Versuche - Physikalisches Praktikum für Lehramt III

Hier werden die im aktuellen Semester angebotenen Versuche präsentiert

Versuchsangebot im Wintersemester 2019

Assistent: Ristok, Simon
Institut: 4.PI
Raum: 4-555
Tel.: 60517
E-Mail: s.ristok (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.572    Telefon: 64848

Die Spektren verschiedener Präparate werden detektiert und die unterschiedlichen Anteile anhand von Eichspektren interpretiert. Aus Absorbermessungen wird der lineare Absorptionskoeffizient von Blei und Aluminium bestimmt. Dieser Koeffizient ergibt sich als Summe aus den verschiedenen Wechselwirkungsmechanismen von γ-Strahlung mit Materie wie zum Beispiel Photoeffekt, Comptoneffekt und Paarbildung.
Es werden die Eigenschaften von Proportionalzählrohr und Szintillationszähler miteinander verglichen. Außerdem werden mit einem γ-Detektor dosimetrische Messungen an einem 60Co-Präparat durchgeführt und daraus die maximal zulässige Aufenthaltsdauer an einem belasteten Arbeitsplatz berechnet.

Stichworte:
γ-Strahlung (Entstehung, Detektion, Wechselwirkung mit Materie), Zählrohr, Szintillationszähler, Multichannelanalyser, dosimetrische Grundbegriffe, biologische Strahlenwirkung

Assistent: Walter, Ramon
Institut: 4PI
Raum: 4-514
Tel.: 64956
E-Mail: r.walter (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.909    Telefon: 64871

Quantum Analogs ist ein akustisches Experiment zur Vermittlung der Wellenmechanik. Die Basis des Experiments ist die Analogie zwischen der mathematischen Beschreibung eines Elektrons im Potential (Schrödinger-Gleichung) und dem Verhalten normaler Schallwellen in Luft (Helmholtz-Gleichung). Der große Vorteil akustischer Experimente ist dabei, dass Schall-Phänomene auf einer dem Menschen gut zugänglichen Zeit- und Längenskala erscheinen.
Der experimentelle Aufbau erlaubt es, akustische Analogien zu ein- und dreidimensionalen quantenmechanischen Systemen zu untersuchen. Untersucht werden einmal die akustischen Analogons zum Wasserstoff-Atom und Wasserstoff-Molekül und zum Anderen die Dispersion in eindimensionalen "akustischen Halbleitern".

Stichworte:
Schrödinger-Gleichung, Wasserstoffatom, Wasserstoffmolekül, Bragg-Bedingung, Bandlücke, reziproker Raum, Dispersionsrelation, Brillouin-Zone, reduziertes Zonenschema

Assistent: Schmid, Michael
Institut: 4.PI
Raum: 4-455
Tel.: 60519
E-Mail: m.schmid (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.543    Telefon: 64867

In dem Versuch wird ein einfacher He-Ne-Gaslaser für verschiedene Auskoppelspiegel justiert. Der Stabilitätsbereich verschiedener Resonator Anordnungen wird bestimmt und die Laserverstärkung ermittelt. Außerdem wird der axiale Verlauf des Laserstrahls durch eine Linse auf eine CCD-Kamera abgebildet und ausgemessen.
Durch frequenzselektive Elemente im Resonator wird der Laser auf verschiedene Wellenlängen stabilisiert. Dabei wird die Ausgangswellenlänge über ein CCD-Spektrometer bestimmt. Die verschiedenen Moden des He-Ne-Lasers werden mit Hilfe eines Fabry-Pérot-Interferometers untersucht.


Stichworte:
Laserbedingung, Lasertypen, 2-, 3-, 4-Niveaulaser, stimulierte und spontane Emission, Absorption, Linienverbreiterungsmechanismen, Lasermoden, free spectral range, finesse, axiale und transversale Moden, Fabry-Pérot-Interferometer.

Assistent: Defrance, Josselin
Institut: 4.PI
Raum: 4-516
Tel.: 65188
E-Mail: j.defrance (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.939    Telefon: 64864

Beim Messen liegt die gesuchte Information meist in einem zeitabhängigen Spannungssignal V(t) vor, also in der Zeitdomäne. Mit einen Oszilloskop lassen sich diese Signal graphisch darstellen. Oft ist die gesuchte Information aber frequenz-codiert, man interessiert sich also nur für bestimmte Frequenzinhalte. Mit Hilfe eines Spektrum Analysators können die Signale in der Frequenzdomäne sichtbar gemacht werden.
Im Versuch werden am Beispiel einfacher physikalischer Versuche (akustischer Resonator, gekoppelte Pendel, Förster-Sonde) die vielfältigen Möglichkeiten der Fouriermethoden veranschaulicht. Wo das Oszilloskop nur Rauschen sieht, kann man im Fourierraum auch noch Signale detektieren, die sich in der Amplitude um den Faktor 104 unterscheiden. Daneben eignet sich ein Spektrum Analysator hervorragend zur Analyse von amplituden- oder frequenzmodulierten Signalen oder der Charakterisierung von Nichtlinearitäten.

   

Zum Seitenanfang