Fachbereich Mathematik

Publikationen des Fachbereichs Mathematik

Publikationen der Mitglieder des Fachbereichs Mathematik ab 2017


Einen ersten Eindruck über die vielfältigen Publikationen der Forschenden des Fachbereichs, nicht nur in begutachteten Fachzeitschriften, gibt die folgende Übersicht exemplarisch für den Zeitraum ab 2017. Einen detaillerteren, evtl. vollständigeren und themenspezifischeren Eindruck vermitteln die Seiten der einzelnen Institute, Arbeitsgruppen und koordinierten Forschungsprogramme

  1. 2021

    1. 289.
      Altenbernd, M., Dreier, N.-A., Engwer, C., & Göddeke, D. (2021). Towards Local-Failure Local-Recovery in PDE Frameworks: The Case of Linear Solvers. In T. Kozubek, P. Arbenz, J. Jaros, L. Ríha, J. Sístek, & P. Tichý (Hrsg.), High Performance Computing in Science and Engineering -- HPCSE 2019 (Bd. 12456, S. 17--38). Springer. https://doi.org/10.1007/978-3-030-67077-1_2
    2. 288.
      Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2021). Uncertainty Quantification in High Performance Computational Fluid Dynamics. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’19 (S. 355--371). Springer International Publishing.
    3. 287.
      Benacchio, T., Bonaventura, L., Altenbernd, M., Cantwell, C. D., Düben, P. D., Gillard, M., Giraud, L., Göddeke, D., Raffin, E., Teranishi, K., & Wedi, N. (2021). Resilience and fault tolerance in high-performance computing for numerical weather and climate prediction. The International Journal of High Performance Computing Applications, 35(4), 285–311. https://doi.org/10.1177/1094342021990433
    4. 286.
      Berrett, T. B., Gyorfi, L., & Walk, H. (2021). Strongly universally consistent nonparametric regression and    classification with privatised data. ELECTRONIC JOURNAL OF STATISTICS, 15(1), 2430–2453. https://doi.org/10.1214/21-EJS1845
    5. 285.
      Cleyton, R., Moroianu, A., & Semmelmann, U. (2021). Metric connections with parallel skew-symmetric torsion. Adv. Math., 378, 107519, 50. https://doi.org/10.1016/j.aim.2020.107519
    6. 284.
      de Rijk, B., & Schneider, G. (2021). Global existence and decay in multi-component reaction-diffusion-advection systems with different velocities: oscillations in time and frequency. NoDEA, Nonlinear Differ. Equ. Appl., 28(1), 38.
    7. 283.
      de Rijk, B., & Sandstede, B. (2021). Diffusive stability against nonlocalized perturbations of              planar wave trains in reaction-diffusion systems. J. Differential Equations, 274, 1223--1261. https://doi.org/10.1016/j.jde.2020.10.027
    8. 282.
      Düll, W.-P. (2021). Validity of the nonlinear Schrödinger approximation for the two-dimensional water wave problem with and without surface tension in the arc length formulation. Arch. Ration. Mech. Anal., 239(2), 831--914. https://doi.org/10.1007/s00205-020-01586-4
    9. 281.
      Dürrwächter, J., Meyer, F., Kuhn, T., Beck, A., Munz, C.-D., & Rohde, C. (2021). A high-order stochastic Galerkin code for the compressible Euler and Navier-Stokes equations. Computers & Fluids, 105039. https://doi.org/10.1016/j.compfluid.2021.105039
    10. 280.
      Eggenweiler, E., & Rybak, I. (2021). Effective coupling conditions for arbitrary flows in Stokes-Darcy systems. Multiscale Model. Simul., 19, 731–757. https://doi.org/10.1137/20M1346638
    11. 279.
      Eggenweiler, E., Discacciati, M., & Rybak, I. (2021). Analysis of the Stokes-Darcy problem with generalised interface conditions. ESAIM Math. Model. Numer. Anal. (submitted). https://arxiv.org/abs/2104.02339
    12. 278.
      Fiedler, C., Scherer, C. W., & Trimpe, S. (2021). Practical and Rigorous Uncertainty Bounds for Gaussian Process Regression. Proceedings of the AAAI Conference on Artificial Intelligence, 35(8), 7439–7447. https://ojs.aaai.org/index.php/AAAI/article/view/16912
    13. 277.
      Freiberg, U., & Kohl, S. (2021). Box dimension of fractal attractors and their numerical computation. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 95. https://doi.org/10.1016/j.cnsns.2020.105615
    14. 276.
      Gander, M., Lunowa, S., & Rohde, C. (2021). Non-overlapping Schwarz Waveform-Relaxation for Nonlinear Advection-Diffusion Equations. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    15. 275.
      Gander, M., Lunowa, S., & Rohde, C. (2021). Consistent and asymptotic-preserving finite-volume domain decomposition methods for singularly perturbed elliptic equations. Domain Decomposition Methods in Science and Engineering XXVI. http://www.uhasselt.be/Documents/CMAT/Preprints/2021/UP2103.pdf
    16. 274.
      Geck, M. (2021). Generalised Gelfand-Graev representations in bad characteristic? Transformation Groups, 26(1), 305--326. https://doi.org/10.1007/s00031-020-09575-3
    17. 273.
      Girardi, G., & Wirth, J. (2021). Decay Estimates for a Klein-Gordon Model with Time-Periodic Coeffizients. In M. Cicognani, D. del Santo, A. Parmeggiani, & M. Reissig (Hrsg.), Anomalies in Partial Differential Equations (Bd. 43). Springer. https://doi.org/10.1007/978-3-030-61346-4_14
    18. 272.
      Hahn, B. N., Kienle-Garrido, M. L., & Quinto, E. T. (2021). Microlocal properties of dynamic Fourier integral operators. https://doi.org/10.1007/978-3-030-57784-1_4
    19. 271.
      Hahn, B. N. (2021). Motion compensation strategies in tomography. https://doi.org/10.1007/978-3-030-57784-1_3
    20. 270.
      Hilder, B. (2021). Nonlinear stability of fast invading fronts in a Ginzburg–Landau equation with an additional conservation law. Nonlinearity, 34(8), 5538--5575. https://doi.org/10.1088/1361-6544/abd612
    21. 269.
      Holicki, T., Scherer, C. W., & Trimpe, S. (2021). Controller Design via Experimental Exploration with Robustness Guarantees. IEEE Control Syst. Lett., 5(2), 641–646. https://doi.org/10.1109/LCSYS.2020.3004506
    22. 268.
      Holicki, T., & Scherer, C. W. (2021). Robust Gain-Scheduled Estimation with Dynamic D-Scalings. IEEE Trans. Autom. Control. https://doi.org/10.1109/TAC.2021.3052751
    23. 267.
      Holicki, T., & Scherer, C. W. (2021). Revisiting and Generalizing the Dual Iteration for Static and Robust Output-Feedback Synthesis. Int. J. Robust Nonlin., 1–33. https://doi.org/10.1002/rnc.5547
    24. 266.
      Aufgaben und Lösungen zur Höheren Mathematik 1. (2021). In K. V. Höllig & J. V. Hörner (Hrsg.), Springer eBook Collection (3rd ed. 2021.). https://doi.org/10.1007/978-3-662-63181-2
    25. 265.
      Jentsch, T., & Weingart, G. (2021). Jacobi relations on naturally reductive spaces. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 59(1), 109–156. https://doi.org/10.1007/s10455-020-09740-7
    26. 264.
      Kollross, A. (2021). Polar actions on Damek-Ricci spaces. Differential Geometry and its Applications, 76, 101753. https://doi.org/10.1016/j.difgeo.2021.101753
    27. 263.
      Krämer, A., Maier, B., Rau, T., Huber, F., Klotz, T., Ertl, T., Göddeke, D., Mehl, M., Reina, G., & Röhrle, O. (2021). Multi-physics multi-scale HPC simulations of skeletal muscles. In W. E. Nagel, D. H. Kröner, & M. M. Resch (Hrsg.), High Performance Computing in Science and Engineering ’20: Transactions of the High Performance Computing Center, Stuttgart(HLRS) 2020. https://doi.org/10.1007/978-3-030-80602-6_13
    28. 262.
      Kühnert, J., Göddeke, D., & Herschel, M. (2021, Juli). Provenance-integrated parameter selection and optimization in numerical simulations. 13th International Workshop on Theory and Practice ofProvenance (TaPP 2021). https://www.usenix.org/conference/tapp2021/presentation/kühnert
    29. 261.
      Magiera, J., & Rohde, C. (2021). Analysis and Numerics of Sharp and Diffuse Interface Models for Droplet Dynamics. In K. Schulte, C. Tropea, & B. Weigand (Hrsg.), submitted to Droplet Dynamics under Extreme Ambient Conditions. Springer.
    30. 260.
      Massa, F., Ostrowski, L., Bassi, F., & Rohde, C. (2021). An artificial Equation of State based Riemann solver for a discontinuous Galerkin discretization of the incompressible Navier–Stokes equations. J. Comput. Phys., 110705. https://doi.org/10.1016/j.jcp.2021.110705
    31. 259.
      Miao, Y., Rohde, C., & Tang, H. (2021). Well-posedness for a stochastic Camassa-Holm type equation with higher order nonlinearities.
    32. 258.
      Mohammadi, F., Eggenweiler, E., Flemisch, B., Oladyshkin, S., Rybak, I., Schneider, M., & Weishaupt, K. (2021). Uncertainty-aware Validation Benchmarks for Coupling Free Flow and Porous-Medium Flow. Water Resour. Res. (preprint). https://arxiv.org/abs/2106.13639
    33. 257.
      Osorno, M., Schirwon, M., Kijanski, N., Sivanesapillai, R., Steeb, H., & Göddeke, D. (2021). A cross-platform, high-performance SPH toolkit for image-based flow simulations on the pore scale of porous media. Computer Physics Communications, 267(108059), Article 108059. https://doi.org/10.1016/j.cpc.2021.108059
    34. 256.
      Rohde, C., & von Wolff, L. (2021). A Ternary Cahn-Hilliard-Navier-Stokes model for two phase flow with precipitation and dissolution. Math. Models Methods Appl. Sci., 31(1), 1--35. https://doi.org/10.1142/S0218202521500019
    35. 255.
      Rohde, C., & Tang, H. (2021). On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena. NoDEA Nonlinear Differential Equations Appl., 28(1), Paper No. 5, 34. https://doi.org/10.1007/s00030-020-00661-9
    36. 254.
      Rybak, I., Schwarzmeier, C., Eggenweiler, E., & Rüde, U. (2021). Validation and calibration of coupled porous-medium and free-flow problems using pore-scale resolved models. Comput. Geosci., 25, 621–635. https://doi.org/10.1007/s10596-020-09994-x
    37. 253.
      Rörich, A., Werthmann, T. A., Göddeke, D., & Grasedyck, L. (2021). Bayesian inversion for electromyography using low-rank tensor formats. Inverse Problems, 37(5), 055003. https://doi.org/10.1088/1361-6420/abd85a
    38. 252.
      Seus, D., Radu, F. A., & Rohde, C. (2021). Towards Hybrid Two-Phase Modelling Using Linear Domain Decomposition. https://arxiv.org/abs/2106.14247
    39. 251.
      Steinwart, I., & Fischer, S. (2021). A Closer Look at Covering Number Bounds for Gaussian Kernels. J. Complexity, 62, 101513. https://doi.org/10.1016/j.jco.2020.101513
    40. 250.
      Steinwart, I., & Ziegel, J. F. (2021). Strictly proper kernel scores and characteristic kernels on compact spaces. Appl. Comput. Harmon. Anal., 51, 510--542. https://doi.org/10.1016/j.acha.2019.11.005
    41. 249.
      Strohbeck, P., Eggenweiler, E., & Rybak, I. (2021). Determination of the Beavers-Joseph slip coefficient for coupled Stokes/Darcy problems. Adv. Water Res. (submitted). https://arxiv.org/abs/2106.15556
    42. 248.
      von Wolff, L., Weinhardt, F., Class, H., Hommel, J., & Rohde, C. (2021). Investigation of Crystal Growth in Enzymatically Induced Calcite Precipitation by Micro-Fluidic Experimental Methods and Comparison with Mathematical Modeling. Transp. Porous Media, 137(2), 327--343. https://doi.org/10.1007/s11242-021-01560-y
    43. 247.
      Wagner, A., Eggenweiler, E., Weinhardt, F., Trivedi, Z., Krach, D., Lohrmann, C., Jain, K., Karadimitriou, N., Bringedal, C., Voland, P., Holm, C., Class, H., Steeb, H., & Rybak, I. (2021). Permeability estimation of regular porous structures: a benchmark for comparison of methods. Transp. Porous Med. https://doi.org/10.1007/s11242-021-01586-2
  2. 2020

    1. 246.
      Alonso-Orán, D., Rohde, C., & Tang, H. (2020). A local-in-time theory for singular SDEs with applications to fluid models with transport noise. https://arxiv.org/abs/2010.09972
    2. 245.
      Armiti-Juber, A., & Rohde, C. (2020). On the well-posedness of a nonlinear fourth-order extension of Richards’ equation. J. Math. Anal. Appl., 487(2), 124005. https://doi.org/10.1016/j.jmaa.2020.124005
    3. 244.
      Barberis, M. L., Moroianu, A., & Semmelmann, U. (2020). Generalized vector cross products and Killing forms on negatively curved manifolds. Geom. Dedicata, 205, 113--127. https://doi.org/10.1007/s10711-019-00467-9
    4. 243.
      Barreau, M., Scherer, C. W., Gouaisbaut, F., & Seuret, A. (2020). Integral Quadratic Constraints on Linear Infinite-dimensional Systems for Robust Stability Analysis. IFAC World Congress.
    5. 242.
      Bastian, P., Altenbernd, M., Dreier, N.-A., Engwer, C., Fahlke, J., Fritze, R., Geveler, M., Göddeke, D., Iliev, O., Ippisch, O., Mohring, J., Müthing, S., Ohlberger, M., Ribbrock, D., Shegunov, N., & Turek, S. (2020). Exa-Dune - Flexible PDE Solvers, Numerical Methods and Applications. In H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, & W. E. Nagel (Hrsg.), Software for Exascale Computing -- SPPEXA 2016--2019 (S. 225--269). Springer. https://doi.org/10.1007/978-3-030-47956-5_9
    6. 241.
      Baumstark, S., Schneider, G., Schratz, K., & Zimmermann, D. (2020). Effective slow dynamics models for a class of dispersive systems. J. Dyn. Differ. Equations, 32(4), 1867--1899.
    7. 240.
      Baumstark, S., Schneider, G., & Schratz, K. (2020). Effective numerical simulation of the Klein-Gordon-Zakharov system in the Zakharov limit. In Mathematics of wave phenomena. Selected papers based on the presentations at the conference, Karlsruhe, Germany, July 23--27, 2018 (S. 37--48). Cham: Birkhäuser.
    8. 239.
      Beck, A., Dürrwächter, J., Kuhn, T., Meyer, F., Munz, C.-D., & Rohde, C. (2020). $hp$-Multilevel Monte Carlo methods for uncertainty quantification of compressible flows. SIAM J. Sci. Comput., 42(4), B1067–B1091. https://doi.org/10.1137/18M1210575
    9. 238.
      Berre, I., Boon, W. M., Flemisch, B., Fumagalli, A., Gläser, D., Keilegavlen, E., Scotti, A., Stefansson, I., Tatomir, A., Brenner, K., Burbulla, S., Devloo, P., Duran, O., Favino, M., Hennicker, J., Lee, I.-H., Lipnikov, K., Masson, R., Mosthaf, K., … Zulian, P. (2020). Verification benchmarks for single-phase flow in three-dimensional fractured porous media.
    10. 237.
      Blanke, S. E., Hahn, B. N., & Wald, A. (2020). Inverse problems with inexact forward operator: iterative regularization and application in dynamic imaging. Inverse Problems, 36(12), 124001. https://doi.org/10.1088/1361-6420/abb5e1
    11. 236.
      Brehler, M., Schirwon, M., Krummrich, P. M., & Göddeke, D. (2020). Simulation of Nonlinear Signal Propagation in Multimode Fibers on Multi-GPU Systems. Communications in Nonlinear Science and Numerical Simulation, 84, 105150. https://doi.org/10.1016/j.cnsns.2019.105150
    12. 235.
      Brinker, J., & Wirth, J. (2020). Gelfand Triples for the Kohn–Nirenberg Quantization on Homogeneous Lie Groups. In Advances in Harmonic Analysis and Partial Differential Equations. (S. 51–97). Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9_3
    13. 234.
      Burbulla, S., & Rohde, C. (2020). A fully conforming finite volume approach to two-phase flow in fractured porous media. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 547–555). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_51
    14. 233.
      de Rijk, B., & Schneider, G. (2020). Global Existence and Decay in Nonlinearly Coupled Reaction-Diffusion-Advection Equations with Different Velocities. J. Differential Equations, 268(7), 3392--3448. https://doi.org/10.1016/j.jde.2019.09.056
    15. 232.
      Díaz-Ramos, J. C., Domínguez-Vázquez, M., & Kollross, A. (2020). On homogeneous manifolds whose isotropy actions are polar. manuscripta mathematica, 161(1), 15--34. https://doi.org/10.1007/s00229-018-1077-1
    16. 231.
      Eggenweiler, E., & Rybak, I. (2020). Unsuitability of the Beavers-Joseph interface condition for filtration problems. J. Fluid Mech., 892, A10. http://dx.doi.org/10.1017/jfm.2020.194
    17. 230.
      Eggenweiler, E., & Rybak, I. (2020). Interface conditions for arbitrary flows in coupled porous-medium and free-flow systems. In R. Klöfkorn, E. Keilegavlen, F. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (Bd. 323, S. 345--353). Springer International Publishing. https://doi.org/10.1007/978-3-030-43651-3_31
    18. 229.
      Fischer, S., & Steinwart, I. (2020). Sobolev Norm Learning Rates for Regularized Least-Squares Algorithm. J. Mach. Learn. Res., 205, 1--38.
    19. 228.
      Fischer, S., & Steinwart, I. (2020). Sobolev norm learning rates for regularized least-squares algorithms. J. Mach. Learn. Res., 21(205), 1--38. http://jmlr.org/papers/v21/19-734.html
    20. 227.
      Geck, M. (2020). Green functions and Glauberman degree-divisibility. Annals of Mathematics, 192(1), 229–249. https://doi.org/10.4007/annals.2020.192.1.4
    21. 226.
      Geck, M. (2020). On Jacob’s construction of the rational canonical form of a matrix. The Electronic Journal of Linear Algebra, 36(36), 177--182. https://doi.org/10.13001/ela.2020.5055
    22. 225.
      Geck, M., & Malle, G. (2020). The character theory of finite groups of Lie type. A guided tour. In Cambridge Studies in Advanced Mathematics (Bd. 187, S. ix+394). Cambridge University Press. https://doi.org/10.1017/9781108779081
    23. 224.
      Geck, M. (2020). ChevLie: Constructing Lie algebras and Chevalley groups. Journal of Software for Algebra and Geometry, 10(1), 41--49. https://doi.org/10.2140/jsag.2020.10.41
    24. 223.
      Geck, M. (2020). Computing Green functions in small characteristic. Journal of Algebra, 561, 163--199. https://doi.org/10.1016/j.jalgebra.2019.12.016
    25. 222.
      Advances in Harmonic Analysis and Partial Differential Equations. (2020). In V. Georgiev, T. Ozawa, M. Ruzhansky, & J. Wirth (Hrsg.), Trends in Mathematics. Birkhäuser. https://doi.org/10.1007/978-3-030-58215-9
    26. 221.
      Gerstenberger, J. T., Burbulla, S., & Kröner, D. (2020). Discontinuous Galerkin method for incompressible two-phase flows. In R. Klöfkorn, E. Keilegavlen, F. A. Radu, & J. Fuhrmann (Hrsg.), Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples (S. 675–683). Springer International Publishing.
    27. 220.
      Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis for random scalar conservation laws using the Stochastic Galerkin method. IMA J. Numer. Anal., 40(2), 1094–1121. https://doi.org/10.1093/imanum/drz004
    28. 219.
      Giesselmann, J., Meyer, F., & Rohde, C. (2020). An a posteriori error analysis based on non-intrusive spectral projections for systems of random conservation laws. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), accepted for publication in Proceedings of HYP2018 (Bd. 10, S. 449–456). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    29. 218.
      Giesselmann, J., Meyer, F., & Rohde, C. (2020). A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws. BIT Numer. Math. https://doi.org/10.1007/s10543-019-00794-z
    30. 217.
      Ginoux, N., Habib, G., Pilca, M., & Semmelmann, U. (2020). An Obata-type characterisation of Calabi metrics on line bundles. North-West. Eur. J. Math., 6, 119--136, i.
    31. 216.
      Giraud, L., Rüde, U., & Stals, L. (2020). Resiliency in Numerical Algorithm Design for Extreme Scale Simulations (Dagstuhl Seminar 20101). Dagstuhl Reports, 10(3), 1--57. https://doi.org/10.4230/DagRep.10.3.1
    32. 215.
      Griesemer, M., Hofacker, M., & Linden, U. (2020). From short-range to contact interactions in the 1d Bose gas. Math. Phys. Anal. Geom., 23(2), Paper No. 19, 28. https://doi.org/10.1007/s11040-020-09344-4
    33. 214.
      Haas, T., de Rijk, B., & Schneider, G. (2020). MODULATION EQUATIONS NEAR THE ECKHAUS BOUNDARY: THE KdV EQUATION. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 52(6), 5389–5421. https://doi.org/10.1137/19M1266873
    34. 213.
      Haas, T., & Schneider, G. (2020). Failure of the N-wave interaction approximation without imposing    periodic boundary conditions. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 100(6), Article 6. https://doi.org/10.1002/zamm.201900230
    35. 212.
      Hitz, T., Keim, J., Munz, C.-D., & Rohde, C. (2020). A parabolic relaxation model for the Navier-Stokes-Korteweg equations. J. Comput. Phys., 421, 109714. https://doi.org/10.1016/j.jcp.2020.109714
    36. 211.
      Holicki, T., & Scherer, C. W. (2020). Output-Feedback Synthesis for a Class of Aperiodic Impulsive Systems. IFAC-PapersOnline, 53(2), 7299–7304. https://doi.org/10.1016/j.ifacol.2020.12.981
    37. 210.
      Holzmüller, D., & Steinwart, I. (2020). Training two-layer ReLU networks with gradient descent is inconsistent. arXiv:2002.04861. https://arxiv.org/abs/2002.04861
    38. 209.
    39. 208.
      Koch, T., Gläser, D., Weishaupt, K., Ackermann, S., Beck, M., Becker, B., Burbulla, S., Class, H., Coltman, E., Emmert, S., Fetzer, T., Grüninger, C., Heck, K., Hommel, J., Kurz, T., Lipp, M., Mohammadi, F., Scherrer, S., Schneider, M., … Flemisch, B. (2020). DuMux 3 – an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Computers & Mathematics with Applications. https://doi.org/10.1016/j.camwa.2020.02.012
    40. 207.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2020). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), 109–140. https://doi.org/10.1080/17476933.2019.1631293
    41. 206.
      Kollross, A. (2020). Octonions, triality, the exceptional Lie algebra F4 and polar actions on the Cayley hyperbolic plane. International Journal of Mathematics, 31(07), 2050051. https://doi.org/10.1142/s0129167x20500512
    42. 205.
      Magiera, J., Ray, D., Hesthaven, J. S., & Rohde, C. (2020). Constraint-aware neural networks for Riemann problems. J. Comput. Phys., 409(109345), Article 109345. https://doi.org/10.1016/j.jcp.2020.109345
    43. 204.
      Maier, D. (2020). BREATHER SOLUTIONS ON DISCRETE NECKLACE GRAPHS. OPERATORS AND MATRICES, 14(3), 767–776. https://doi.org/10.7153/oam-2020-14-48
    44. 203.
      Maier, D. (2020). Construction of breather solutions for nonlinear Klein-Gordon equations    on periodic metric graphs. JOURNAL OF DIFFERENTIAL EQUATIONS, 268(6), 2491–2509. https://doi.org/10.1016/j.jde.2019.09.035
    45. 202.
      Michalowsky, S., Scherer, C., & Ebenbauer, C. (2020). Robust and structure exploiting optimisation algorithms : an integral quadratic constraint approach. International Journal of Control, 2020, 1–24. https://doi.org/10.1080/00207179.2020.1745286
    46. 201.
      Minorics, L. A. (2020). Spectral asymptotics for Krein-Feller operators with respect to V-variable Cantor measures. Forum Mathematicum, 32(1), 121–138. https://doi.org/10.1515/forum-2018-0188
    47. 200.
      Naveira, A. M., & Semmelmann, U. (2020). Conformal Killing forms on nearly Kähler manifolds. Differential Geom. Appl., 70, 101628, 9. https://doi.org/10.1016/j.difgeo.2020.101628
    48. 199.
      Oladyshkin, S., Mohammadi, F., Kroeker, I., & Nowak, W. (2020). Bayesian(3)Active Learning for the Gaussian Process Emulator Using    Information Theory. ENTROPY, 22(8), Article 8. https://doi.org/10.3390/e22080890
    49. 198.
      Ostrowski, L., & Rohde, C. (2020). Compressible multi-component flow in porous media with Maxwell-Stefan diffusion. Math. Meth. Appl. Sci., 1–22. https://doi.org/10.1002/mma.6185
    50. 197.
      Ostrowski, L., Massa, F. C., & Rohde, C. (2020). A phase field approach to compressible droplet impingement. In G. Lamanna, S. Tonini, G. E. Cossali, & B. Weigand (Hrsg.), Droplet Interactions and Spray Processes (S. 113–126). Springer International Publishing. https://doi.org/10.1007/978-3-030-33338-6_9
    51. 196.
      Ostrowski, L., & Rohde, C. (2020). Phase field modelling for compressible droplet impingement. In A. Bressan, M. Lewicka, D. Wang, & Y. Zheng (Hrsg.), Hyperbolic Problems: Theory, Numerics, Applications. Proceedings of the Seventeenth International Conference on Hyperbolic Problems 2018 (Bd. 10, S. 586–593). AIMS Series on Applied Mathematics. https://www.aimsciences.org/fileAIMS/cms/news/info/upload//c0904f1f-97d5-451f-b068-25f1612b6852.pdf
    52. 195.
      Pelinovsky, D. E., & Schneider, G. (2020). The monoatomic FPU system as a limit of a diatomic FPU system. Appl. Math. Lett., 107, 7.
    53. 194.
      Polyakova, A. P., Svetov, I. E., & Hahn, B. N. (2020). The Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields. In Y. D. Sergeyev & D. E. Kvasov (Hrsg.), Numerical Computations: Theory and Algorithms (S. 446--453). Springer International Publishing. https://doi.org/10.1007/978-3-030-40616-5_42
    54. 193.
      Rigaud, G., & Hahn, B. N. (2020). Reconstruction algorithm for 3D Compton scattering imaging with incomplete data. Inverse Problems in Science and Engineering, 29(7), 967--989. https://doi.org/10.1080/17415977.2020.1815723
    55. 192.
      Rohde, C., & von Wolff, L. (2020). Homogenization of non-local Navier-Stokes-Korteweg equations for compressible liquid-vapour flow in porous media. SIAM J. Math. Anal., 52(6), 6155–6179. https://doi.org/10.1137/19M1242434
    56. 191.
      Rohde, C., & Tang, H. (2020). On a stochastic Camassa-Holm type equation with higher order nonlinearities. https://arxiv.org/abs/2001.05754
    57. 190.
      Rybak, I., & Metzger, S. (2020). A dimensionally reduced Stokes-Darcy model for fluid flow in fractured porous media. Appl. Math. Comp., 384. https://doi.org/10.1016/j.amc.2020.125260
    58. 189.
      Rösinger, C. A., & Scherer, C. W. (2020). Lifting to Passivity for $H_2$-Gain-Scheduling Synthesis with Full Block Scalings. IFAC-PapersOnLine, 53(2), 7292–7298. https://doi.org/10.1016/j.ifacol.2020.12.570
    59. 188.
      Schneider, G. (2020). The KdV approximation for a system with unstable resonances. Math. Methods Appl. Sci., 43(6), 3185--3199.
    60. 187.
      Semmelmann, U., Wang, C., & Wang, M. Y.-K. (2020). On the linear stability of nearly Kähler 6-manifolds. Ann. Global Anal. Geom., 57(1), 15--22. https://doi.org/10.1007/s10455-019-09686-5
    61. 186.
      Tielen, R., Möller, M., Göddeke, D., & Vuik, C. (2020). p-multigrid methods and their comparison to h-multigrid methods in Isogeometric Analysis. Computer Methods in Applied Mechanics and Engineering, 372, 113347. https://doi.org/10.1016/j.cma.2020.113347
    62. 185.
      Vonica, A., Bhat, N., Phan, K., Guo, J., Iancu, L., Weber, J. A., Karger, A., Cain, J. W., Wang, E. C. E., DeStefano, G. M., O’Donnell-Luria, A. H., Christiano, A. M., Riley, B., Butler, S. J., & Luria, V. (2020). Apcdd1 is a dual BMP/Wnt inhibitor in the developing nervous system and skin. Developmental Biology, 464(1), 71--87. https://doi.org/10.1016/j.ydbio.2020.03.015
  3. 2019

    1. 184.
      Armiti-Juber, A., & Rohde, C. (2019). On Darcy-and Brinkman-type models for two-phase flow in asymptotically flat domains. Comput. Geosci., 23(2), 285–303. https://doi.org/10.1007/s10596-018-9756-2
    2. 183.
      Armiti-Juber, A., & Rohde, C. (2019). Existence of weak solutions for a nonlocal pseudo-parabolic model for Brinkman two-phase flow in asymptotically flat porous media. J. Math. Anal. Appl., 477(1), 592–612. https://doi.org/10.1016/j.jmaa.2019.04.049
    3. 182.
      Baggio, G., Zampieri, S., & Scherer, C. W. (2019). Gramian Optimization with Input-Power Constraints. 58th IEEE Conf. Decision and Control, 5686–5691. https://doi.org/10.1109/CDC40024.2019.9029169
    4. 181.
      Bauer, R., Cummings, P., & Schneider, G. (2019). A model for the periodic water wave problem and its long wave amplitude equations. In Nonlinear water waves. An interdisciplinary interface. Based on the workshop held at the Erwin Schrödinger International Institute for Mathematics and Physics, Vienna, Austria, November 27 -- December 7, 2017 (S. 123--138). Cham: Birkhäuser.
    5. 180.
      Bauer, R., Düll, W.-P., & Schneider, G. (2019). The Korteweg--de Vries, Burgers and Whitham limits for a spatially periodic Boussinesq model. Proc. Roy. Soc. Edinburgh Sect. A, 149(1), 191--217. https://doi.org/10.1017/S0308210518000227
    6. 179.
      Bianchi, L. A., Blömker, D., & Schneider, G. (2019). Modulation equation and SPDEs on unbounded domains. Commun. Math. Phys., 371(1), 19--54.
    7. 178.
      Chirilus-Bruckner, M., Maier, D., & Schneider, G. (2019). Diffusive stability for periodic metric graphs. Math. Nachr., 292(6), 1246--1259.
    8. 177.
      Colombo, R. M., LeFloch, P. G., Rohde, C., & Trivisa, K. (2019). Nonlinear Hyperbolic Problems: Modeling, Analysis, and Numerics. Oberwohlfach Rep., 16, 1419–1497. https://www.ems-ph.org/journals/show_issue.php?issn=1660-8933&vol=16&iss=2
    9. 176.
      Conlon, R., Degeratu, A., & Rochon, F. (2019). Quasi-asymptotically conical Calabi-Yau manifolds. Geom. Topol., 23(1), 29--100. https://doi.org/10.2140/gt.2019.23.29
    10. 175.
      Defant, A., Mastyo, M., Sánchez-Pérez, E. A., & Steinwart, I. (2019). Translation invariant maps on function spaces over locally compact groups. J. Math. Anal. Appl., 470, 795--820. https://doi.org/10.1016/j.jmaa.2018.10.033
    11. 174.
      Farooq, M., & Steinwart, I. (2019). Learning Rates for Kernel-Based Expectile Regression. Mach. Learn., 108, 203--227. https://doi.org/10.1007/s10994-018-5762-9
    12. 173.
      Geck, M. (2019). Eigenvalues and Polynomial Equations. The American Mathematical Monthly, 126(10), 933--935. https://doi.org/10.1080/00029890.2019.1651168
    13. 172.
      Giesselmann, J., Meyer, F., & Rohde, C. (2019). Error control for statistical solutions. https://arxiv.org/abs/1912.04323
    14. 171.
      Griesemer, M., & Linden, U. (2019). Spectral theory of the Fermi polaron. Ann. Henri Poincaré, 20(6), 1931--1967. https://doi.org/10.1007/s00023-019-00796-1
    15. 170.
      Hahn, B. N., & Kienle Garrido, M.-L. (2019). An efficient reconstruction approach for a class of dynamic imaging operators. Inverse Problems, 35(9), 094005. https://doi.org/10.1088/1361-6420/ab178b
    16. 169.
      Hansmann, M., Kohler, M., & Walk, H. (2019). On the strong universal consistency of local averaging regression    estimates (vol 71, pg 1233, 2019). ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 71(5), 1265–1269. https://doi.org/10.1007/s10463-018-0687-4
    17. 168.
      Heil, K., & Jentsch, T. (2019). A special class of symmetric Killing 2-tensors. JOURNAL OF GEOMETRY AND PHYSICS, 138, 103–123. https://doi.org/10.1016/j.geomphys.2018.12.009
    18. 167.
      Holicki, T., & Scherer, C. W. (2019). A Homotopy Approach for Robust Output-Feedback Synthesis. Proc. 27th. Med. Conf. Control Autom., 87–93. https://doi.org/10.1109/MED.2019.8798536
    19. 166.
      Holicki, T., & Scherer, C. W. (2019). Stability Analysis and Output-Feedback Synthesis of Hybrid Systems Affected by Piecewise Constant Parameters via Dynamic Resetting Scalings. Nonlinear Anal. Hybri., 34, 179–208. https://doi.org/10.1016/j.nahs.2019.06.003
    20. 165.
      Homma, Y., & Semmelmann, U. (2019). The Kernel of the Rarita-Schwinger Operator on Riemannian Spin Manifolds. Comm. Math. Phys., 370(3), 853--871. https://doi.org/10.1007/s00220-019-03324-8
    21. 164.
      Höllig, K., & Hörner, J. (2019). Aufgaben und Lösungen zur Höheren Mathematik. - 1. [Aufgabensammlung]. In Aufgaben und Lösungen zur Höheren Mathematik ; 1 (2. Auflage, Bd. 1, S. x, 235 Seiten). Springer Spektrum.
    22. 163.
      Kluth, T., Hahn, B. N., & Brandt, C. (2019). Spatio-temporal concentration reconstruction using motion priors in magnetic particle imaging. Proc. Int. Workshop Magnetic Particle Imaging.
    23. 162.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Potentials and transmission problems in weighted Sobolev spaces for anisotropic Stokes and Navier–Stokes systems with L∞ strongly elliptic coefficient tensor. Complex Variables and Elliptic Equations, 65(1), 109–140. https://doi.org/10.1080/17476933.2019.1631293
    24. 161.
      Kohr, M., & Wendland, W. L. (2019). Boundary value problems for the Brinkman system with L∞ coefficients in Lipschitz domains on compact Riemannian manifolds. A variational approach. Journal de Mathématiques Pures et Appliquées, 131, 17–63. https://doi.org/10.1016/j.matpur.2019.04.002
    25. 160.
      Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2019). Newtonian and Single Layer Potentials for the Stokes System with L∞ Coefficients and the Exterior Dirichlet Problem. In S. Rogosin & A. O. Celebi (Hrsg.), Analysis as a Life: Dedicated to Heinrich Begehr on the Occasion of his 80th Birthday (S. 237--260). Springer International Publishing. https://doi.org/10.1007/978-3-030-02650-9_12
    26. 159.
      Kuhn, T., Dürrwächter, J., Meyer, F., Beck, A., Rohde, C., & Munz, C.-D. (2019). Uncertainty quantification for direct aeroacoustic simulations of cavity flows. J. Theor. Comput. Acoust., 27(1, 1850044), Article 1, 1850044. https://doi.org/10.1142/S2591728518500445
    27. 158.
      Köppel, M., Franzelin, F., Kröker, I., Oladyshkin, S., Santin, G., Wittwar, D., Barth, A., Haasdonk, B., Nowak, W., Pflüger, D., & Rohde, C. (2019). Comparison of data-driven uncertainty quantification methods for  a carbon dioxide storage benchmark scenario. Comput. Geosci., 2(23), 339–354. https://doi.org/10.1007/s10596-018-9785-x
    28. 157.
      Miller, C. T., Gray, W. G., Kees, C. E., Rybak, I. V., & Shepherd, B. J. (2019). Modeling sediment transport in three-phase surface water systems. J. Hydraul. Res., 57. https://doi.org/10.1080/00221686.2019.1581673
    29. 156.
      Ostrowski, L., & Massa, F. (2019). An incompressible-compressible approach for droplet impact. In G. Cossali & S. Tonini (Hrsg.), Proceedings of the DIPSI Workshop 2019: Droplet ImpactPhenomena & Spray Investigations, Bergamo, Italy, 17th May 2019 (S. 18–21). Università degli studi di Bergamo. https://doi.org/10.6092/DIPSI2019_pp18-21
    30. 155.
      Rösinger, C. A., & Scherer, C. W. (2019). A Flexible Synthesis Framework of Structured Controllers for Networked Systems. IEEE Trans. Control Netw. Syst., 7(1), 6–18. https://doi.org/10.1109/TCNS.2019.2914411
    31. 154.
      Rösinger, C. A., & Scherer, C. W. (2019). A Scalings Approach to $H_2$-Gain-Scheduling Synthesis without Elimination. IFAC-PapersOnLine, 52(28), 50–57. https://doi.org/10.1016/j.ifacol.2019.12.347
    32. 153.
      Semmelmann, U., & Weingart, G. (2019). The standard Laplace operator. Manuscripta Math., 158(1–2), 273--293. https://doi.org/10.1007/s00229-018-1023-2
    33. 152.
      Seus, D., Radu, F. A., & Rohde, C. (2019). A linear domain decomposition method for two-phase flow in porous media. Numerical Mathematics and Advanced Applications ENUMATH 2017, 603–614. https://doi.org/10.1007/978-3-319-96415-7_55
    34. 151.
      Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2019). Surfactant-induced migration of a spherical droplet in non-isothermal Stokes flow. Phys. Fluids, 31, 012110, Article 31, 012110. https://doi.org/10.1063/1.5064694
    35. 150.
      Steinwart, I. (2019). Convergence Types and Rates  in Generic Karhunen-Loève Expansions with Applications to Sample Path Properties. Potential Anal., 51, 361--395. https://doi.org/10.1007/s11118-018-9715-5
  4. 2018

    1. 149.
      Afkham, B. M., Bhatt, A., Haasdonk, B., & Hesthaven, J. S. (2018). Symplectic Model-Reduction with a Weighted Inner Product.
    2. 148.
      Altenbernd, M., & Göddeke, D. (2018). Soft fault detection and correction for multigrid. The International Journal of High Performance Computing Applications, 32(6), 897–912. https://doi.org/10.1177/1094342016684006
    3. 147.
      Barth, A., & Stein, A. (2018). A Study of Elliptic Partial Differential Equations with Jump Diffusion    Coefficients. SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 6(4), 1707–1743. https://doi.org/10.1137/17M1148888
    4. 146.
      Barth, A., & Stüwe, T. (2018). Weak convergence of Galerkin approximations of stochastic partial  differential equations driven by additive Lévy noise. Math. Comput. Simulation, 143, 215--225. https://doi.org/10.1016/j.matcom.2017.03.007
    5. 145.
      Barth, A., & Stein, A. (2018). Approximation and simulation of infinite-dimensional Levy processes. STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 6(2), 286–334. https://doi.org/10.1007/s40072-017-0109-2
    6. 144.
      Bhatt, A., Fehr, J., & Hassdonk, B. (2018). Model Order Reduction of an Elastic Body under Large Rigid Motion. Proceedings of ENUMATH 2017, Voss, Norway.
    7. 143.
      Blaschzyk, I., & Steinwart, I. (2018). Improved Classification Rates under Refined Margin Conditions. Electron. J. Stat., 12, 793--823. https://doi.org/10.1214/18-EJS1406
    8. 142.
      Bradley, C. P., Emamy, N., Ertl, T., Göddeke, D., Hessenthaler, A., Klotz, T., Krämer, A., Krone, M., Maier, B., Mehl, M., Tobias, R., & Röhrle, O. (2018). Enabling Detailed, Biophysics-Based Skeletal Muscle Models on HPC Systems. Frontiers in Physiology, 9(816), Article 816. https://doi.org/10.3389/fphys.2018.00816
    9. 141.
      Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. (2018, Juli). Modeling the Kerr-Nonlinearity in Mode-Division Multiplexing Fiber  Transmission Systems on GPUs. Proceedings of Advanced Photonics 2018.
    10. 140.
      Brünnette, T., Santin, G., & Haasdonk, B. (2018). Greedy kernel methods for accelerating implicit integrators for parametric  ODEs. Proceedings of ENUMATH 2017. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1767
    11. 139.
      Buchfink, P. (2018). Structure-preserving Model Reduction for Elasticity [Diploma thesis].
    12. 138.
      Chalons, C., Magiera, J., Rohde, C., & Wiebe, M. (2018). A finite-volume tracking scheme for two-phase compressible flow. Springer Proc. Math. Stat., 309--322. https://doi.org/10.1007/978-3-319-91545-6_25
    13. 137.
      De Marchi, S., Iske, A., & Santin, G. (2018). Image reconstruction from scattered Radon data by weighted positive  definite kernel functions. Calcolo, 55(1), 2. https://doi.org/10.1007/s10092-018-0247-6
    14. 136.
      de Rijk, B. (2018). Spectra and stability of spatially periodic pulse patterns              II: the critical spectral curve. SIAM J. Math. Anal., 50(2), 1958--2019. https://doi.org/10.1137/17M1127594
    15. 135.
      de Rijk, B., & Sandstede, B. (2018). Diffusive stability against nonlocalized perturbations of              planar wave trains in reaction-diffusion systems. J. Differential Equations, 265(10), 5315--5351. https://doi.org/10.1016/j.jde.2018.07.011
    16. 134.
      Degeratu, A., & Mazzeo, R. (2018). Fredholm theory for elliptic operators on quasi-asymptotically conical spaces. Proc. Lond. Math. Soc. (3), 116(5), 1112--1160. https://doi.org/10.1112/plms.12105
    17. 133.
      Devroye, L., Gyorfi, L., Lugosi, G., & Walk, H. (2018). A nearest neighbor estimate of the residual variance. ELECTRONIC JOURNAL OF STATISTICS, 12(1), 1752–1778. https://doi.org/10.1214/18-EJS1438
    18. 132.
      Doelman, A., Rademacher, J., de Rijk, B., & Veerman, F. (2018). Destabilization Mechanisms of Periodic Pulse Patterns Near a Homoclinic Limit. SIAM J. Appl. Dyn. Syst., 17(2), 1833--1890. https://doi.org/10.1137/17M1122840
    19. 131.
      Doering, M., Gyorfi, L., & Walk, H. (2018). Rate of Convergence of k-Nearest-Neighbor Classification Rule. JOURNAL OF MACHINE LEARNING RESEARCH, 18.
    20. 130.
      Düll, W.-P., & Heß, M. (2018). Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differential Equations, 264(4), 2598--2632. https://doi.org/10.1016/j.jde.2017.10.031
    21. 129.
      Düll, W.-P., Hilder, B., & Schneider, G. (2018). Analysis of the embedded cell method in 1D for the numerical homogenization of metal-ceramic composite materials. J. Appl. Anal., 24(1), 71--80.
    22. 128.
      Düll, W.-P. (2018). On the mathematical description of time-dependent surface water waves. Jahresber. Dtsch. Math.-Ver., 120(2), 117--141. https://doi.org/10.1365/s13291-017-0173-6
    23. 127.
      Dürrwächter, J., Kuhn, T., Meyer, F., Schlachter, L., & Schneider, F. (2018). A hyperbolicity-preserving discontinuous stochastic Galerkin scheme  for uncertain hyperbolic systems of equations. Journal of Computational and Applied Mathematics, 112602. https://doi.org/10.1016/j.cam.2019.112602
    24. 126.
      Engwer, C., Altenbernd, M., Dreier, N.-A., & Göddeke, D. (2018, März). A high-level C++ approach to manage local errors, asynchrony and  faults in an MPI application. Proceedings of the 26th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP 2018).
    25. 125.
      Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2018). Approximate Riemann solver for compressible liquid vapor flow with  phase transition and surface tension. Comput. & Fluids, 169, 169–185. http://dx.doi.org/10.1016/j.compfluid.2017.03.026
    26. 124.
      Fritzen, F., Haasdonk, B., Ryckelynck, D., & Schöps, S. (2018). An algorithmic comparison of the Hyper-Reduction and the Discrete  Empirical Interpolation Method for a nonlinear thermal problem. Math. Comput. Appl. 2018, 23(1), Article 1. https://doi.org/doi:10.3390/mca23010008
    27. 123.
      Geck, M. (2018). On the values of unipotent characters in bad characteristic. Rendiconti del Seminario Matematico della Università di Padova, 141, 37--63. https://doi.org/10.4171/rsmup/14
    28. 122.
      Geck, M. (2018). A first guide to the character theory of finite groups of Lie type. Local Representation Theory and Simple Groups (eds. R. Kessar, G. Malle, D. Testerman), 63--106. https://doi.org/10.4171/185-1/3
    29. 121.
      Georgiev, V., & Wirth, J. (2018). Zero resonances for localised potentials. Journal of Mathematical Physics, 59(7), 071502. https://doi.org/10.1063/1.5027717
    30. 120.
      Giesselmann, J., Kolbe, N., Lukacova-Medvidova, M., & Sfakianakis, N. (2018). Existence and uniqueness of global classical solutions to a two species  cancer invasion haptotaxis model. Accepted for publication in Discrete Contin. Dyn. Syst. Ser. B. https://arxiv.org/abs/1704.08208
    31. 119.
      Gimperlein, H., Meyer, F., Özdemir, C., & Stephan, E. P. (2018). Time domain boundary elements for dynamic contact problems. Computer Methods in Applied Mechanics and Engineering, 333, 147–175. https://doi.org/10.1016/j.cma.2018.01.025
    32. 118.
      Gimperlein, H., Meyer, F., Özdemir, C., Stark, D., & Stephan, E. P. (2018). Boundary elements with mesh refinements for the wave equation. Numer. Math., 139(4), 867--912. https://doi.org/10.1007/s00211-018-0954-6
    33. 117.
      Griesemer, M., & Wünsch, A. (2018). On the domain of the Nelson Hamiltonian. J. Math. Phys., 59(4), 042111, 21. https://doi.org/10.1063/1.5018579
    34. 116.
      Griesemer, M., & Linden, U. (2018). Stability of the two-dimensional Fermi polaron. Lett. Math. Phys., 108(8), 1837--1849. https://doi.org/10.1007/s11005-018-1055-2
    35. 115.
      Guo, Y., & Scherer, C. W. (2018). Robust Gain-Scheduled Controller Design with a Hierarchical Structure. IFAC-PapersOnLine, 51(25), 228–233. https://doi.org/10.1016/j.ifacol.2018.11.110
    36. 114.
      Haasdonk, B., & Santin, G. (2018). Greedy Kernel Approximation for Sparse Surrogate Modeling. In W. Keiper, A. Milde, & S. Volkwein (Hrsg.), Reduced-Order Modeling (ROM) for Simulation and Optimization: Powerful  Algorithms as Key Enablers for Scientific Computing (S. 21--45). Springer International Publishing. https://doi.org/10.1007/978-3-319-75319-5_2
    37. 113.
      Haesaert, S., Weiland, S., & Scherer, C. W. (2018). A separation theorem for guaranteed $H_2$ performance through matrix inequalities. Automatica, 96, 306–313. https://doi.org/10.1016/j.automatica.2018.07.002
    38. 112.
      Hang, H., Steinwart, I., Feng, Y., & Suykens, J. A. K. (2018). Kernel Density Estimation for Dynamical Systems. J. Mach. Learn. Res., 19, 1--49.
    39. 111.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2018). Minimal energy problems for strongly singular Riesz kernels. Mathematische Nachrichten, 291, 55–85. https://doi.org/10.1002/mana.201600024
    40. 110.
      Holicki, T., & Scherer, C. W. (2018). A Swapping Lemma for Switched Systems. IFAC-PapersOnLine, 51(25), 346–352. https://doi.org/10.1016/j.ifacol.2018.11.131
    41. 109.
      Holicki, T., & Scherer, C. W. (2018). Output-Feedback Gain-Scheduling Synthesis for a Class of Switched Systems via Dynamic Resetting $D$-Scalings. 57th IEEE Conf. Decision and Control, 6440–6445. https://doi.org/10.1109/CDC.2018.8619128
    42. 108.
      Hsiao, G. C., Steinbach, O., & Wendland, W. L. (2018). Boundary Element Methods: Foundation and Error Analysis. Encyclopedia of Computational Mechanics Second Edition, 62. https://doi.org/10.1002/9781119176817.ecm2007
    43. 107.
      Kohler, M., Krzyzak, A., Tent, R., & Walk, H. (2018). Nonparametric quantile estimation using importance sampling. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 70(2), 439–465. https://doi.org/10.1007/s10463-016-0595-4
    44. 106.
      Kohr, M., & Wendland, W. L. (2018). Layer Potentials and Poisson Problems for the Nonsmooth Coefficient Brinkman System in Sobolev and Besov Spaces. Journal of Mathematical Fluid Mechanics, 4(20), 1921–1965. https://doi.org/10.1007/s00021-018-0394-1
    45. 105.
      Kohr, M., & Wendland, W. L. (2018). Variational approach for the Stokes and Navier–Stokes systems with nonsmooth coefficients in Lipschitz domains on compact Riemannian manifolds. Calculus of Variations and Partial Differential Equations, 57:165, Article 57:165. https://doi.org/10.1007/s00526-018-1426-7
    46. 104.
      Köppel, M., Martin, V., Jaffré, J., & Roberts, J. E. (2018). A Lagrange multiplier method for a discrete fracture model for flow  in porous media. (submitted). https://hal.archives-ouvertes.fr/hal-01700663v2
    47. 103.
      Köppel, M., Martin, V., & Roberts, J. E. (2018). A stabilized Lagrange multiplier finite-element method for flow in  porous media with fractures. (submitted). https://hal.archives-ouvertes.fr/hal-01761591
    48. 102.
      Köppl, T., Santin, G., Haasdonk, B., & Helmig, R. (2018). Numerical modelling of a peripheral arterial stenosis using dimensionally  reduced models and kernel methods. International Journal for Numerical Methods in Biomedical Engineering, 0(ja), e3095. https://doi.org/10.1002/cnm.3095
    49. 101.
      Langer, A. (2018). Investigating the influence of box-constraints on the solution of  a total variation model via an efficient primal-dual method. Journal of Imaging, 4, 1. http://www.mdpi.com/2313-433X/4/1/12
    50. 100.
      Langer, A. (2018). Locally adaptive total variation for removing mixed Gaussian-impulse  noise. International Journal of Computer Mathematics, 19. https://www.tandfonline.com/doi/abs/10.1080/00207160.2018.1438603
    51. 99.
      Langer, A. (2018). Overlapping domain decomposition methods for total variation denoising. http://people.ricam.oeaw.ac.at/a.langer/publications/DDfTV.pdf
    52. 98.
      Maboudi Afkham, B., & Hesthaven, J. S. (2018). Structure-Preserving Model-Reduction of Dissipative Hamiltonian Systems. Journal of Scientific Computing, 1–19. https://doi.org/10.1007/s10915-018-0653-6
    53. 97.
      Magiera, J., & Rohde, C. (2018). A particle-based multiscale solver for compressible liquid-vapor flow. Springer Proc. Math. Stat., 291--304. https://doi.org/10.1007/978-3-319-91548-7_23
    54. 96.
      Raja Sekhar, G. P., Sharanya, V., & Rohde, C. (2018). Effect of surfactant concentration and interfacial slip on the flow  past a viscous drop at low surface Péclet number. International Journal of Multiphase Flow, 107, 82–103. http://arxiv.org/abs/1609.03410
    55. 95.
      Rigaud, G., & Hahn, B. N. (2018). 3D Compton scattering imaging and contour reconstruction for a class of Radon transforms. Inverse Problems, 34(7), 075004. https://doi.org/10.1088/1361-6420/aabf0b
    56. 94.
      Rohde, C., & Zeiler, C. (2018). On Riemann solvers and kinetic relations for isothermal two-phase  flows with surface tension. Z. Angew. Math. Phys., 3, 69, Art. 76. https://doi.org/10.1007/s00033-018-0958-1
    57. 93.
      Rohde, C. (2018). Fully resolved compressible two-phase flow : modelling, analytical and numerical issues. In M. Bulicek, E. Feireisl, & M. Pokorný (Hrsg.), New trends and results in mathematical description of fluid flows (S. 115–181). Birkhäuser. https://doi.org/10.1007/978-3-319-94343-5
    58. 92.
      Ruiz, P. A., Freiberg, U. R., & Kigami, J. (2018). Completely symmetric resistance forms on the stretched Sierpinski gasket. JOURNAL OF FRACTAL GEOMETRY, 5(3), 227–277. https://doi.org/10.4171/JFG/61
    59. 91.
      Scherer, C. W., & Veenman, J. (2018). Stability analysis by dynamic dissipation inequalities: On merging frequency-domain techniques with time-domain conditions. Syst. Control Lett., 121, 7–15. https://doi.org/10.1016/j.sysconle.2018.08.005
    60. 90.
      Scherer, C. W., & Holicki, T. (2018). An IQC theorem for relations: Towards stability analysis of data-integrated systems. IFAC-PapersOnLine, 51(25), 390–395. https://doi.org/10.1016/j.ifacol.2018.11.138
    61. 89.
      Seus, D., Pop, I. S., Rohde, C., Mitra, K., & Radu, F. (2018). A linear domain decompostition method for partially saturated flow in porous media. Comput. Methods Appl. Mech. Eng., 333, 331–355. https://doi.org/10.1016/j.cma.2018.01.029
    62. 88.
      Seus, D., Mitra, K., Pop, I. S., Radu, F. A., & Rohde, C. (2018). A linear domain decomposition method for partially saturated flow  in porous media. Comp. Methods Appl. Mech. Eng., 333, 331--355. https://doi.org/10.1016/j.cma.2018.01.029
    63. 87.
      Sharanya, V., Sekhar, G. P. R., & Rohde, C. (2018). The low surface Péclet number regime for surfactant-laden viscous droplets: Influence of surfactant concentration, interfacial slip effects and cross migration. Int. J. of Multiph. Flow, 107, 82–103. https://doi.org/10.1016/j.ijmultiphaseflow.2018.05.008
    64. 86.
      Wittwar, D., & Haasdonk, B. (2018). Greedy Algorithms for Matrix-Valued Kernels. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1773
  5. 2017

    1. 85.
      Alkämper, M., & Klöfkorn, R. (2017). Distributed Newest Vertex Bisection. Journal of Parallel and Distributed Computing, 104, 1–11. http://dx.doi.org/10.1016/j.jpdc.2016.12.003
    2. 84.
      Alkämper, M., Klöfkorn, R., & Gaspoz, F. (2017). A Weak Compatibility Condition for Newest Vertex Bisection in any  Dimension. http://arxiv.org/abs/1711.03141
    3. 83.
      Alkämper, M., & Langer, A. (2017). Using DUNE-ACFem for Non-smooth Minimization of Bounded Variation  Functions. Archive of Numerical Software, 5(1), 3--19. https://journals.ub.uni-heidelberg.de/index.php/ans/article/view/27475
    4. 82.
      Alla, A., Schmidt, A., & Haasdonk, B. (2017). Model Order Reduction Approaches for Infinite Horizon Optimal Control  Problems via the HJB Equation. In P. Benner, M. Ohlberger, A. Patera, G. Rozza, & K. Urban (Hrsg.), Model Reduction of Parametrized Systems (S. 333--347). Springer International Publishing. https://doi.org/10.1007/978-3-319-58786-8_21
    5. 81.
      Barth, A., & Fuchs, F. G. (2017). Uncertainty quantification for linear hyperbolic equations with    stochastic process or random field coefficients. APPLIED NUMERICAL MATHEMATICS, 121, 38–51. https://doi.org/10.1016/j.apnum.2017.06.009
    6. 80.
      Barth, A., Harrach, B., Hyvoenen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. INVERSE PROBLEMS, 33(11), Article 11. https://doi.org/10.1088/1361-6420/aa8f5c
    7. 79.
      Barth, A., & Stein, A. (2017). A study of elliptic partial differential equations with jump diffusion  coefficients.
    8. 78.
      Barth, A., Harrach, B., Hyvönen, N., & Mustonen, L. (2017). Detecting stochastic inclusions in electrical impedance tomography. Inv. Prob., 33(11), 115012. http://arxiv.org/abs/1706.03962
    9. 77.
      Bhatt, A., & VanGorder, R. (2017). Chaos in a non-autonomous nonlinear system describing asymmetric  water wheels.
    10. 76.
      Brehler, M., Schirwon, M., Göddeke, D., & Krummrich, P. M. (2017). A GPU-Accelerated Fourth-Order Runge-Kutta in the Interaction Picture Method for the Simulation of Nonlinear Signal Propagation in Multimode Fibers. Journal of Lightwave Technology, 35(17), 3622–3628. https://doi.org/10.1109/JLT.2017.2715358
    11. 75.
      Bürger, R., & Kröker, I. (2017). Hybrid Stochastic Galerkin Finite Volumes for the Diffusively Corrected  Lighthill-Whitham-Richards Traffic Model. In C. Cancès & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic  and Parabolic Problems: FVCA 8, Lille, France, June 2017 (S. 189--197). Springer International Publishing. https://doi.org/10.1007/978-3-319-57394-6_21
    12. 74.
      Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., & Santin, G. (2017). Partition of unity interpolation using stable kernel-based techniques. APPLIED NUMERICAL MATHEMATICS, 116(SI), 95–107. https://doi.org/10.1016/j.apnum.2016.07.005
    13. 73.
      Chalons, C., Rohde, C., & Wiebe, M. (2017). A finite volume method for undercompressive shock waves in two space dimensions. ESAIM Math. Model. Numer. Anal., 51(5), 1987–2015. https://doi.org/10.1051/m2an/2017027
    14. 72.
      Chertock, A., Degond, P., & Neusser, J. (2017). An asymptotic-preserving method for a relaxation of the    Navier-Stokes-Korteweg equations. JOURNAL OF COMPUTATIONAL PHYSICS, 335, 387–403. https://doi.org/10.1016/j.jcp.2017.01.030
    15. 71.
      De Marchi, S., Iske, A., & Santin, G. (2017). Image Reconstruction from Scattered Radon Data by Weighted Positive  Definite Kernel Functions.
    16. 70.
      De Marchi, S., Idda, A., & Santin, G. (2017). A Rescaled Method for RBF Approximation. In G. E. Fasshauer & L. L. Schumaker (Hrsg.), Approximation Theory XV: San Antonio 2016 (S. 39--59). Springer International Publishing. https://doi.org/10.1007/978-3-319-59912-0_3
    17. 69.
      Diaz Ramos, J. C., Dominguez Vazquez, M., & Kollross, A. (2017). Polar actions on complex hyperbolic spaces. Mathematische Zeitschrift, 287(3), 1183--1213. https://doi.org/10.1007/s00209-017-1864-5
    18. 68.
      Dibak, C., Schmidt, A., Dürr, F., Haasdonk, B., & Rothermel, K. (2017). Server-Assisted Interactive Mobile Simulations for Pervasive Applications. Proceedings of the 15th IEEE International Conference on Pervasive Computing and Communications (PerCom), 1--10. http://www2.informatik.uni-stuttgart.de/cgi-bin/NCSTRL/NCSTRL_view.pl?id=INPROC-2017-02&engl=1
    19. 67.
      Farooq, M., & Steinwart, I. (2017). An SVM-like Approach for Expectile Regression. Comput. Statist. Data Anal., 109, 159--181. https://doi.org/10.1016/j.csda.2016.11.010
    20. 66.
      Fechter, S., Munz, C.-D., Rohde, C., & Zeiler, C. (2017). A sharp interface method for compressible liquid-vapor flow with phase transition and surface tension. J. Comput. Phys., 336, 347–374. https://doi.org/10.1016/j.jcp.2017.02.001
    21. 65.
      Fehr, J., Grunert, D., Bhatt, A., & Hassdonk, B. (2017). A Sensitivity Study of Error Estimation in Reduced Elastic Multibody  Systems. Proceedings of MATHMOD 2018, Vienna, Austria.
    22. 64.
      Feistauer, M., Roskovec, F., & Sändig, A.-M. (2017). Discontinuous Galerkin Method for an Elliptic Problem with Nonlinear  Boundary Conditions in a Polygon. IMA, 00, 1–31. https://doi.org/10.1093/imanum/drx070
    23. 63.
      Feistauer, M., Bartos, O., Roskovec, F., & Sändig, A.-M. (2017). Analysis of the FEM and DGM for an elliptic problem with a nonlinear  Newton boundary condition. Proceeding of the EQUADIFF 17, 127–136. http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/equadiff/
    24. 62.
      Fetzer, M., & Scherer, C. W. (2017). Absolute stability analysis of discrete time feedback interconnections. IFAC-PapersOnLine, 1, Article 1. https://doi.org/10.1016/j.ifacol.2017.08.757
    25. 61.
      Fetzer, M., & Scherer, C. W. (2017). Full‐block multipliers for repeated, slope‐restricted scalar nonlinearities. Int. J. Robust Nonlin., 27(17), 3376–3411. https://doi.org/10.1002/rnc.3751
    26. 60.
      Fetzer, M., & Scherer, C. W. (2017). Zames-Falb Multipliers for Invariance. IEEE Control Systems Letters, 1(2), 412–417. https://doi.org/10.1109/LCSYS.2017.2718556
    27. 59.
      Fetzer, M., Scherer, C. W., & Veenman, J. (2017). Invariance with dynamic multipliers. IEEE Trans. Autom. Control, 63(7), 1929–1942. https://doi.org/10.1109/TAC.2017.2762764
    28. 58.
      Fetzer, M. (2017). From classical absolute stability tests towards a comprehensive robustness analysis [Dissertation, University of Stuttgart]. https://doi.org/10.18419/opus-9726
    29. 57.
      Fukuizumi, R., Marzuola, J. L., Pelinovsky, D., & Schneider, G. (Hrsg.). (2017). Nonlinear partial differential equations on graphs. Abstracts from the workshop held June 18--24, 2017. Oberwolfach Rep., 14(2), 1805--1868.
    30. 56.
      Funke, S., Mendel, T., Miller, A., Storandt, S., & Wiebe, M. (2017). Map Simplification with Topology Constraints: Exactly and in Practice. Proceedings of the Ninteenth Workshop on Algorithm Engineering and  Experiments, ALENEX 2017, Barcelona, Spain, Hotel Porta Fira, January  17-18, 2017., 185--196. https://doi.org/10.1137/1.9781611974768.15
    31. 55.
      Gaspoz, F. D., Kreuzer, C., Siebert, K., & Ziegler, D. (2017). A convergent time-space adaptive $dG(s)$ finite element method for  parabolic problems motivated by equal error distribution. In Submitted. https://arxiv.org/abs/1610.06814
    32. 54.
      Gaspoz, F. D., Morin, P., & Veeser, A. (2017). A posteriori error estimates with point sources in fractional sobolev spaces. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 33(4), 1018–1042. https://doi.org/10.1002/num.22065
    33. 53.
      Geck, M. (2017). On the construction of semisimple Lie algebras and Chevalley groups. Proceedings of the American Mathematical Society, 145(8), 3233--3247. https://doi.org/10.1090/proc/13600
    34. 52.
      Geck, M., & Müller, J. (2017). Invariant bilinear forms on W-graph representations and linear algebra over integral domains. Algorithmic and experimental methods in algebra, geometry and number theory (eds. G. Böckle, W. Decker, G. Malle), 311–360. https://doi.org/10.1007/978-3-319-70566-8_13
    35. 51.
      Geck, M. (2017). Minuscule weights and Chevalley                      groups. Finite Simple Groups: Thirty Years of the Atlas and Beyond (Celebrating the Atlases and Honoring John Conway, November 2-5, 2015 at Princeton University), 694, 159--176. https://doi.org/10.1090/conm/694/13955
    36. 50.
      Geck, M. (2017). James’ Submodule Theorem and the Steinberg Module. Symmetry, Integrability and Geometry: Methods and Applications, 13. https://doi.org/10.3842/sigma.2017.091
    37. 49.
      Geck, M. (2017). On the modular composition factors of the Steinberg representation. Journal of Algebra, 475, 370--391. https://doi.org/10.1016/j.jalgebra.2015.11.005
    38. 48.
      Giesselmann, J., & Pryer, T. (2017). Goal-oriented error analysis of a DG scheme for a second gradient  elastodynamics model. In C. Cances & P. Omnes (Hrsg.), Finite Volumes for Complex Applications VIII-Methods and Theoretical  Aspects (Bd. 199). http://www.springer.com/de/book/9783319573960
    39. 47.
      Giesselmann, J., & Tzavaras, A. E. (2017). Stability properties of the Euler-Korteweg system with nonmonotone  pressures. Appl. Anal., 96(9), 1528–1546. https://doi.org/10.1080/00036811.2016.1276175
    40. 46.
      Giesselmann, J., & Pryer, T. (2017). A posteriori analysis for dynamic model adaptation in convection-dominated problems. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 27(13), 2381–2423. https://doi.org/10.1142/S0218202517500476
    41. 45.
      Giesselmann, J., Lattanzio, C., & Tzavaras, A. E. (2017). Relative Energy for the Korteweg Theory and Related Hamiltonian Flows in Gas Dynamics. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 223(3), 1427–1484. https://doi.org/10.1007/s00205-016-1063-2
    42. 44.
      Griesemer, M., Schmid, J., & Schneider, G. (2017). On the dynamics of the mean-field polaron in the              high-frequency limit. Lett. Math. Phys., 107(10), 1809--1821. https://doi.org/10.1007/s11005-017-0969-4
    43. 43.
      Griesemer, M. (2017). On the dynamics of polarons in the strong-coupling limit. Rev. Math. Phys., 29(10), 1750030, 21. https://doi.org/10.1142/S0129055X17500301
    44. 42.
      Gutt, R., Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman  systems in Besov spaces on creased Lipschitz domains. Math. Meth. Appl. Sci., 18, 7780–7829. https://doi.org/10.1002/mma.4562
    45. 41.
      Gutt, R., Kohr, M., Mikhailov, S. E., & Wendland, W. L. (2017). On the mixed problem for the semilinear Darcy-Forchheimer-Brinkman PDE system in Besov spaces on creased Lipschitz domains. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 40(18), 7780–7829. https://doi.org/10.1002/mma.4562
    46. 40.
      Haasdonk, B. (2017). Reduced Basis Methods for Parametrized PDEs -- A Tutorial Introduction  for Stationary and Instationary Problems. In P. Benner, A. Cohen, M. Ohlberger, & K. Willcox (Hrsg.), Model Reduction and Approximation: Theory and Algorithms (S. 65--136). SIAM, Philadelphia. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=938
    47. 39.
      Hahn, B. N. (2017). A motion artefact study and locally deforming objects in computerized tomography. Inverse Problems, 33(11), 114001. https://doi.org/10.1088/1361-6420/aa8d7b
    48. 38.
      Hahn, B. N. (2017). Motion Estimation and Compensation Strategies in Dynamic Computerized Tomography. Sensing and Imaging, 18(10), 1–20. https://doi.org/10.1007/s11220-017-0159-6
    49. 37.
      Hang, H., & Steinwart, I. (2017). A Bernstein-type Inequality for Some Mixing Processes and Dynamical Systems with an Application to Learning. Ann. Statist., 45, 708--743. https://doi.org/10.1214/16-AOS1465
    50. 36.
      Harbrecht, H., Wendland, W. L., & Zorii, N. (2017). Riesz energy problems for strongly singular kernels. Math. Nachr. https://doi.org/10.1002/mana.201600024
    51. 35.
      Heil, K., Moroianu, A., & Semmelmann, U. (2017). Killing tensors on tori. J. Geom. Phys., 117, 1--6. https://doi.org/10.1016/j.geomphys.2017.02.010
    52. 34.
      Hintermüller, M., Rautenberg, C. N., Wu, T., & Langer, A. (2017). Optimal Selection of the Regularization Function in a Weighted Total  Variation Model. Part II: Algorithm, Its Analysis and Numerical Tests. Journal of Mathematical Imaging and Vision, 1--19. https://link.springer.com/article/10.1007/s10851-017-0736-2
    53. 33.
      Hintermüller, M., Langer, A., Rautenberg, C. N., & Wu, T. (2017). Adaptive regularization for reconstruction from subsampled data. WIAS Preprint No. 2379. http://www.wias-berlin.de/preprint/2379/wias_preprints_2379.pdf
    54. 32.
      Höllig, K. V., & Hörner, J. V. (Hrsg.). (2017). Aufgaben und Lösungen zur höheren Mathematik (S. xi, 533 Seiten) [Aufgabensammlung]. Springer Spektrum. http://deposit.d-nb.de/cgi-bin/dokserv?id=86f385b1e03e40a0a23a214a0c3c5f72&prov=M&dok_var=1&dok_ext=htm
    55. 31.
      Kane, B., Klöfkorn, R., & Gersbacher, C. (2017). hp--Adaptive Discontinuous Galerkin Methods for Porous Media Flow. International Conference on Finite Volumes for Complex Applications, 447--456.
    56. 30.
      Kane, B. (2017). Using DUNE-FEM for Adaptive Higher Order Discontinuous Galerkin  Methods for Two-phase Flow in Porous Media. Archive of Numerical Software, 5(1), 129--149.
    57. 29.
      Kohr, M., Medkova, D., & Wendland, W. L. (2017). On the Oseen-Brinkman flow around an (m-1)-dimensional obstacle. Monatshefte für Mathematik, 483, 269–302. https://doi.org/MOFM-D16-00078
    58. 28.
      Kohr, M., Mikhailov, S., & Wendland, W. L. (2017). Transmission problems for the Navier-Stokes and Darcy-Forchheimer-Brinkman  systems in Lipschitz domains on compact Riemannian mani. J of Mathematical Fluid Mechanics, 19, 203–238.
    59. 27.
      Kollross, A. (2017). Hyperpolar actions on reducible symmetric spaces. Transformation Groups, 22(1), 207--228. https://doi.org/10.1007/s00031-016-9384-7
    60. 26.
      Kutter, M., Rohde, C., & Sändig, A.-M. (2017). Well-posedness of a two scale model for liquid phase epitaxy with elasticity. Contin. Mech. Thermodyn., 29(4), 989–1016. https://doi.org/10.1007/s00161-015-0462-1
    61. 25.
      Köppel, M., Kröker, I., & Rohde, C. (2017). Intrusive Uncertainty Quantification for Hyperbolic-Elliptic Systems  Governing Two-Phase Flow in Heterogeneous Porous Media. Comput. Geosci., 21, 807–832. https://doi.org/10.1007/s10596-017-9662-z
    62. 24.
      Langer, A. (2017). Automated Parameter Selection in the L1-L2-TV Model for Removing  Gaussian Plus Impulse Noise. Inverse Problems, 33, 41. http://people.ricam.oeaw.ac.at/a.langer/publications/L1L2TVm.pdf
    63. 23.
      Langer, A. (2017). Automated Parameter Selection for Total Variation Minimization in  Image Restoration. Journal of Mathematical Imaging and Vision, 57, 239--268. https://doi.org/10.1007/s10851-016-0676-2
    64. 22.
      Maboudi Afkham, B., & Hesthaven, J. (2017). Structure Preserving Model Reduction of Parametric Hamiltonian Systems. SIAM Journal on Scientific Computing, 39(6), A2616–A2644. https://doi.org/10.1137/17M1111991
    65. 21.
      Martini, I., Rozza, G., & Haasdonk, B. (2017). Certified Reduced Basis Approximation for the Coupling of Viscous  and Inviscid Parametrized Flow Models. Journal of Scientific Computing. https://doi.org/10.1007/s10915-017-0430-y
    66. 20.
      Maz’ya, V., Natroshvili, D., Shargorodsky, E., & Wendland, W. L. (Hrsg.). (2017). Recent Trends in Operator Theory and Partial Differential Equations.  The Roland Duduchava Anniverary Volume (Nr. 258; Nummer 258). Birkhäuser/Springer International.
    67. 19.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). On Resolution of Boundary Layers of Exponential Profile with Small  Thickness Using an Upwind Method in IGA.
    68. 18.
      Minbashian, H. (2017). Wavelet-based Multiscale Methods for Numerical Solution of Hyperbolic  Conservation Laws. Amirkabir University of Technology (Tehran 11/2017 Polytechnic),  Tehran, Iran.
    69. 17.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). An adaptive wavelet space-time SUPG method for hyperbolic conservation  laws. Numerical Methods for Partial Differential Equations, 33(6), 2062–2089. https://doi.org/10.1002/num.22180
    70. 16.
      Minbashian, H., Adibi, H., & Dehghan, M. (2017). An Adaptive Space-Time Shock Capturing Method with High Order Wavelet  Bases for the System of Shallow Water Equations. International Journal of Numerical Methods for Heat & Fluid Flow.
    71. 15.
      Pelinovsky, D., & Schneider, G. (2017). Bifurcations of standing localized waves on periodic graphs. Ann. Henri Poincaré, 18(4), 1185--1211.
    72. 14.
      Rösinger, C. A., & Scherer, C. W. (2017). Structured Controller Design With Applications to Networked Systems. Proc. 56th IEEE Conf. Decision and Control. https://doi.org/10.1109/CDC.2017.8264365
    73. 13.
      Santin, G., & Haasdonk, B. (2017). Convergence rate of the data-independent P-greedy algorithm in  kernel-based approximation. Dolomites Research Notes on Approximation, 10, 68--78. http://www.emis.de/journals/DRNA/9-2.html
    74. 12.
      Schmid, J., & Griesemer, M. (2017). Well-posedness of non-autonomous linear evolution equations in              uniformly convex spaces. Math. Nachr., 290(2–3), 435--441. https://doi.org/10.1002/mana.201500052
    75. 11.
      Schmidt, A., & Haasdonk, B. (2017). Data-driven surrogates of value functions and applications to feedback  control for dynamical systems. University of Stuttgart. http://www.simtech.uni-stuttgart.de/publikationen/prints.php?ID=1742
    76. 10.
      Schmidt, A., & Haasdonk, B. (2017). Reduced basis approximation of large scale parametric algebraic Riccati  equations. ESAIM: Control, Optimisation and Calculus of Variations. https://doi.org/10.1051/cocv/2017011
    77. 9.
      Schneider, G., & Uecker, H. (2017). Nonlinear PDEs. A dynamical systems approach. In Grad. Stud. Math. (Bd. 182, S. xiii + 575). Providence, RI: American Mathematical Society (AMS).
    78. 8.
      Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Entropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27. https://doi.org/10.1016/j.jat.2016.11.006
    79. 7.
      Steinwart, I., Sriperumbudur, B. K., & Thomann, P. (2017). Adaptive Clustering Using Kernel Density Estimators. Fakultät für Mathematik und Physik, Universität Stuttgart.
    80. 6.
      Steinwart, I. (2017). A Short Note on the Comparison of Interpolation Widths, Wntropy Numbers, and Kolmogorov Widths. J. Approx. Theory, 215, 13--27.
    81. 5.
      Steinwart, I. (2017). Representation of Quasi-Monotone Functionals by Families of Separating Hyperplanes. Math. Nachr., 290, 1859--1883. https://doi.org/10.1002/mana.201500350
    82. 4.
      Tempel, P., Schmidt, A., Haasdonk, B., & Pott, A. (2017). Application of the Rigid Finite Element Method to the Simulation  of Cable-Driven Parallel Robots. In Computational Kinematics (S. 198--205). Springer International Publishing. https://doi.org/10.1007/978-3-319-60867-9_23
    83. 3.
      Thomann, P., Steinwart, I., Blaschzyk, I., & Meister, M. (2017). Spatial Decompositions for Large Scale SVMs. In A. Singh & J. Zhu (Hrsg.), Proceedings of Machine Learning Research Volume 54: Proceedings of the 20th International Conference on Artificial Intelligence and Statistics 2017 (S. 1329--1337).
    84. 2.
      Wirth, J. (2017). On t-dependent hyperbolic systems. Part 2. J. Math. Anal. Appl., 448(1), 293--318. https://doi.org/10.1016/j.jmaa.2016.11.026
    85. 1.
      Wittwar, D., Schmidt, A., & Haasdonk, B. (2017). Reduced Basis Approximation for the Discrete-time Parametric Algebraic  Riccati Equation. University of Stuttgart.
Zum Seitenanfang