Fortgeschrittenenpraktikum - Versuche

Hier werden die im aktuellen Semester angebotenen Versuche präsentiert.

Versuchsangebot im Sommersemester 2024

Assistent: Scholz, Achim
Institut: 5.PI
Raum: 5.125
Tel.: 61754
E-Mail: ascholz (at) pi5.physik.uni-stuttgart.de

Versuch:
Raum: 1.544    Telefon: 64850

Ziel des Versuchs ist, einige grundlegende Laserspektroskopiemethoden und ein Diodenlasersystem kennen zu lernen, wie sie in Atom- und Quantenoptik-Experimenten eingesetzt werden.
Die Spektroskopie wird an einer Dampfzelle mit Rubidium durchgeführt, wobei der Übergang 5S1/2 → 5P3/2 mit einer natürlichen Linienbreite von Γ / 2π = 6 MHz durch den Laser angeregt wird. Sowohl der Grundzustand als auch der angeregte Zustand besitzen eine Hyperfeinstruktur, die im Versuch ausgemessen werden sollen.
Da die Rubidium-Dampfzelle etwa Zimmertemperatur hat sind die Spektrallinien verbreitert und in der einfachsten Spektroskopie, der Absorptionsspektroskopie, kann nur die Hyperfeinaufspaltung des Grundzustands 5S1/2 beobachtet werden. Allerdings lassen sich aus diesem Spektrum schon Eigenschaften des Rubidium-Dampfes bestimmen (Temperatur, Absorptionskoeffizient, Dampfdruck). Zur Untersuchung der Hyperfeinstruktur im angeregten Zustand 5P3/2 wird die Sättigungsspektroskopie angewandt.
Da die Frequenz des Lichtes eines Diodenlasers durch thermische Schwankungen und Veränderungen im Strom mehrere 10 MHz pro Stunde driften kann, soll der Laser schließlich mithilfe einer Spektroskopie auf einen atomaren Übergang frequenzstabilisiert werden, wie es zum Beispiel zum Kühlen und Fangen von Atomen in einer magnetooptischen Falle (MOT) notwendig ist. Dazu werden im Versuch die Polarisationsspektroskopie und die DAVLL-Spektroskopie eingesetzt.

Stichworte:
Halbleiterlaser, Gitter-stabilisierter Diodenlaser, Frequenzstabilisierung von Halbleiterlasern, Doppler-verbreiterte Spektroskopie, Doppler-freie Spektroskopie, Sättigungs-Spektroskopie, Polarisations-Spektroskopie, Hyperfeinaufspaltung

Assistent: Portalupi, Simone Luca
Institut: IHFG
Raum: 0.044
Tel.: 65226
E-Mail: s.portalupi (at) ihfg.uni-stuttgart.de

Versuch:
Raum: 1.535    Telefon: 64866

Mit einem Intensitätsinterferometer (auch Hanbury-Brown-Twiss-Interferometer genannt) kann die Korrelationsfunktion zweiter Ordnung eines Lichtfeldes gemessen werden. Diese gibt Auskunft über die zeitliche Wahrscheinlichkeitsverteilung, zwei einzelne Photonen aus der Emission einer Lichtquelle als Funktion ihres relativen zeitlichen Abstandes (Delay) „tau“ zu detektieren.
Die Messung der Korrelationsfunktion zweiter Ordnung ist heute eine etablierte Methode, die es erlaubt, die charakteristische Photonenstatistik unterschiedlicher Arten von Lichtquellen zu unterscheiden und auch qualitativ zu analysieren. Sie ist somit ein Standardwerkzeug in vielen Bereichen der Quantenoptik.
Im vorliegenden Versuch sollen Messungen an klassischen Lichtquellen wie einer Glühbirne (schwarzer Strahler) und einem Laser (kohärenter Strahler) durchgeführt werden. Die charakteristische Zwei-Photonen-Korrelation dieser Art von Quellen können noch im Rahmen der klassischen Feldbeschreibung (ohne Photonenhypothese) erklärt werden.
Im Gegensatz dazu zeigt zum Beispiel die Korrelation der Emission von atom-ähnlichen Emitterstrukturen wie NV-Störstellenzentren in Diamant ein Verhalten nicht-klassischer Art, welches nur im Rahmen der Annahme eines gequantelten Lichtfeldes interpretiert werden kann. Anders als bei klassischen Lichtquellen kann solch ein isoliertes NV-Zentrum zur Emission nur eines einzelnen Photons angeregt werden. Aufgrund der Tatsache, dass Photonen die unteilbar kleinsten Quanten des elektromagnetischen Feldes darstellen und nach Emission eines Photons durch ein NV-Zentrum zunächst eine erneute Anregung der Quelle erfolgen muss, werden bei Messung eines solchen Emitters niemals zwei Photonen gleichzeitig detektiert. Man beobachtet hier den technologisch wichtigen Effekt des „Photonen-Antibunching“, also zeitlich separierter Photonen.

Stichworte:
Einzelphotonendetektion, Korrelationsfunktion 2. Ordnung, Hanbury Brown und Twiss Interferometer, Kohärenz des Lichtfeldes, Immersionsmikroskop, Raumfilter, schwarze Strahler, kohärente Strahler, nichtklassische Lichtquellen, (Super-/Sub-) Poisson-Statistik, quantenmechanischer harmonischer Oszillator, Feldfluktuationen und Varianz der Lichtzustände

Assistent: Longjiang Ding
Institut: 2.PI
Raum: 5.555
Tel.: 65287
E-Mail: longjiang.ding (at) pi2.uni-stuttgart.de

Versuch:
Raum: 5.330    Telefon:

In diesem Versuch wird die Wechselwirkung zwischen einem kolloidalen Teilchen, das in Wasser suspendiert ist, und einer Glaswand untersucht. Bei diesen mikroskopischen Objekten treten Kräfte im Femtonewton Bereich auf, die mit herkömmlichen Methoden, wie Rasterkraftmikroskopie, kaum aufgelöst werden können. Die hier verwendete Totale-Interne-Reflektionsmikroskopie (TIRM) erreicht die dazu benötigte Sensitivität indem die Brownsche Bewegung des Teilchens mit Hilfe von evaneszenter Lichtstreuung detektiert wird.
Auf diese Weise können sowohl das elektrostatische Potential, die Gravitationskraft als auch Lichtkräfte, die auf das kolloidale Teilchen wirken, analysiert werden. Eine (hydro-) dynamische Auswertung der Messdaten erlaubt darüber hinaus die Bestimmung der Abstandsabhängigkeit des Diffusionskoeffizienten vor einer Oberfläche.

Stichworte:
Brownsche Bewegung, Diffusion vor einer Wand, kolloidale Wechselwirkungen, evaneszentes Lichtfeld, optische Pinzette, Lichtkräfte

Assistent: Aniruddha Deshpande
Institut: 1.PI
Raum: 3.326a
Tel.: 64896
E-Mail: aniruddha-chandrashekhar.deshpande (at) pi1.uni-stuttgart.de

Versuch:
Raum: 3.326    Telefon:

Der damals 22-jährige Student Brian D. Josephson sagte 1962 aufgrund der BCS-Theorie interessante Tunneleffekte bei Supraleitern voraus, die inzwischen vielfältige praktische Anwendungen gefunden haben. So können zum Beispiel durch Ausnutzung des DC-Josephson-Effekts mit Hilfe von so genannten SQUIDs die magnetischen Eigenschaften eines Festkörpers untersucht werden. Der AC-Josephson-Effekt kann zur Präzisionsbestimmung von h/2e verwendet werden und ermöglicht so die Einführung eines genaueren, besser reproduzierbaren Spannungsnormals.
Im Praktikumsversuch wird eindrucksvoll das Tunneln von Quasiteilchen und Cooper-Paaren beobachtet. Als Probe dient hierzu ein Niob-Aluminiumoxid-Tunnelkontakt. Mit Hilfe der Tunnelexperimente wird das supraleitende Niob charakterisiert. Hierbei können wichtige Kenngrößen des Supraleiters wie die Sprungtemperatur oder die Temperaturabhängigkeit der Energielücke sehr elegant bestimmt werden. Zudem kann mit Hilfe eines externen Magnetfeldes die charakteristische Magnetfeldabhängigkeit des DC-Josephson-Stromes beobachtet werden.
Im Versuch wird hierzu in die Tieftemperatur- und Vakuumtechnik eingeführt.

Stichworte:
Supraleitung, Tunneleffekt, Quasiteilchen-Tunneln, Cooper-Paar-Tunneln, Kryo-Technik, flüssiges Helium

Assistent: Konrad, Thomas
Institut: 4.PI
Raum: 4.516
Tel.: 60518
E-Mail: thomas.konrad (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.543    Telefon: 64867

Ziel des Versuchs ist es, einen Standard-Transmissions-Spektroskopie-Aufbau zu justieren und damit die optischen Eigenschaften metallischer photonischer Kristalle zu untersuchen.
Photonische Kristalle sind in der Regel künstlich hergestellte periodische Strukturen, bei denen der Brechungsindex räumlich moduliert wird. Dabei liegen die Perioden der Modulation in der Größenordnung von optischen Wellenlängen. Ähnlich wie natürliche Kristalle für Ladungsträger können photonische Kristalle eine energetische Bandstruktur für Photonen aufweisen. Typischerweise werden sie durch regelmäßige Anordnung von Silikatstrukturen, Polymeren oder Metallen hergestellt.
Metallische photonische Kristalle wie in diesem Versuch bestehen aus periodisch angeordneten kleinen Goldpunkten/-drähten auf einem Wellenleiter. Daher werden die optischen Eigenschaften der Probe sowohl durch die Goldstruktur als auch durch das Wellenleitermaterial bestimmt.
Im Versuch werden winkelabhängige Extinktionsspektren von Proben verschiedener Perioden für TE- und TM-Polarisation aufgenommen und daraus die Rabi-Aufspaltung sowie die Bandstruktur bestimmt.

Stichworte:
Linsen, Abbildungen, Partikelplasmon, Wellenleiter, geführte und quasigeführte Moden, Totalreflexion, Beugungsgitter, Polariton, Polariton-Aufspaltung, Bandstruktur, Bandlücke, vollständige Bandlücke

Assistent: Pfister, Ulrich
Institut: IHFG
Raum: 1.009
Tel.: 63888
E-Mail: ulrich.pfister (at) ihfg.uni-stuttgart.de

Versuch:
Raum: 1.540    Telefon: 64855

In diesem Versuch werden die optischen Eigenschaften von Halbleiter-Quantenpunkten untersucht. Quantenpunkte sind künstlich hergestellte Strukturen, die Elektronen und Löcher in einem sehr kleinen Volumen einschließen und somit Quantisierungseffekte bei den erlaubten Elektronen- und Lochzuständen hervorrufen. Diese Eigenschaften machen sie besonders attraktiv für die Entwicklung von neuartigen Lichtquellen wie z.B. Einzelphotonenemittern oder Lasern mit sehr niedrigen Schwellstromdichten.
Die Photolumineszenzspektren der Quantenpunkte werden bei tiefer Temperatur (ca. 4 K) gemessen. Hierzu werden die Proben in einem Helium-Flusskryostaten abgekühlt und mit Hilfe eines HeNe-Lasers optisch angeregt. Das emittierte Licht wird mit Hilfe von Linsen gesammelt und in einem Monochromator spektral zerlegt. Zum Nachweis wird eine CCD-Kamera mit der zugehörigen Auswertesoftware verwendet.

Assistent: Wenzel, Maxim
Institut: 1.PI
Raum: 3.524a
Tel.: 69789
E-Mail: maxim.wenzel (at) pi1.uni-stuttgart.de

Versuch:
Raum: 3.530    Telefon:

Glasartige Stoffe bilden beim Erstarren keine Kristallstrukturen aus, sondern gehen bei der sogenannten Glastemperatur in ein metastabiles thermodynamisches Gleichgewicht über. Über diesen Zustand ist seit Jahren eine intensive Diskussion im Gang: Kann man bei einem erstarrten glasartigen Stoff von einem Festkörper sprechen oder muss man ihn als sehr zähe Flüssigkeit ansehen? Diese Frage gewinnt immer mehr an Bedeutung, da zu den glasartigen Stoffen nicht nur Fensterglas oder verschiedene Alkohole gehören, sondern auch polymere Kunststoffe, die in der Herstellung von Datenträgern wie Disketten oder CDs verwendet werden.
Eine Möglichkeit, etwas über die Dynamik von Gläsern zu erfahren, ist die Untersuchung der dielektrischen Eigenschaften in einem elektrischen Wechselfeld. Mit dieser Methode wird in dem Versuch die Glastemperatur für Glycerin bestimmt.

Stichworte:
Hochfrequenz-Messtechnik, Netzwerkanalysator, Elektrostatik, Elektrodynamik, Relaxationsprozesse und deren Temperaturabhängigkeit, Peltier-Element

Assistent: Unnikrishnan, Govind
Institut: 5.PI
Raum: 5.125
Tel.: 67467
E-Mail: govinduk (at) pi5.physik.uni-stuttgart.de

Versuch:
Raum: 1.544    Telefon: 64850

Elektromagnetisch induzierte Transparenz ist ein quantenmechanischer Effekt mit dem man die optischen Eigenschaften eines Mediums durch ein weiteres Lichtfeld so beeinflussen kann, dass ein Wechsel von Absorption zu Transparenz möglich ist. Dieser Effekt hat auch einen starken Einfluss auf die Dispersionsrelation des Mediums, was zum Beispiel extrem langsame Gruppengeschwindigkeiten nach sich zieht.
Mit Hilfe der steilen Dispersion können Lichtpulse sogar abgebremst (Nature 397, 594 (1999)) oder gespeichert werden, was für die Realisierung von Quantenkommunikationsnetzwerken ein fundamentaler Baustein sein kann. Vorraussetzung ist lediglich ein Medium mit einem passenden 3-Niveau System, wie zum Beispiel in einem Gas von Rubidiumatomen.
Ziel des Versuchs ist es, in einer Rubidium-Dampfzelle das Phänomen der Elektromagnetisch Induzierte Transparenz zu beobachten und seine Abhängigkeit auf verschiedene Parameter experimentell zu untersuchen (z.B. Laserintensitäten, Lichtpolarisation, Magnetfelder...). In der Auswertungsphase soll schließlich eine quantitative Übereinstimmung von den Messungen mit selbst erstellten numerischen Simulationen erzielt werden.

Voraussetzung:
FP-Versuch Laserspektroskopie

Assistent: Scheffler, Marc
Institut: 1. Physikalisches Institut
Raum: 3.554
Tel.: 64944
E-Mail: scheffl (at) pi1.physik.uni-stuttgart.de

Versuch:
Raum: 1. PI    Telefon:

Das Blockpraktikum Festkörperspektroskopie wird am 1. Physikalischen Institut (Prof. Martin Dressel) durchgeführt. Dabei werden Fragen aus der Festkörperphysik behandelt, die z.B. Supraleiter, magnetische Materialien oder exotische Metalle betreffen können. Die Experimente werden an verschiedenen Spektrometern durchgeführt, die sonst für die Forschung eingesetzt werden. Die hierbei zur Verfügung stehenden Frequenzbereiche umfassen sichtbares Licht, Infrarotstrahlung, THz-Strahlung sowie Mikrowellen. Häufig werden die Experimente bei tiefen Temperaturen durchgeführt.
Die Fragestellungen dieses Blockpraktikums wählen wir jeweils so aus, dass sie im Rahmen einer einwöchigen Messphase sowie einer weiteren Woche der Datenauswertung und Interpretation behandelt werden können. Diese Themen sind meist direkt mit den Forschungsaktivitäten des Instituts verknüpft, so dass sich für die Teilnehmer vielfältige Einblicke in die aktuelle Festkörperforschung ergeben.

Bei Fragen können Sie sich an Dr. Marc Scheffler wenden:
marc.scheffler@pi1.physik.uni-stuttgart.de

Assistent: Jetter, Michael
Institut: IHFG
Raum: 0.014
Tel.: 65105
E-Mail: m.jetter (at) ihfg.uni-stuttgart.de

Versuch:
Raum: IHFG    Telefon:

In diesem Blockpraktikum werden mittels eines in der Halbleiterindustrie etablierten Technik, der metallorganischen Gasphasenepitaxie, Halbleiter-Nanostrukturen hergestellt. Diese werden unter Verwendung von Röntgendiffraktometrie, Rastermikroskopen und optischer Spektroskopie charakterisiert. Basierend auf diesen Untersuchungen werden detaillierte ortsaufgelöste optische Untersuchungen vorgenommen um die elektronischen Eigenschaften der hergestellten Nanostrukturen zu erschließen.

Assistent: Bushmakin, Vladislav
Institut: 3.PI
Raum: 02.117
Tel.: 63874
E-Mail: v.bushmakin (at) pi3.uni-stuttgart.de

Versuch:
Raum: 3. PI    Telefon:

Der Versuch Quantencomputer behandelt die praktische Implementierung von Quantenalgorithmen mithilfe optisch aktiver, paramagnetischer Festkörperdefekte und vertieft dabei das Verständnis elementarer Begriffe und Techniken der Quantentechnologie, magnetischer Spinresonanz, und Quantenoptik.

Assistent: Noack, Philipp
Institut: IHFG
Raum: 1.007
Tel.: 62369
E-Mail: p.noack (at) ihfg.uni-stuttgart.de

Versuch:
Raum: 1.540    Telefon: 64855

In diesem Versuch werden die optischen Eigenschaften von Bulk-Halbleitern und Halbleiterquantenwells untersucht. Zusätzlich wird mit einer Natriumdampflampe das Auflösungsvermögen des Gitterspektrometers mit verschiedenen Gratings untersucht.
Quantenwells sind niederdimensionale Strukturen mit besonderen Eigenschaften. Sie werden für verschiedene Laser als aktives Medium eingesetzt.
In diesem Versuch wird die Bandstruktur von verschiedenen Halbleiterheterostrukuren durch das Lumineszenzspektrum untersucht. Insbesondere wie sich die Bandlücke durch Materialkomposition und Dicke beeinflussen lässt. Für die Luminszenzuntersuchungen werden die Proben mit einem Badkryostaten in flüssigem Helium auf 4 K abgekühlt und mit einem Helium-Neon-Laser optisch angeregt. Das Spektrum wird dann mittels eines Gitterspektrometers und einer CCD-Kamera spektral aufgelöst detektiert.
Die Ergebnisse werden anschließend mit der Literatur verglichen.

Stichworte:
HeNe-Laser, Halbleiter-Heterostrukturen, Vegardsches Gesetz, Donator-Akzeptor-Übergang, Potentialtopfmodell, optische Übergänge (in QWs), tiefkalte Gase (N2, He), Exziton, Badkryostat, Natrium D-Linie, Spektrometer, CCD

Assistent: Frank, Bettina
Institut: 4. Physikalisches Institut
Raum: 4.549
Tel.: 65109
E-Mail: b.frank (at) physik.uni-stuttgart.de

Versuch:
Raum: 1.907    Telefon: 64870

Metamaterialien sind eines der aktuellsten Themen der Nanooptik. Optische Tarnkappen, perfekte Linsen, die Brechung des Abbe'schen Beugungslimits können mit Metamaterialien realisiert werden.
Im Blockpraktikum "Metamaterialien" werden wir selber Metamaterialien mit Hilfe einer neuen bottom-up Methode herstellen, wobei eine Nanokugelmonolage als Aufdampfmaske für verschiedene metallische Nanostrukturen dient. Anschließend wird ihre Geometrie im Elektronenmikroskop charakterisiert und ihre optischen Eigenschaften spektroskopisch vermessen.
Der spannende viertägige Versuch verknüpft Optik, Festkörperphysik und Spektroskopie und endet mit einer englischen Abschlusspräsentation.

Stichworte:
Plasmonik, Licht und Materie Wechselwirkung, Aufdampfen metallischer Nanostrukturen

Assistent: Adyant Agrawal
Institut: ICP
Raum: 01.032
Tel.:
E-Mail: aagrawal (at) icp.uni-stuttgart.de

Versuch:
Raum: ICP    Telefon:

Dieser Versuch soll eine Einführung in die Visualisierung und Molekulardynamik von Biomolekülen geben. Dabei werden zunächst Strukturen einiger beispielhafter Proteine betrachtet und charakterisiert. Desweiteren werden zwei Proteine mit Hilfe der klassischen Molekulardynamik untersucht.
Die Durchführung dieses Versuchs gliedert sich in vier Abschnitte. Für den ersten Praktikumstag ist eine Visualisierung verschiedener Proteine, die Vorbereitung der Eingabe-Daten und der Start der Simulation vorgesehen. Am zweiten Praktikumstag sollen die produzierten Ergebnisse analysiert werden.

Assistent: Angstenberger, Simon
Institut: 4.PI
Raum: 4.308
Tel.: 65071
E-Mail: simon.angstenberger (at) pi4.uni-stuttgart.de

Versuch:
Raum: 1.922    Telefon: 64877

In diesem Versuch werden zwei für die Laserentwicklung sehr wichtige nichtlineare optische Effekte untersucht: Die Frequenzverdopplung (SHG) und die sättigbare Absorption eines Materials.
Der Schwerpunkt des Versuchs liegt auf der Anwendung dieser Effekte, die zum Beispiel für frequenzverdoppelte bzw. gepulste Lasersysteme genutzt werden.
Im ersten Teil des Versuchs wird zunächst ein sehr kompakter diodengepumpter Nd:YAG-Laser aufgebaut. Es werden alle relevanten Laserparameter untersucht und der Aufbau optimiert.
Im zweiten Teil des Versuchs wird untersucht, wie die Laserstrahlung am effizientesten frequenzverdoppelt werden kann (beim FP-Versuch werden beispielsweise aus 1064 nm 532 nm erzeugt). Außerdem werden mit Hilfe eines sättigbaren Absorbers kurze Laserpulse erzeugt.

Stichworte:
kurze Laserpulse, Second Harmonic Generation, Stabilität von Resonatoren, sättigbare Absorption

Assistent: Achyut Tiwari
Institut: 1.PI
Raum: 3.556
Tel.: 64898
E-Mail: achyut.tiwari (at) pi1.uni-stuttgart.de

Versuch:
Raum: 1.905    Telefon: 64869

Obwohl Ferroelektrika in der industriellen Anwendung in Kondensatoren, elektromechanischen Wandlern oder in der Datenspeicherung große Bedeutung haben, werden sie in den Grundvorlesungen der Festköperphysik meist nur kurz behandelt. Ferroelektrische Kristalle können grob in zwei Klassen eingeteilt werden, die einen zeigen einen displaziven, die anderen einen Ordnungs-Unordnungs-Phasenübergang. Sie sind damit auch typische Vertreter für einen Phasenübergang erster bzw. zweiter Ordnung. Im Praktikumsversuch stehen ein Bariumtitanat- als auch ein Triglycinsulfat-Kristall als typische Vertreter ihrer Klasse zur Verfügung. Beide Kristalle werden durch dielektrische Spektroskopie sowie die Messung der elektrischen Polarisation im Temperaturbereich von RT bis etwa 150°C charakterisiert. Die Temperaturabhängigkeit der typischen Hysterese-Kurven im Polarisationsdiagramm verdeutlichen die phänomenologischen Ähnlichkeit zum Ferromagnetismus.

Stichworte:
Piezo-, Pyro-, Ferroelektrika, Phasenübergänge erster und zweiter Art, Curie-Weiß-Gesetz, spontane Polarisation, Koerzitivfeldstärke, Sawyer-Tower-Schaltung, Impedanzspektroskopie.

Assistent: Shreya Kumar
Institut: FMQ
Raum: 2.349
Tel.: 61585
E-Mail: shreya.kumar (at) fmq.uni-stuttgart.de

Versuch:
Raum: 1.922    Telefon: 64877

Verschränkte quantenmechanische Zustände sind in der modernen Physik von sehr großer Bedeutung. So dienen sie als grundlegende Ressource verschiedenster Quantenkommunikations- sowie Quantencomputingprotokolle. In diesem Blockpraktikum haben Sie die Möglichkeit, selbst eine Quelle polarisationsverschränkter Photonenpaare aufzubauen, zu justieren und Experimente mit diesen Photonenpaaren durchzuführen. Hierzu wird die spontane parametrische Fluoreszenz in einem nichtlinearen Kristall ausgenutzt, bei der ein Photon unter Einhaltung der Energie- und Impulserhaltung in zwei Photonen aufspalten kann – Diese Photonen zeigen dann starke Korrelationen in Energie, Impuls und Polarisationszustand.
Mit diesen verschränkten Photonenpaaren lässt sich dann eine Reihe an Messungen verwirklichen, um den erzeugten Zustand zu charakterisieren und das Phänomen der quantenmechanischen Verschränkung zu untersuchen.

Stichworte:
Spontaneous parametric down-conversion; Polarisation in der Quantenmechanik, Typ II Phasenanpassung, Verschränkung, Bell-Zustände, Bell- & CHSH-Ungleichung; Hong-Ou-Mandel Effekt.

Assistent: Morgado, Manuel
Institut: 5.PI
Raum: 5.125
Tel.:
E-Mail: mmorgado (at) pi5.physik.uni-stuttgart.de

Versuch:
Raum: 1.911    Telefon: 64872

Dieser Versuch beschäftigt sich mit der Programmierung eines Quantencomputers. Er gibt eine Einführung in Qiskit, ein Python Kit, welches verwendet wird, um mit Quantencomputern auf dem Level von Circuits zu arbeiten. Im Moment investieren große Unternehmen, wie beispielsweise IBM und Google, viel Zeit und Ressourcen in die Forschung an Quantencomputern.
Im ersten Teil des Versuchs wird die IBM Quantum-Cloud verwendet, um den Grover Algorithmus mittels Qiskit auf einem IBM Quantencomputer zu implementieren. Der Grover Algorithmus ist ein Quanten-Suchalgorithmus, der die Suche in einer unsortierten Datenbank quadratisch beschleunigt. Im Versuch wird der Algorithmus auch angewendet, um einfache klassische Probleme zu lösen.
Im zweiten Teil wird der VQE-Algorithmus auf einem Quantencomputer-Simulator verwendet, um einige bekannte Ergebnisse aus der Quantenchemie zu reproduzieren. Der VQE ist ein hybrider Algorithmus und gilt als einer der vielversprechendsten Anwendungen für NISQ-Hardware (noisy intermediate-scale quantum). Im Versuch wird der VQE verwendet, um unter anderem die Grundzustandsenergien des Wasserstoff-Moleküls und des LiH-Moleküls zu berechnen. Außerdem wird der Algorithmus in mehreren Schritten optimiert.
Die Grundlagen der Programmiersprache Python sollten für diesen Versuch bekannt sein und können als nützliches Werkzeug im Bereich des Quantum Computing weiter vertieft werden.

Stichworte:
Quantum computing, Qiskit/Pyhton, Grover-Algorithmus, Quantenchemie/Molekülphysik (Electronic structure problem, Hartree-Fock Methode, chemische Basissets), VQE

Assistent: d’Aurelio, Simone
Institut: FMQ
Raum: 1.002
Tel.: 61583
E-Mail: simone.daurelio (at) fmq.uni-stuttgart.de

Versuch:
Raum: 1.922    Telefon: 64877

Eines der wichtigsten Experimente der frühen Quantenoptik ist die Hong-Ou-Mandel Interferenz, die nach ihren Entdeckern Chung Ki Hong, Zheyu Ou und Leonard Mandel benannt wurde und in der modernen Physik als Möglichkeit zur Quantisierung der Unterscheidbarkeit zweier Photonen breite Anwendung findet. In diesem Versuch soll dieses Interferenzphänomen experimentell umgesetzt und untersucht werden - ein quantenoptisches Interferenzexperiment, bei dem zwei ununterscheidbare Photonen auf einen symmetrischen Strahlteiler treffen und dabei interferieren können. Zur Erzeugung der Photonenpaare wird die spontane parametrische Fluoreszenz in einem ein Beta-Bariumborat Kristall genutzt, der polarisationsverschränkte Bell-Zustände erzeugt.
Hierbei kann die Auswirkung der Unterscheidbarkeit der beiden Photonen untersucht werden, indem Parameter wie die relative Ankunftszeit oder der Polarisationszustand der beiden Photonen variiert, die resultierenden Interferenzphänomene aufgezeichnet und die Unterscheidbarkeit der untersuchten Photonen quantisiert werden kann.
Ein weiteres Experiment, das Sie in diesem Versuch durchführen werden, ist die sogenannte Bell-Zustands Messung. Diese dient der Identifizierung der verschiedenen Bell-Zustände durch Interferenzexperimente am symmetrischen Strahlteiler – Sie ist Kernelement wichtiger quantentechnologischer Protokolle wie der Quantenteleportation, dem Quantenschlüsselaustausch oder der Umsetzung sogenannter Quantenrepeater. In diesem Versuchsteil werden Sie experimentell eine Bell-Zustands Messung durchführen und die Grenzen dieser kennen lernen.

Stichworte:
Hong-Ou-Mandel Interferenz, Unterscheidbarkeit in photonischen Systemen, Polarisation in der Quantenmechanik, spontane parametrische Fluoreszenz in Beta Bariumborat, Einzelphotonendetektion, Bell-Zustände, Bell-Zustands Messung, Quantenteleportation

Assistent: Nikolaou, Konstantin
Institut: ICP
Raum: 01.077
Tel.: 67705
E-Mail: knikolaou (at) icp.uni-stuttgart.de

Versuch:
Raum: ICP    Telefon:

Künstliche Intelligenz und maschinelles Lernen (ML) gehören wohl zu den relevantesten Themen unserer Zeit. Auch in der Physik werden ML Modelle immer häufiger verwendet und sind in der Forschung mittlerweile schon Standardmethoden zur Lösung verschiedenster Probleme.
In diesem zweitägigen Versuch werden die Grundlagen neuronaler Netze vermittelt und eine fortgeschrittene Methode betrachtet, die speziell für physikalische Systeme entwickelt wurde. Diese sogenannten Physics-Informed Neural Networks (PINNs) werden verwendet, um die Dynamik zwei verschiedener physikalischer Systeme zu modellieren.
Am ersten Tag wird ein PINN eingesetzt um die Trajektorie eines schrägen Wurfs zu lernen. Im Fokus steht dabei zunächst die Grundlagen neuronaler Netze anzuwenden und Erfahrungen zu sammeln, wie so ein Modell aufgebaut ist und trainiert wird. Außerdem wird der Unterschied von normalen neuronalen Netzen zu PINNs diskutiert.
Am zweiten Tag werden die Erkenntnisse vom ersten Tag angewandt, um die Zeitentwicklung der Wellenfunktion eines QM harmonischen Oszillators mithilfe eines PINNs vorauszusagen.

Assistent: Rückle, Lukas
Institut: FMQ
Raum: 1.002
Tel.: 60887
E-Mail: lukas.rueckle (at) fmq.uni-stuttgart.de

Versuch:
Raum: FMQ 0.086    Telefon:

Verschränkte Multi-Photonenzustände finden neben den spannenden fundamentalen Fragestellungen, die sie aufwerfen, auch zunehmend praktische Anwendungen. Eine dieser Anwendungen ist der Quantenschlüsselaustausch (engl. quantum key distribution, QKD), der räumlich voneinander getrennten Parteien die Erzeugung abhörsicherer Schlüssel für die Verschlüsselung sensibler Daten ermöglicht. Die Verwendung von verschränkten Zuständen, welche aus mehr als zwei Photonen bestehen, erlaubt es, diese Schlüssel auch in Netzwerken mit mehr als zwei Parteien zu erzeugen.
Für die Erzeugung von Multiphotonen-Zuständen wird häufig eine Kombination aus spontaner parametrischer Fluoreszenz und anschließender Einzelphotonen-Interferenz verwendet. Mittels der spontanen parametrischen Fluoreszenz werden dabei mehrere Photonen-Paare erzeugt. Die Interferenz einzelner Photonen von unterschiedlichen Paaren ermöglicht es dann, aus diesen Photonen-Paaren einen größeren Multiphotonen-Zustand aufzubauen.
In diesem Versuch erhalten Sie die Möglichkeit, an einem vergleichsweise großen und komplexen Experiment auf aktuellem Forschungsstand zu arbeiten. Zum einen können Sie dabei Ihre praktischen Fähigkeiten im Justieren von optischen Experimenten weiter vertiefen. Zum anderen lernen Sie Methoden zur Charakterisierung von Quantenzuständen und können darüber hinaus mit den gemessenen Daten selbst eine Nachricht ver- und entschlüsseln.

Stichworte:
Verschränkung, Quantenoptik, spontane parametrische Fluoreszenz, Quanten-Zustands-Tomographie, Quanten-Schlüsselaustausch, quantum conference key agreement

Voraussetzung:
Blockpraktikum Quantenverschränkung

Assistent: Wong, Andrew
Institut: 3.PI
Raum: 6.317
Tel.:
E-Mail: k.wong (at) pi3.uni-stuttgart.de

Versuch:
Raum: 1.913    Telefon: 64873

Assistent: Zhang, Yuanshan
Institut: MPI-FKF
Raum: 6C20
Tel.: 0711 689 1644
E-Mail: Yuanshan.Zhang (at) fkf.mpg.de

Versuch:
Raum: MPI-FKF    Telefon:

In den einfachsten Festkörpermodellen wird die Wechselwirkung zwischen Elektronen oftmals vernachlässigt. In Quantenmaterialien hingegen spielt sie eine entscheidende Rolle und führt zu einer großen Vielfalt an exotischen elektronischen Phasen. Dieser Phasenreichtum beruht auf einem komplizierten Wechselspiel aus Kristallgitterbeschaffenheit, Quanteneffekten und den Freiheitsgraden des Elektrons (Ladung, Spin, Orbitalbesetzung). Die wohl bekanntesten Phänomene sind unter anderem (unkonventionelle) Supraleitung, topologische Isolatoren und Quantenspinflüssigkeiten.
In diesem Blockpraktikum können die Studierenden die supraleitende Phase in neuartigen Quantenmaterialien unter Verwendung verschiedener elektrischer und thermodynamischer Messmethoden untersuchen. Wir bieten ihnen in unserem Tieftemperatur- (0,4 K bis 300 K) und Hochfeldlabor (bis 14 T) die Möglichkeit an aktueller Forschung mitzuwirken, indem sie verschiedene Proben präparieren, die Handhabung der Kryostate kennenlernen, sowie eine anschließende Analyse der Daten inklusive Bestimmung der kritischen Temperatur, der kritischen Felder und des Meißner-Effekts durchführen.

Schlüsselwörter:
Festkörperphysik, Quantenmaterialien, stark korrelierte Elektronen, elektronische Phasen in Festkörpern, BCS Supraleiter, Typ II Supraleiter, kritische Temperatur/kritisches Feld, Meißner-Effekt, unkonventionelle Supraleitung, Tieftemperatur- und Hochfeldmessungen, Kryostat, Kühlung mit flüssigem Helium, supraleitende Magnete

Assistent: Löw, Robert
Institut: 5. Physikalisches Institut
Raum: 4.158
Tel.: 64954
E-Mail: R.Loew (at) physik.uni-stuttgart.de

Versuch:
Raum: 1.944    Telefon:

Das integrierte Optikpraktikum wird als zweiwöchiges Blockpraktikum vom 5. physikalischen Institut (Prof. Dr. Tilman Pfau) in Zusammenarbeit mit dem IHFG (Prof. Dr. Peter Michler) angeboten.
In diesem Praktikum werden mehrere elementare optische Komponenten untersucht, die genau so auch in den Forschungslaboren verwendet werden. Dabei ist das Ziel die Funktionsweise und Limitationen der Bauteile durch direktes experimentieren kennenzulernen. Zum Einsatz kommen z.B. polarisationserhaltende Fasern, akkusto-optische Modulatoren, Pockels-Zellen, Michelson interferometer, etc.
Im Unterschied zum üblichen Praktikumsbetrieb werden hier alle Versuche von den Praktikanten von Grund auf aufgebaut und auch die zu untersuchende Fragestellung ist zu einem großen Teil nicht festgelegt. Die Versuchseinheiten werden durch kurze Vorlesungseinheiten ergänzt um notwendige Grundlagen zu rekapitulieren. Das erworbene technische und praktische Wissen ist von direktem Nutzen für den Einstieg in den Forschungsalltag in den Laboren des 3., 4. und 5. physikalischen Institutes sowie des IHFG.

Bei Fragen können Sie sich an Dr. Robert Löw wenden:
r.loew@physik.uni-stuttgart.de

   

Zum Seitenanfang