Wobker, H. (2010). FEAST -- Realisation of hardware-oriented Numerics for HPC  simulations with Finite Elements. Concurrency and Computation: Practice and Experience, 22(6), 2247--2265. https://doi.org/10.1002/cpe.1584
  13. 2009

    1. 329.
      Barth, A. (2009). Stochastic Partial Differential Equations: Approximations  and Applications [University of Oslo, CMA]. https://www.duo.uio.no/handle/10852/10669
    2. 328.
      Buchukuri, T., Chkadua, O., Natroshvili, D., & Sändig, A.-M. (2009). Solvability and regularity results to boundary-transmission problems  for metallic and piezoelectric elastic materials. Mathematische Nachrichten, 282(8), 1079--1110. https://doi.org/10.1002/mana.200610790
    3. 327.
      Christmann, A., van Messem, A., & Steinwart, I. (2009). On consistency and robustness properties of support vector machines for heavy-tailed distributions. Stat. Interface, 2, 311--327. https://doi.org/10.4310/SII.2009.v2.n3.a5
    4. 326.
      Colombo, R. M., Guerra, G., Herty, M., & Schleper, V. (2009). Optimal control in networks of pipes and canals. SIAM J. Control Optim., 48(3), 2032--2050. https://doi.org/10.1137/080716372
    5. 325.
      Dedner, A., & Klöfkorn, R. (2009). Stabilization for Discontinuous Galerkin Methods Applied to Systems  of Conservation Laws. In E. T. et al. (Ed.), Proc. of the 12th International Conference on Hyperbolic Problems,  Proceedings of Symposia in Applied Mathematics 67, Part 1, 253-268.
    6. 324.
      Degeratu, A. (2009). Eta-invariants from Molien series. Q. J. Math., 60(3), 303--311. https://doi.org/10.1093/qmath/han016
    7. 323.
      Drohmann, M. (2009). Reduzierte Basis Methode f�r die Richards Gleichung [Diploma Thesis].
    8. 322.
      Düll, W.-P., & Schneider, G. (2009). A waiting time phenomenon in pattern forming systems. SIAM J. Math. Anal., 41(1), 415--433. https://doi.org/10.1137/080726744
    9. 321.
      Düll, W.-P., & Schneider, G. (2009). Validity of Whitham’s equations for the modulation of periodic traveling waves in the NLS equation. J. Nonlinear Sci., 19(5), 453--466. https://doi.org/10.1007/s00332-009-9043-4
    10. 320.
      Eschenburg, J.-H., Kollross, A., & Tribuzy, R. (2009). Codimension of immersions with parallel pluri-mean curvature. Differential Geometry and Its Applications, 27(6), 691--695. https://doi.org/10.1016/j.difgeo.2009.03.009
    11. 319.
      Ewing, R., Iliev, O., Lazarov, R., Rybak, I., & Willems, J. (2009). A simplified method for upscaling composite materials with high contrast  of the conductivity. SIAM J. Sci. Comp., 31(4), 2568--2586. https://doi.org/10.1137/080731906
    12. 318.
      Fischer, M. (2009). Einfluss der Snapshot-Wahl bei der POD basierten Reduktion.
    13. 317.
      Fornasier, M., Langer, A., & Schönlieb, C.-B. (2009). Domain decomposition methods for compressed sensing. Proceedings of the International Conference of SampTA09. http://arxiv.org/abs/0902.0124
    14. 316.
      Gaspoz, F. D., & Morin, P. (2009). Convergence rates for adaptive finite elements. IMA J. Numer. Anal., 29(4), 917--936.
    15. 315.
      Geck, M. (2009). Leading coefficients and cellular bases of Hecke algebras. Proc. Edinburgh Math. Soc., 52(3), 653–677. https://doi.org/10.1017/S0013091508000394
    16. 314.
      Geck, M., & Müller, J. (2009). James’ conjecture for Hecke algebras of exceptional type, I. Journal of Algebra, 321(11), 3274--3298. https://doi.org/10.1016/j.jalgebra.2008.10.024
    17. 313.
      Giesselmann, J. (2009). A convergence result for finite volume schemes on Riemannian manifolds. M2AN Math. Model. Numer. Anal., 43(5), 929–955. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=8194518
    18. 312.
      Guerra, G., Marcellini, F., & Schleper, V. (2009). Balance laws with integrable unbounded sources. SIAM J. Math. Anal., 41(3), 1164--1189. https://doi.org/10.1137/080735436
    19. 311.
      Göddeke, D., Buijssen, S. H. M., Wobker, H., & Turek, S. (2009). GPU Acceleration of an Unmodified Parallel Finite Element Navier-Stokes  Solver. In W. W. Smari & J. P. McIntire (Eds.), High Performance Computing & Simulation 2009 (pp. 12--21). https://doi.org/10.1109/HPCSIM.2009.5191718
    20. 310.
      Göddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P. S., & Turek, S. (2009). Co-Processor Acceleration of an Unmodified Parallel Solid Mechanics  Code with FEASTGPU. International Journal of Computational Science and Engineering, 4(4), 254--269. https://doi.org/10.1504/IJCSE.2009.029162
    21. 309.
      Haasdonk, B., Ohlberger, M., Tonn, T., & Urban, K. (2009). MoRePaS 2009 Book of Abstracts. University of M�nster.
    22. 308.
      Haasdonk, B., & Ohlberger, M. (2009). Efficient a-posteriori Error Estimation for Parametrized Reduced  Dynamical Systems. GMA-Fachaussschuss 1.30, Tagungsband.
    23. 307.
      Haasdonk, B., & Ohlberger, M. (2009). Space-Adaptive Reduced Basis Simulation for Time-Dependent Problems. Proc. MATHMOD 2009, 6th Vienna International Conference on Mathematical Modelling. http://www.ians.uni-stuttgart.de/am/Haasdonk/publications/mathmod2009_Nadapt.pdf
    24. 306.
      Haasdonk, B., & Ohlberger, M. (2009). Efficient Reduced Models for Parametrized Dynamical Systems by Offline/Online  Decomposition. Proc. MATHMOD 2009, 6th Vienna International Conference on Mathematical Modelling. http://www.ians.uni-stuttgart.de/am/Haasdonk/publications/mathmod2009_PMOR.pdf
    25. 305.
      Haasdonk, B., & Ohlberger, M. (2009). Reduced basis method for explicit finite volume approximations of  nonlinear conservation laws. In Hyperbolic problems: theory, numerics and applications (Vol. 67, pp. 605--614). Amer. Math. Soc.
    26. 304.
      Jung, N., Haasdonk, B., & Kröner, D. (2009). Reduced Basis Method for Quadratically Nonlinear Transport Equations. IJCSM, 2(4), 334–353.
    27. 303.
      Kelkel, J., & Surulescu, C. (2009). A weak solution approach to a reaction--diffusion system modeling  pattern formation on seashells. Mathematical Methods in the Applied Sciences, 32(17), 2267--2286. https://doi.org/10.1002/mma.1133
    28. 302.
      Kissling, F., LeFloch, P. G., & Rohde, C. (2009). A Kinetic Decomposition for Singular Limits of non-local  Conservation Laws. J. Differential Equations, 247(12), 3338--3356. https://doi.org/10.1016/j.jde.2009.05.006
    29. 301.
      Klöfkorn, R. (2009). Numerics for Evolution Equations --- A General Interface Ba\-sed  De\-sign Con\-cept. Albert-Ludwigs-Universität Freiburg.
    30. 300.
      Kollross, A. (2009). Low cohomogeneity and polar actions on exceptional compact Lie groups. Transformation Groups, 14(2), 387--415. https://doi.org/10.1007/s00031-009-9052-2
    31. 299.
      Kollross, A. (2009). Exceptional Z2 x Z2-symmetric spaces. Pacific Journal of Mathematics, 242(1), 113--130. https://doi.org/10.2140/pjm.2009.242.113
    32. 298.
      Nochetto, R. H., Siebert, K. G., & Veeser, A. (2009). Theory of Adaptive Finite Element Methods: An Introduction. In R. A. DeVore & A. Kunoth (Eds.), Multiscale, Nonlinear and Adaptive Approximation (pp. 409–542). Springer. https://doi.org/10.1007/978-3-642-03413-8_12
    33. 297.
      Pekalska, E., & Haasdonk, B. (2009). Kernel Discriminant Analysis with Positive Definite and Indefinite  Kernels. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(6), 1017–1032.
    34. 296.
      Schleper, V. (2009). Modeling, Analysis and Optimal Control of Gas Pipeline Networks [Dissertation, Fachbereich Mathematik, TU Kaiserslautern]. http://www.dr.hut-verlag.de/978-3-86853-322-4.html
    35. 295.
      Steinwart, I., & Anghel, M. (2009). Consistency of support vector machines for forecasting the evolution of an unknown ergodic dynamical system from observations with unknown noise. Ann. Statist., 37, 841--875. https://doi.org/10.1214/07-AOS562
    36. 294.
      Steinwart, I., Hush, D., & Scovel, C. (2009). Learning from dependent observations. J. Multivariate Anal., 100, 175--194. https://doi.org/10.1016/j.jmva.2008.04.001
    37. 293.
      Steinwart, I., & Christmann, A. (2009). Fast Learning from Non-i.i.d. Observations. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, & A. Culotta (Eds.), Advances in Neural Information Processing Systems 22 (pp. 1768--1776).
    38. 292.
      Steinwart, I., & Christmann, A. (2009). Sparsity of SVMs that use the $\epsilon$-insensitive loss. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in Neural Information Processing Systems 21 (pp. 1569--1576).
    39. 291.
      Steinwart, I. (2009). Two oracle inequalities for regularized boosting classifiers. Stat. Interface, 2, 271--284. https://doi.org/10.4310/SII.2009.v2.n3.a2
    40. 290.
      Steinwart, I. (2009). Oracle inequalities for SVMs that are Based on Random Entropy Numbers. J. Complexity, 25, 437--454. https://doi.org/10.1016/j.jco.2009.06.002
    41. 289.
      Steinwart, I., Hush, D., & Scovel, C. (2009). Optimal Rates for Regularized Least Squares Regression. In S. Dasgupta & A. Klivans (Eds.), Proceedings of the 22nd Annual Conference on Learning Theory (pp. 79--93).
    42. 288.
      Sändig, A.-M. (2009). Nichtlineare Funktionalanalysis mit Anwendungen auf partielle Differentialgleichungen,  Vorlesung im Wintersemester 2008/09. Bericht 2009/001 des Instituts f�r Angewandte Analysis und Numerische  Simulation der Universität Stuttgart. http://preprints.ians.uni-stuttgart.de/downloads/2009/2009-001.pdf
    43. 287.
      Tobiska, L., & Winkel, C. (2009). The two-level local projection stabilization as an enriched one-level  approach. A one-dimensional study. Institute for Analysis and Computational Mathematics, Otto-von-Guericke  University Magdeburg. http://www.math.uni-magdeburg.de/up_preprints/preprint18_2009.pdf
    44. 286.
      van Dyk, D., Geveler, M., Mallach, S., Ribbrock, D., Göddeke, D., & Gutwenger, C. (2009). HONEI: A collection of libraries for numerical computations targeting  multiple processor architectures. Computer Physics Communications, 180(12), 2534--2543. https://doi.org/10.1016/j.cpc.2009.04.018
    45. 285.
      Wirtz, D. (2009). SegMedix - Development and Application of a Medical Imaging  Framework [Diplomarbeit]. University of M�nster.
  14. 2008

    1. 284.
      Antil, H., Gantner, A., Hoppe, R. H. W., K�ster, D., Siebert, K. G., & Wixforth, A. (2008). Modeling and Simulation of Piezoelectrically Agitated Acoustic Streaming on Microfluidic Bio-chips. Domain Decomposition Methods in Science and Engineering XVII, 60, 305–312. https://doi.org/10.1007/978-3-540-75199-1_36
    2. 283.
      Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Ohlberger, M., & Sander, O. (2008). A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part I: Abstract Framework. Computing, 82(2--3), 103--119. http://www.springerlink.com/content/4v77662363u41534/
    3. 282.
      Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klöfkorn, R., Kornhuber, R., Ohlberger, M., & Sander, O. (2008). A Generic Grid Interface for Parallel and Adaptive Scientific Computing.  Part II: Implementation and Tests in DUNE. Computing, 82(2--3), 121--138. http://www.springerlink.com/content/gn177r643q2168g7/
    4. 281.
      Buijssen, S. H. M., Wobker, H., Göddeke, D., & Turek, S. (2008). FEASTSolid and FEASTFlow: FEM Applications Exploiting FEAST’s  HPC Technologies. In W. Nagel, D. Kröner, & M. Resch (Eds.), High Performance Computing in Science and Engineering ’08 (Vol. 2008, pp. 425--440). Springer. https://doi.org/10.1007/978-3-540-88303-6_30
    5. 280.
      Cascón, J. M., Kreuzer, C., Nochetto, R. H., & Siebert, K. G. (2008). Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method. SIAM Journal on Numerical Analysis, 46(5), 2524–2550. https://doi.org/10.1137/07069047X
    6. 279.
      Christmann, A., & Steinwart, I. (2008). Consistency of kernel based quantile regression. Appl. Stoch. Models Bus. Ind., 24, 171--183. https://doi.org/10.1002/asmb.700
    7. 278.
      Colombo, R. M., Herty, M., & Sachers, V. (2008). On $2\times2$ conservation laws at a junction. SIAM J. Math. Anal., 40(2), 605--622. https://doi.org/10.1137/070690298
    8. 277.
      Dedner, A., & Klöfkorn, R. (2008). The compact discontinuous Galerkin method for elliptic problems. In Finite volumes for complex applications V (pp. 761--776). ISTE, London.
    9. 276.
      Dedner, A., Klöfkorn, R., & Kröner, D. (2008). Efficient higher order methods for convection dominated problems  on unstructured grids and applications. Comput.~Tech., 13, 25–35.
    10. 275.
      Dressel, A., & Rohde, C. (2008). A finite-volume approach to liquid-vapour fluids with phase transition. In Finite volumes for complex applications V (pp. 53--68). ISTE, London.
    11. 274.
      Dressel, A., & Rohde, C. (2008). Global existence and uniqueness of solutions for a viscoelastic two-phase  model. Indiana Univ. Math. J., 57(2), 717--755. https://doi.org/10.1512/iumj.2008.57.3271
    12. 273.
      Drohmann, M., Haasdonk, B., & Ohlberger, M. (2008). Reduced Basis Method for Finite Volume Approximation of Evolution  Equations on Parametrized Geometries. Proceedings of ALGORITMY 2009, 111--120. http://pc2.iam.fmph.uniba.sk/amuc/_contributed/algo2009/drohmann.pdf
    13. 272.
      Geck, M., & Hézard, D. (2008). On the unipotent support of character sheaves. Osaka J. Math., 45(3), 819–831. https://projecteuclid.org/journals/osaka-journal-of-mathematics/volume-45/issue-3/On-the-unipotent-support-of-character-sheaves/ojm/1221656655.full
    14. 271.
      Geck, M., Iancu, L., &